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Learning
Obijectives

* Understand the main
concepts related to the
object-oriented approach

* Understand how object-
oriented programming is
implemented in Python

* Create a small
application with object-
oriented programming
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Imperative

. procedural
Prog ramming 7 e.0. FORTRAN, C
: i

« Procedural - mperaive

instructions grouped / N object oriented

into procedures e.0. C++, Java
. Object-Oriented - programming

instructions grouped logic

together with the e.g. Prolog

part of the state they _ /

operate on. declarative

\.i. functional

e.g. Haskell, Erlang
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ObJeCt The main structural components of all systems

oriented are:

Approach . Objects
« Class Objects

v
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Object is something that takes up space in the real or
ObjeCt conceptual world with which somebody may do things

( Booch et al . 1999)
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Object

The objects have :
Name (or ID )
State

Operations (or
behavior )

Object-oriented

programming
Human ] Name
-
Email o Verify
Address Send mail
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Class is the blueprint of an object.

Class
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An objectis an instance of a class.

Instance



Main caracteristics of the

approach

« encapsulation
« abstraction
« Inheritance
« polymorphism




is the mechanism of hiding the
implementation of the object

Encapsulation



* is a principle which consists of ignoring

AbStraCthn the aspects of a subject that is not

relevant for the present purpose



Abstractionis the concise

AbStraCthn representation of a more

complex object




Inheritance

 Inheritance is the mechanism of
making new classes from existing one.

WE HavE TUE SAME DNA,SO el WORST.
NOV'LL PROBABLY GET | INHERITANCE,
SOME OF MY FEATURES. EVER.
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Polymorphism

« The word polymorphism means having
many forms.

« Same function name (but different
signatures) being uses for different
types.
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Class Diagrams

Rectangle

. Elements of a class diagram : ==

[ area: double

« Classes : s earger et
« Relations between classes __
« Associations ok
. Compositions e e
: frs———
. Aggregations
. Generalizations
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Classe

» |ID Class ( Class Name )
» Refers to specific objects, but the must abstract

Campaign » Nouns associated with the textual description of a
problema

« Choose carefully the names
 using singular

o Attributes

» Values that characterize the objects of a class
pay() « Types : Real, Integer, Text, Boolean , Enumerated , ...

code
description
annual Cost

expected cost

do Budget() * Operations
« Behaviors of the class ( service, method)
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Relationship

* Arelationship UML establishes the
connection between elements

Association

Class A > Class B

Aggregation

Class A [ Class B

Composition

Class A | 4 Class B

v
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* Now let’'s go to

python

Programming




Class

class Person:
pass # An empty block Person
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Class

class Person:
pass #An empty block

Person

p = Person()

print(p)

* Result:
< __main__.Person object at 0x0000021D9EEDGOF0>
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Method

* Define class with method

class Person:

def speak(self):

print('Hello, how are you?’) Person

 Create object and call method

p = Person()
p.speak()

speak()
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Init method

* The method init() is a special method,

* |s a method that Python calls when you create
a new instance of this class.
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Init method

Person

class Person: -
def _init_ (self, name): !
self.name = name
def speak(self):
print('Hello, my name is', self.name)
p = Person('Carlos')

p.speak()
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self

* The first argument of every class method,

iIncluding init, is always a reference to the
current instance of the class.

« By convention, this argument is always named
self.
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Class Pet

class Pet(object):

def __init_ (self, name, species):
self.name = name
self.species = species

def getName(self):
return self.name

def getSpecies(self):
return self.species

def _ str_ (self):

return "%s is a %s" % (self.name, self.species)
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Inheritance

class Dog(Pet):

def _init_ (self, name, chases_cats):

Pet. _init_ (self, name, "Dog")

self.chases_cats = chases_cats

def chasesCats(self):

return self.chases_cats

Carlos J. Costa (ISEG)
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Inheritance

Pet

class Cat(Pet):
def _init_ (self, name, hates_dogs): 7@

Pet. _init__ (self, name, "Cat")

Cat

self.hates_dogs = hates_dogs

def hatesDogs(self):
return self.hates_dogs

v
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myPet = Pet("Boby", "Dog")
myDog = Dog("Boby", True)
iIsinstance(myDog, Pet)
iIsinstance(myDog, Dog)
iIsinstance(myPet, Pet)
isinstance(myPet, Dog)
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Access Modifiers

* Public,
 Private
 Protected




Private

« They can be handled only from within the
class.
class Person:
def __init__ (self, name, age):
self.  _name=name

self.__age=age

p=Person(“David",23)

p.__name

v

Carlos J. Costa (ISEG) 2025/26 - 30




Public

class Person:
def _init_ (self, name, age):
self.name=name
self.age=age

p=Person(“David",23)
p.name
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Protected

class Person:
def _init_ (self, name, age):
self. name=name
self. age=age

p=Person(“David",23)
p.name
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Class Person

class Person:
def __init__ (self, money=0, energy=100):
self.money = money
self.energy = energy

def work(self, hours):
if self.energy >= hours * 10:
self.money += hours * 10 # Assume earning $10 per hour of work
self.energy -= hours * 10

print(f"Worked for {hours} hours. Money increased to ${self.money}. Energy
decreased to {self.energy}.")

else:
print("Not enough energy to work.")

# Example usage:
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Adding Comments to Class

class Person:
Represents a person with attributes like money and energy.
Attributes:
money (int): The person's current amount of money.
energy (int): The person's current energy level.
Methods:
__init (self, money=0, energy=100):
Initializes a new Person object with default values.
work (self, hours):
Simulates the person working for a certain number of hours,
earning money but losing energy.
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Adding comments to Init
method

class Person:
def init (self, money=0, energy=100):

Initializes a new Person object.

Args:
money (int, optional): The person's starting amount of money.
Defaults to 0.
energy (int, optional): The person's starting energy level.
Defaults to 100.

mmw

self.money = money
self.energy = energy
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Adding comments to methods

class Person:

def work(self, hours):

Simulates the person working for a certain number of hours.
Args:
hours (int): The number of hours the person will work.

Raises:
ValueError: If the provided hours are negative.

mwiwn

if hours < O0:
raise ValueError ("Hours cannot be negative.")

if self.energy >= hours * 10:
self.money += hours * 10
self.energy -= hours * 10
print (f"Worked for {hours} hours. Money increased to
S{self.money}. Energy decreased to {self.energy}.")
else:

print ("Not enough energy to work.")
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Conclusions

* Object Oriented Approach
« Concept of Class, Object, Methods, Variables
 Inheritance and Modifiers access
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