

Carlos J. Costa, 2025


ARTIFICIAL INTELLIGENCE: CONCEPTS AND APPLICATIONS

Index

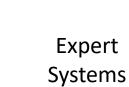
- What is Al
- ML
- GenAl
- Example of Application

Artificial Intelligence(AI)

• Artificial intelligence refers to the development of computer-based solutions that can perform tasks which mimic human intelligence.

1956 Dartmouth Conference: The Founding Fathers of AI

Arthur Samuel



Symbolic ΑI

Knowledge Engineering

User Interface

Inference Engine

Knowledge Base

Expert

Winter 2

Euristic Search Winter 1

1950

1956

A PROPOSAL FOR THE DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE

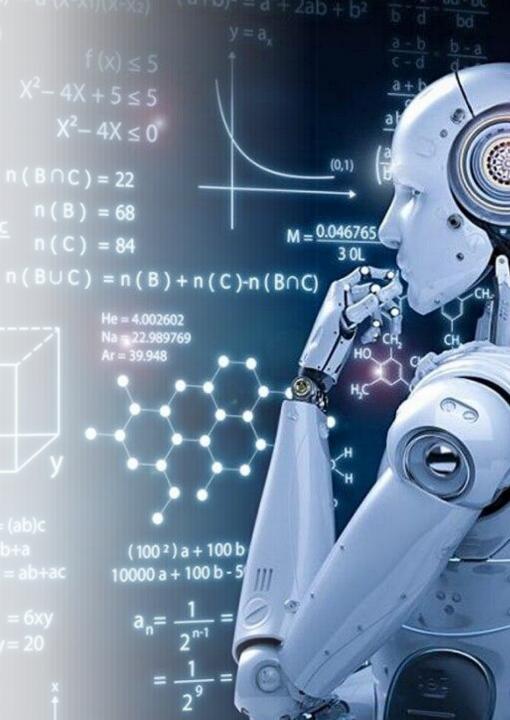
J. McCarthy, Dartmouth College M. L. Minsky, Harvard University N. Rochester, I.B.M. Corporation C.E. Shannon, Bell Telephone Laboratories

August 31, 1955

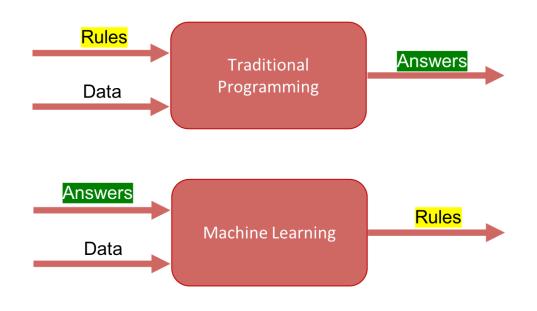
1956 Dartmouth Conference: The Founding Fathers of AI

Ray Solomonoff

- Marvin Minsky
- John McCarthy
- Claude Shannon
- Trenchard More
- Nat Rochester
- Oliver Selfridge
- Julian Bigelow
- W. Ross Ashby
- W.S. McCulloch
- Abraham Robinson
- Tom Etter
- John Nash
- David Sayre
- Arthur Samuel
- Kenneth R. Shoulders
- Shoulders' friend
- Alex Bernstein
- Herbert Simon
- Allen Newell



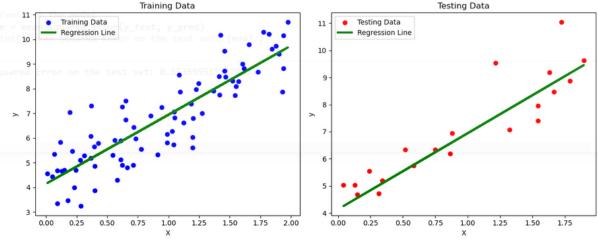
What is Machine Learning?



Machine Learning

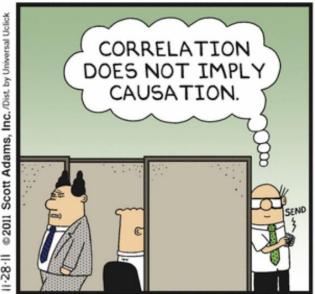
is as a subset of artificial intelligence that enable systems to learn patterns from data and subsequently improve from experience

Tradicional programming vs. Machine Learning


Example of supervised Model

```
1 # Import necessary libraries
 2 import numpy as np
 3 from sklearn.model_selection import train_test_split
 4 from sklearn.linear model import LinearRegression
 5 from sklearn.metrics import mean squared error
 8 # Generate synthetic data
 9 np.random.seed(42) # For reproducibility
10 X = 2 * np.random.rand(100, 1)
11 y = 4 + 3 * X + np.random.randn(100, 1)
12
13 # Split the data into training and testing sets
14 X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
15
16 # Train a linear regression model
17 model = LinearRegression()
18 model.fit(X_train, y_train)
19
20 # Make predictions on the test set
21 y pred = model.predict(X test)
23 # Evaluate the model
24 mse = mean_squared_error(y_test, y_pred)
25 | print(f'Mean Squared Error on the test set: {mse}')
26
```

Mean Squared Error on the test set: 0.6536995137170021


Example of supervised Model

```
1 import matplotlib.pyplot as plt
   # Plot the regression line for the training data
   plt.figure(figsize=(12, 5))
   plt.subplot(1, 2, 1)
   plt.scatter(X_train, y_train, color='blue', label='Training Data')
   plt.plot(X train, model.predict(X train), color='green', linewidth=3, label='Regression Line')
   plt.xlabel('X')
   plt.ylabel('y')
   plt.title('Training Data')
   plt.legend()
12 # Plot the regression line for the testing data
13 plt.subplot(1, 2, 2)
14 plt.scatter(X_test, y_test, color='red', label='Testing Data')
15 plt.plot(X test, y pred, color='green', linewidth=3, label='Regression Line')
16 plt.xlabel('X')
17 plt.ylabel('y')
18 plt.title('Testing Data')
   plt.legend()
   plt.tight_layout()
   plt.show()
```


Inference

- Given a dataset, the purpose is to infer how the output is generated as a function of the data.
- Use the model to learn about the data generation process.
- Understand the way the independent variables X affect the target variable Y.
- Ex: find out what the effect of passenger gender, class and age, has on surviving the Titanic Disaster
- Model interpretability is a necessity for inference

- Use the model to predict the outcomes for new data points.
- When performing predictions over data, the purpose is estimating f in y=f(x)

Prediction

- The purpose is not understanding the exact form of the estimated function, as far as it can perform predictions quite accurately.
- To be able to predict what the responses are going to be to future input variables.
- Ex: predict prices of oil

Machine Learning

UDERA

Caffe

HUGGING FACE

PYT

otData

H₂O.ai

OMINO

emio

Decision tree, Linear & Logistic regression Supervised Regression Continuous target learning SVM, Naïve Bayes, KNN... Categorical target Classification Low Degree Sep., Laplacian regularization Semi-supervised learning Cop-kmeans, Lcop-kmeans, Seeded-kmeans Machine learning Clustering K-means, DBSCAN, Gaussian Mixture Model Unsupervised Association Rule Apriori, Eclat, FP-Growt... learning Mining Target not available PCA, LDA, Feature Selection Dimensionality reduction Reinforcement SARSA, Monte-Carlo, Q-learning learning Control

PyCharm

Visual

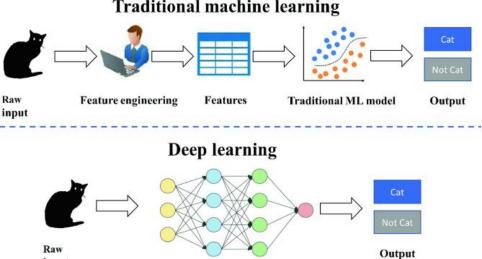
Sublime Text

Vim

Spyder

Atom

Eclipse

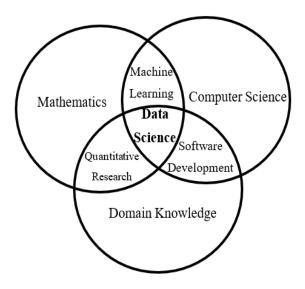


Aparicio, Romao & Costa (2022)

Machine Learning

Other dimensions:

- Deep learning
- Generative Al

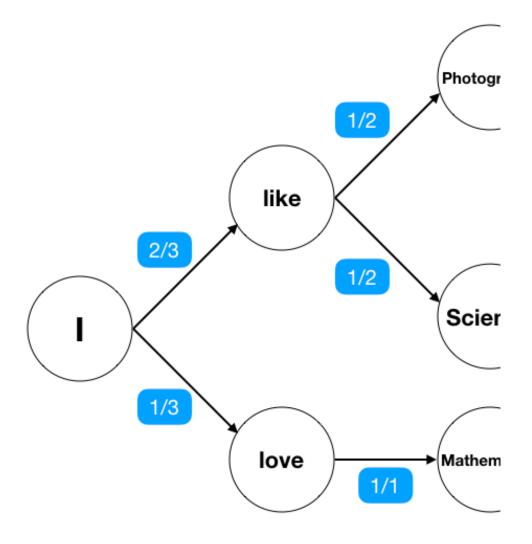


input

Data Science

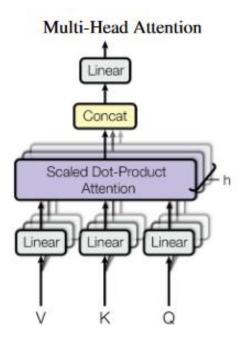
 includes techniques developed in some traditional fields like artificial intelligence, statistics or machine learning.

Aparicio et al. (2019).


Generative Al

- Class of AI algorithms and models that are designed to generate new, original content.
- Gen AI learn the underlying patterns and structures in the data and can generate novel outputs.
- Instead of being trained on specific examples and then making predictions or classifications
- These models are particularly good at creating content that resembles or is similar to the data they were trained on.

Generative Al


- Guessing next word
- Markov Chain
- Training model

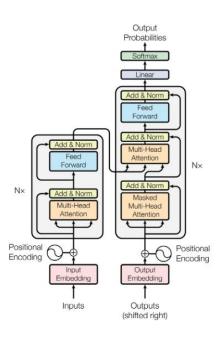
Transformer

Deep learning architecture based on the multi-head attention mechanism

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Research Google Research
avasvani@google.com noam@google.com nikip@google.com usz@google.com

| Lilion Jones* | Aidan N. Gomez* | Lukasz Kaiser* | Google Research | University of Tromto. | Google Brain | Lilion@google.com | aidan@cs.toronto.edu | Lukaszkaiser@google.com | Lukaszkaiser@google.c


Illia Polosukhin* ‡
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanism, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-Germant translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.

1 Introduction

Recurrent neural networks, long short-term memory II2] and gated recurrent [7] neural networks in particular, have been firmly established as state of the art approaches in sequence modeling and transduction problems such as language modeling and machine translation [29, [2, 5]]. Numerous efforts have since continued to push the boundaries of recurrent language models and encoder-decoder architectures [31].(211173).

Al

- Prompt Engineering
- GenAl
- Direitos autor
- Privacidade

Digital Transformation and Al

- Machine learning
- Deep learning
- NLP
- Improve competitive advantage
 - Effectiveness
 - Efficiency
- Improve organization

Artificial Intelligence as the core technology for the Digital Transformation process

Reihaneh Hajishirzi

ISEG - Lisbon School of Economics & Management, University of Lisbon Lisbon, Portugal reihaneh hajishirzi@aln.iseg.ulisboa.pt

Abstract — Digital transformation (DT) is about change in every aspect of the organization, but fundamental technologies are the core of this conversion. In this paper, modern technologies, mostly Artificial Intelligence (AI), is studied. Also, the impact of AI in creating value for companies has been investigated. It also argues that the firms which accept these changes as opportunities will succeed in the digital age. In this research, by applying the literature review methodology, it was found that AI can enhance the customer experience. It expands the number of sales and enables real-time decision making.

Keywords – artificial intelligence, digital transformation, digital technology, value creation, organizational barriers.

I. INTRODUCTION

Nowadays, in the digital era, disruption is happening everywhere, and for surviving businesses must learn to see things differently, do thing differently and deliver things differently [1]. They need to use digital innovations in their processes, structures, procedures, values, products, assets to manage risk and threats and improve efficiency and customer experience [2]. This process is called digital transformation. It consists of many building blocks in an organization: digital technologies, Disruptions, Strategic responses, Changes in value creation paths, Structural changes, Organizational barriers, challenges, and Positive impacts. Digital technology plays a crucial role in digital transformation because it is the core of this process [3].

Carlos J. Costa

Advance/CSG, ISEG - Lisbon School of Economics & Management, University of Lisbon Lisbon, Portugal cjcosta@iseg.ulisboa.pt

for a new digital age. Also, this research helps them to understand how it can improve customer experiences through AT

This paper is structured as follows. In section II, the impact of technology on the value chain and organizational performance is presented. Then in section III, the building blocks of DT is defined, and in section IV, trends in digital technology and AI are presented. The effects of AI on value creation for companies are then discussed. In the next section, we describe the organizational barriers to adopting AI in the organization and its positive and negative effect. Finally, several case studies related to the topic are reviewed.

II. IMPACT OF TECHNOLOGY

A. Exponential Evolution of Technology

In recent years, digital technology has evolved fast and has progressed exponentially. Three fundamental laws explain the exponential growth in processing, communication and storage. According to Moore's law, every 18 months, we can have twice the data processing power. The second law is called Butter's law, and it says every nine months, the amount of data communicated doubles. The other law is Kryder's law which says the amount of data stored in a hard drive will double every 13 months [7]—[10]. Therefore, this growth makes digital innovations faster,

 Hajishirzi, R., & Costa, C. J. (2021, June). Artificial Intelligence as the core technology for the Digital Transformation process. In 2021 16th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE..

Robotic Process Automation

- RPA is not Al
- RPA may be integrated with AI
- AI may help redesign processes

Robotic Process Automation: A case study in the Banking Industry

Mário Romão Advance/CSG, ISEG - Lisbon School of Economics and Management Universidade de Lisboa Lisboa, Portugal mario.romao@iseg.ulisboa.pt

João Costa
ISEG - Lisbon School of Economics
and Management
Universidade de Lisboa
Lisboa, Portugal
joao.marquescosta@millenniumbcp.pt

Carlos J. Costa Advance/CSG, ISEG - Lisbon School of Economics and Management Universidade de Lisboa Lisboa, Portugal cicosta@iseg.ulisboa.pt

Abstract - Robotic process automation (RPA) is the use of software with artificial intelligence (AI) and machine learning capabilities to handle high-volume, repeatable tasks that previously required only humans to perform. In short, there is at least a problem with traditional Business Process Management (BPM) systems, as they cannot suggest the best combination of tasks, people and timings, which can increase the benefits of running them, while reducing the costs and risk factors. Yet, it is an irrefutable fact that the current business environment is highly dynamic. On the one hand, we need to be more efficient to execute what is operational and obvious, releasing scarce resources for more critical areas. Then, dealing with business process management and automation, a common claimed benefit is associated with the improvement of performance. In addition to this and other potential benefits, we also highlight some potential operational risks from the adoption of AI-based systems like RPA. The acceleration in the business context makes it more difficult to predict what changes will occur and how they can affect the technological solutions used in the increasingly automated business processes. We point out the fact that immature or not well-trained models can eventually decrease productivity and increase errors from unsupported or even wrong decisions. We present a case study in the banking sector, which illustrates some examples of benefits and risks arising from BPM solutions that use AI-related agents/artifacts.

Keywords - Business Process (BP); Business Process Management (BPM); Business Process Automatiom (BPA); Robotic Process Automatiom (RPA); Artificial Intelligence (AI).

growing dynamism of business environments, BP are redesigned and/or reengineered as a response to those external transformations or even because companies want to be operating with more apility.

Business Process Management (BPM) is a relevant topic focused on managing organizational processes using different methods, techniques and software solutions to analyze, control and manage tasks and organizational activities, using assets like people, skills, applications, documents and other related data and information [22].

An identified problem of current BPM solutions is that they on not leverage the amount of data to create insights to solve the most challenging aspects of a BPM System, what task to execute. When the task should be completed (SLA) and by Whom the task should be made. These 3Ws has been usually defined by Process Managers, with tiny or any contribution of a learning mechanism that could increase the probability of a best outcome. So, they cannot suggest the best combination of tasks, people and timings in order to increase the benefits of running them, while reducing transaction costs and associated risks. [25][26]

Nowadays, either researchers and practitioners propose that BP must be gradually optimized and automated. In extending the scope and sophistication of automation, some pertinent questions arise, such as: (1) What are the main benefits and risks associated with new solutions that deepen BP automation with greater "intelligence" in BPM7 (2) Is an automated and intelligent mechanism more ampropriate to define and decide

- Romao, M., Costa, J., & Costa, C. J. (2019, June). Robotic process automation: A case study in the banking industry. In 2019 14th Iberian Conference on information systems and technologies (CISTI) (pp. 1-6). IEEE.
- Ortiz, F. C. M., & Costa, C. J. (2020, June). RPA in Finance: supporting portfolio management: Applying a software robot in a portfolio optimization problem. In 2020 15th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE.

Al and Communication

- What make messages more effective?
- Small messages
- Negative Sentiment

Sentiment Analysis of Portuguese Political Parties Communication

Carlos J. Costa ADVANCE/CSG, ISEG (Lisbon School of Economics & Management), Universidade de Lisboa, Portugal cjcosta@iseg.ulisboa.pt Manuela Aparicio NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Portugal manuela.aparicio@novaims.unl.pt Joao Tiago Aparicio INESC-ID and Instituto Superior Tecnico/Universidade de Lisboa, Dep Transportes LNEC, Portugal joao.aparicio@tecnico.ulisboa.pt

ABSTRACT

Political communication in social media has gained increasing importance in the last years. In this study, we analyze the political parties' communication on Twitter and understand the sentiment of their communication. First by identifying their communication performance regarding the daily number of tweets, favorite tweets, number of retweets per day and per political party. We present a sentiment analysis by the political party using tweets data. In this study, we propose an explanatory model with the main drivers of retweets. To conduct this study, our approach used data analysis and machine learning techniques methods. Results indicate the main determinants that influence future retweets of political posts globally. Here we present a comparison of the communication content between tweets posts and the political parties' programs available on their institutional websites. We identify the similarities between tweets and formal programs per party and among all parties. This study contributes to analyze the coherence and effectiveness of the political parties' communication.

CCS CONCEPTS

General and reference; - Cross-computing tools and techniques; - Empirical studies;; - Information systems; - Information retrieval; - Retrieval tasks and goals; - Sentiment analysis; - Computing methodologies; - Artificial intelligence; - Natural language processing;; - Machine learning;

KEYWORDS

Twitter, political parties, sentiment analysis, document similarity, machine learning

1 INTRODUCTION

Political parties are increasingly using social media to communicate their values and ideas. An example of such behavior was when Barack Obama's staff successfully used Twitter in the 2008 presidential elections [13]. This practice persisted in Donald Trump's administration in 2016 [14]. However, using social media is not a panacea per se. It is also essential to analyze what is the effectiveness of what is being communicated to the public. The cohesion between parties' political agenda versus their social media communication needs to be addressed [27]. Are parties communicating according to their goals, or is it all part of a hype machine? [16] The usage of social media in a political context has been studied by several authors [6, 7, 13, 14]. In this context, the evolution in natural language processing and sentiment analysis is significant. Nevertheless, there is a research gap in the Portuguese language and its application in a political context as well [15]. The purpose of the work performed in this paper is to analyze political parties' communication, expressed explicitly by the official Twitter accounts of such parties. To reach this main goal, we state four research objectives (RO) as follows: RO1: Identify the performance of each political party on Twitter; RO2: Identify the global sentiment per political party in Twitter communication; RO3: Identify the drivers of retweet behavior in political parties; RO4: Understand the similarities between social media communication and political program communication.

We used data analysis and machine learning techniques described in section 3 of this paper for each of these research objectives. This study contributes to a better understanding of how political parties communication in Twitter can be analyzed in terms of the sentiment of posts, and globally we contribute to analyze the coherence and effectiveness of the political parties communication.

- Aparicio, J. T., de Sequeira, J. S., & Costa, C. J. (2021, June). Emotion analysis of Portuguese political parties communication over the COVID-19 pandemic. In 2021 16th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE
- Costa, C., Aparicio, M., & Aparicio, J. (2021, October). Sentiment analysis of Portuguese political parties communication.
 In Proceedings of the 39th ACM international conference on design of communication (pp. 63-69), ACM

Type of Al Users

- Important Identify different type of users (HR, MK)
- Not all the users are equal
- React
- Fit
- Champion
- Addicted
- Successful
- loose

AI User Archetype Model

Carlos J. Costa 1[0000-0002-1037-0561]

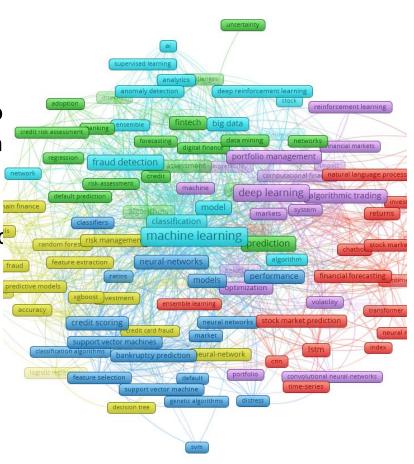
¹ ISEG, Universidade de Lisboa, Lisboa, Portugal
² cjcosta@iseg.ulisboa.pt

Abstract. The rapid development of AI technologies has resulted in diverse interactions between users and AI systems. This paper introduces an AI User Archetype Model, classifying users based on their AI literacy, engagement levels, motivations, and governance. The model provides a structured approach to understanding users' behavior, enabling the design of AI systems that align with user needs and enhance AI democratization. The archetypes include The Sage, The Warrior, The Creator, The Producer, and others, each representing a unique combination of these dimensions. This model can be used to optimize AI product design, inform AI education strategies, and guide policy-making for more inclusive AI development.

Keywords: Artificial Intelligence, Gamification, GenAI, .User Archetype

1 Introduction

There is a need to explore AI users, why they interact with AI daily, and how AI technologies have resigned themselves. There are user systems developed for AI thinkability-around-and-user engagement. Thus, fully understanding their differences would be instrumental in delivering AI systems that suit user needs and broaden their basis. Further reflections on this attempt to characterize the AI user elucidate their engagement with AI systems. Besides, it explores in detail the most dominant dimensions of user engagement with AI, indicating how users relate and interact with these technologies. The research reported in this paper aims to illuminate a particular model that categorizes AI users based on their literacy, engagement, motivations, and governance while establishing a comprehensive and broad-source framework for user-centered AI design. The methodological approach consisted of a multidimensional analysis of AI users. The proposed factors are selected according to four main dimensions: AI literacy, level of engagement, motivation, and governance. User archetypes are formed from multidimensional analyses: this may lend itself well to the differences in users' relationships


Al and Finance

Widespread use:

- Fraud Detection and Risk Management:
- Credit Scoring and Financial Inclusio
- Investment & Portfolio Managemen
- Customer Service
- Algorithmic Trading
- Regulatory Compliance & Automatic

Challenges:

- Data Quality and Bias
- Regulatory Compliance
- Integration with Legacy Systems
- Ethical and Privacy Concerns

Social and Economic Impact of Al

- Increase Unemployment?
- Increase Employment?
- Several techniques may be used to help predicting and deciding

Socio-Economic Consequences of Generative AI: A Review of Methodological Approaches

Carlos J. Costa
Advance/ISEG (Lisbon School of
Economics & Eamp;
Management), Universidade de
Lisboa, Portugal
cjcosta@iseg.ulisboa.

Joao Tiago Aparicio
INESC-ID and Instituto Superior
Técnico, Universidade de Lisboa;
LNEC, Department of Transport,
Av. do Brasil 101, Lisboa, 1700-075,
Lisboa, Portugal
joao.aparicio@tecnico.ulisboa.pt.

Manuela Aparicio NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Portugal manuela aparicio@novaims. unl pt

Abstract — The widespread adoption of generative artificial intelligence (AI) has fundamentally transformed technological landscapes and societal structures in recent years. Our objective is to identify the primary methodologies that may be used to help predict the economic and social impacts of generative AI adoption. Through a comprehensive literature review, we uncover a range of methodologies poised to assess the multifaceted impacts of this technological revolution. We explore Agent-Based Simulation (ABS), Econometric Models, Input-Output Analysis, Reinforcement Learning (RL) for Decision-Making Agents, Surveys and Interviews, Scenario Analysis, Policy Analysis, and the Delphi Method. Our findings have allowed us to identify these approaches' main strengths and weaknesses and their adequacy in conine with uncertainty, robustness, and resource recurrements.

Keywords -Generative AI; AI adoption; methods; prediction; methodology.

I. INTRODUCTION

In recent years, generative artificial intelligence (AI) usage revolutionized technological landscapes and profoundly reshaped the societal structure. This transformative force, marked by its ability to generate novel content, ideas, and solutions autonomously, has sparked unprecedented levels of innovation across various sectors [14, 22, 42, 52, 54]. However,

Therefore, our effort aims to solve the complexities inherent in this technological revolution and provide insights to inform strategic decision-making and policy formulation in an era of unprecedented change.

Our investigation examines various methodologies, ranging from traditional econometric models to cutting-edge reinforcement learning techniques tailored for decision-making agents. Agent-Based Simulation (ABS), Input-Output Analysis, Surveys and Interviews, Scenario Analysis, Policy Analysis, and the Delphi Method all feature prominently, each offering unique insights into the intricate dynamics entwined with the proliferation of generative AI. They are synthesizing insights gleaned from these methodologics. Recognizing the nuanced interplay between technological advancement and its societal ramifications, we argue that such an integrative approach is essential for comprehensively understanding the transformative effects of generative AI.

Moreover, by shedding light on the multifaceted consequences of AI innovation, our research aims to facilitate informed decision-making and policy formulation in the face of unprecedented technological change. Through this integrative lens, we aspire to contribute to a deeper comprehension of the societal implications of AI innovation, empowering

 Costa, C. J., Aparicio, J. T., & Aparicio, M. (2024). Socio-Economic Consequences of Generative AI: A Review of Methodological Approaches. arXiv preprint arXiv:2411.09313.

Future Scenarios

• Al Scenarios

Scenarios / Dimensions	AI and Digital Education	Renewable Energy and Sustainability	Financial Markets and Fintech
Scenario 1: Optimistic Future	Rapid advancements	Rapid transition to renewables	Stable markets, fintech growth
Scenario 2: Technological Stagnation	Slow progress	Moderate renewable adoption	Market volatility
Scenario 3: Sustainability Focus	Moderate progress	High investment in renewables	Stable markets, green finance
Scenario 4: Economic Downturn	Limited funding	Low investment in renewables	Market decline

- Bibliographic dataset
- Topic Model
- Classification
- Impact Uncertinty Matrix

Ai and Ethics

- ACM and IEEE have discussed proposals
- Robotics
- Privacy
- Responsibility
- Transparency
- Al Act
- REGULATION (EU) 2024/1689 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 13 June 2024

A Ética na Inteligência Artificial: Desafios Ethics of Artificial Intelligence: Challenges

Martinha Piteira
Instituto Politécnico de Setúbal,
IPS, Setúbal
Instituto Universitário de Lisboa
(ISCTE-IUL), ISTAR-IUL
Portugal
martinha piteira@estsetubal.ips.pt

Manuela Aparicio
Instituto Universitario de Lisboa
(ISCTE-IUL) ISTAR-IUL
Information Management School
(Nova IMS), Universidade Nova de
Lisboa, Portugal
manuela aparicio@acm.org

Carlos J. Costa Advance/CSG, ISEG, Universidade de Lisboa cjcosta@iseg.ulisboa.pt

Ressumo - A inteligência artificial (IA) tem nos últimos tempos assumido um papel relevante nos mais diversos setores da nossa sociedade. Estamos num ponto sem retorno, e o nosso futuro passará naturalmente pela incorporação da inteligência artificial, an nossa vida diária, seja profissional, seja pessoal. A ideia da existência de máquinas "pensantes" e que tomem decisões pelos Humanos levanta uma série de questões éticas que devem estar presentes aquando do desenvolvimento e incorporação da inteligência artificial nos mais diversos setores da sociedade. É fundamental estudar e investigar as melhores abordagens à sua

ca, os principais princípios informática e sistemas de le sistemas inteligentes e resultados de um estudo os os principais grupos de M e IEEE pela comunidade

tificial; Framework, Estudo

s in recent times assumed a of our society. We are at a proprate artificial intelligence or personal. The idea of decisions by Humans raises ntal to study and investigate in. This article identifies the text of using intelligent and bibliometric study, reporting Ethics and Al. Our results und Al, that the scientific and Al. Our tesults und Al, that the scientific Por exemplo, os algoritmos que recomendam com base em determinados critérios a aprovação ou não da hipoteca [1]-[4]. E, se a rejeição acontece baseada em discriminação racial? E. os algoritmos que são incorporados nas viaturas de condução autónoma e que tomam decisões perante determinadas situações. E, se for inevitável o choque frontal com um conjunto de pessoas? Qual, ou quais as que escolhe para esse choque? Baseia a sua decisão na idade? Na raça?[1]. A IA assume também um papel relevante na educação. Por exemplo, no reconhecimento da aquisição de competências [5]-[7]. Que os algoritmos de inteligência artificial representam um papel importante e crescente na nossa sociedade, é uma realidade. Os cenários acima descritos, são assustadores, por isso, a importância crescente de desenvolver algoritmos de inteligência artificial, que não sejam apenas poderosos e escaláveis, mas acima de tudo, que sejam transparentes para inspeção. Por outro lado, é fundamental que os algoritmos sejam robustos o suficiente de forma a evitar a manipulação

Os novos desafios éticos que se colocam atualmente na inteligência artificial, estão relacionados com o facto de os algoritmos de IA serem utilizados para tarefas com dimensões sociais – cognitivas anteriormente realizada por Humanos. Neste caso, os algoritmos herdam requisitos sociais [1]. Nesse sentido, perceber o impacto que a utilização da IA nas organizações e nas vidas das pessoas tem é fundamental. Mas, principalmente identificar os principais éticos dessa aplicação e como os podemos monitorizar e agir. Nesse sentido, este este artigo identifica os principais desafios éticos relativos à utilização da inteligência artificial. A abordagem metodológica seguida neste artigo seguiu o método de estudo documental e bibliométrico para identificar as diversas áreas cobertas na literatura que incluem estudos relacionados com ética e inteligência artificial, nomeadamente nas duas principais bibliotecas digitais da área das ciências da das crências da ciências da

- Piteira, M., Aparicio, M., & Costa, C. J. (2019, June). Ethics of artificial intelligence: Challenges. In 2019 14th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE.
- Veiga, M., & Costa, C. J. (2024). Ethics and Artificial Intelligence Adoption. arXiv preprint arXiv:2412.00330.

Al Democratization

- Access to all
- Distributed models
- Centralized models
- Personal models
- Governance

Article

The Democratization of Artificial Intelligence: Theoretical Framework

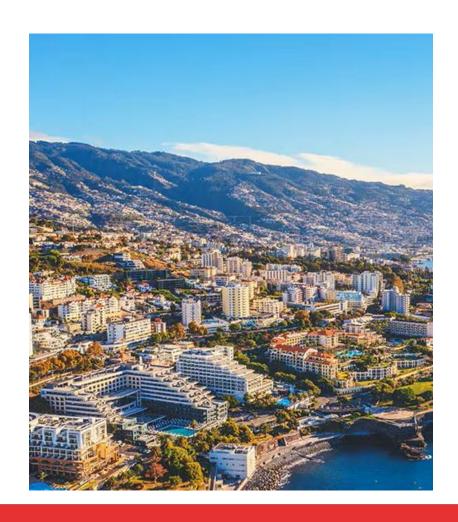
Carlos J. Costa 1,*0, Manuela Aparicio 20, Sofia Aparicio 3 and Joao Tiago Aparicio 30

- Advance/ISEG (Lisbon School of Economics & Management), Universidade de Lisboa, 1649-004 Lisbon, Portugal
- NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal; manuela.aparicio@novaims.unl.pt
- ³ Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; sofia.aparicio@tecnico.ulisboa.pt (S.A.); joao.aparicio@tecnico.ulisboa.pt (J.T.A.)
- Correspondence: cjcosta@iseg.ulisboa.pt

Abstract: The democratization of artificial intelligence (AI) involves extending access to AI technologies beyond specialized technical experts to a broader spectrum of users and organizations. This paper provides an overview of AI's historical context and evolution, emphasizing the concept of AI democratization. Current trends shaping AI democratization are analyzed, highlighting key challenges and opportunities. The roles of pivotal stakeholders, including technology firms, educational entities, and governmental bodies, are examined in facilitating widespread AI adoption. A comprehensive framework elucidates the components, drivers, challenges, and strategies crucial to AI democratization. This framework is subsequently applied in the context of scenario analyses, offering insights into potential outcomes and implications. The paper concludes with recommendations for future research directions and extensic actions to feature research directions.

Costa, C. J., Aparicio, M., Aparicio, S., & Aparicio, J. T. (2024). The Democratization of Artificial Intelligence: Theoretical Framework. *Applied Sciences*, 14(18), 8236. https://doi.org/10.3390/app14188236

Other examples


- Predicting Bitcoin prices: The effect of interest rate, search on the internet, and energy prices (Aparicio et al, 2022)
- Success prediction of leads A machine learning approach (Custódio et al., 2020)
- Modeling and Predicting Daily COVID-19 (SARS-CoV-2) Mortality in Portugal: The Impact of the Daily Cases, Vaccination, and Daily Temperatures (Arriaga & Costa, 2023)
- Forecasting real estate prices in Portugal: A data science approach (Samadani & Costa, 2021)
- Prediction Movies Success (2 MSc thesis)
- Prediction SDG evolution (LSTM) (1 MSc Thesis)
- Predicting price of Airbnb (3 MSc Thesis)
- GenAl Adoption (4 MSc Thesis)

WAIM 2026 - 8th Workshop on Artificial Intelligence and Management

- Paper Submission: December 14, 2025
- Notification of Acceptance: January 14, 2026
 Payment of Registration, to ensure the inclusion of an accepted paper in the conference proceedings: January 25, 2026.
- Camera-ready Submission: January 25, 2026

 https://easychair.org/conferences/?conf= worldcistworkshops2026

Bibliography

- Aparicio, J. T., Romao, M., & Costa, C. J. (2022). Predicting Bitcoin prices: The effect of interest rate, search on the internet, and energy prices. In 2022 17th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-5). IEEE.
- Aparicio, J.T, Salema de Sequeira, J & Costa, J. (2021) Emotion analysis of Portuguese Political Parties Communication over the covid-19 Pandemic in 2021 16th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1-6, doi: 10.23919/CISTI52073.2021.9476557.
- Aparicio, S., Aparicio, J. T., & Costa, C. J. (2019). Data Science and AI: trends analysis. In 2019 14th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE. DOI:10.23919/CISTI.2019.8760820
- Arriaga, A., & Costa, C. J. (2023, May). Modeling and Predicting Daily COVID-19 (SARS-CoV-2) Mortality in Portugal: The Impact of the Daily Cases, Vaccination, and Daily Temperatures. In Proceedings of International Conference on Information Technology and Applications: ICITA 2022 (pp. 275-285). Singapore: Springer Nature Singapore.
- Costa CJ, Aparicio JT.(2021) A Methodology to Boost Data Science in the Context of COVID-19. Advances in Parallel & Distributed Processing, and Applications. Published online 2021:65-75. doi:10.1007/978-3-030-69984-0_7
- Costa, C, Aparicio, M & Aparicio, J.T. (2021). Sentiment Analysis of Portuguese Political Parties Communication. In The 39th ACM International Conference on Design of Communication (SIGDOC '21). Association for Computing Machinery, New York, NY, USA, 63–69. DOI:10.1145/3472714.34736241.
- Costa, C. J. & Aparicio, J.T. (2020). POST-DS: A Methodology to Boost Data Science. In 2020 15th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE. Doi:10.23919/CISTI49556.2020.9140932
- Costa, C. J., & Aparicio, M. (2023). Applications of Data Science and Artificial Intelligence. Appl. Sci, 13, 9015.
- Costa, C., Aparicio, M., & Aparicio, J. (2021). Sentiment analysis of portuguese political parties communication. In Proceedings of the 39th ACM International Conference on Design of Communication (pp. 63-69).
- Costa, C. J. (2025). Generative Al Models: A Comprehensive Review. *OAE Organizational Architect and Engineer Journal*. https://doi.org/10.21428/b3658bca.d5d1872f
- Costa, C. J. (2025). Generative Al Models: A Comprehensive Review. *OAE Organizational Architect and Engineer Journal*. https://doi.org/10.21428/b3658bca.d5d1872f
- Custódio, J. P. G., Costa, C. J., & Carvalho, J. P. (2020). Success prediction of leads—A machine learning approach. In 2020 15th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE.
- Hajishirzi, R., & Costa, C. J. (2021). Artificial Intelligence as the core technology for the Digital Transformation process. In 2021 16th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE.
- Samadani, S. & Costa, C. J. (2021) "Forecasting real estate prices in Portugal: A data science approach," 2021 16th Iberian Conference on Information Systems and Technologies Chaves, Portugal, 2021, pp. 1-6, doi: 10.23919/CISTI52073.2021.9476447.