Lisbon School U

of Economics
& Management LISBOA

Universidede de Lisboa —_—
llllllllllll
ﬂﬂﬂﬂﬂﬂﬂﬂ

Object Oriented
Programming

Prof. Carlos J. Costa, PhD

Learning
Obijectives

* Understand the main
concepts related to the
object-oriented approach

* Understand how object-
oriented programming is
implemented in Python

* Create a small
application with object-
oriented programming

2025/26 - 2

@ Carlos J. Costa (ISEG)
v

Imperative

. procedural
Prog ramming 7 e.0. FORTRAN, C
: i

« Procedural - mperaive

instructions grouped / N object oriented

into procedures e.0. C++, Java
. Object-Oriented - programming

instructions grouped logic

together with the e.g. Prolog

part of the state they _ /

operate on. declarative

\.i. functional

e.g. Haskell, Erlang

4‘5 Carlos J. Costa (ISEG) 2025/26 - 3
v

| aa— |
INSTANCE |

j e
CLASS

STATIC |c]e

ObJeCt The main structural components of all systems

oriented are:

Approach . Objects
« Class Objects

v

Carlos J. Costa (ISEG) 2025/26 - 4

- :
INSTANCE
| —]
CLASS

[7]) ' c—me
e ssoannl Il STATIC

DESCRIPTOR |[d dproperty
PRATNACNI P

Object is something that takes up space in the real or
ObjeCt conceptual world with which somebody may do things

(Booch et al . 1999)

Carlos J. Costa (ISEG) 2025/26 - 5

v

Object

The objects have :
Name (or ID)
State

Operations (or
behavior)

Object-oriented

programming
Human] Name
-
Email o Verify
Address Send mail

22013 HTARGET. ALL RIGHTS RESERVED

-
INSTANCE
-
CLASS
—
STATIC

Class is the blueprint of an object.

Class

Carlos J. Costa (ISEG) 2025/26 - 7

v

craafing «h--

An objectis an instance of a class.

Instance

Main caracteristics of the

approach

« encapsulation
« abstraction
« Inheritance
« polymorphism

is the mechanism of hiding the
implementation of the object

Encapsulation

* is a principle which consists of ignoring

AbStraCthn the aspects of a subject that is not

relevant for the present purpose

Abstractionis the concise

AbStraCthn representation of a more

complex object

Inheritance

 Inheritance is the mechanism of
making new classes from existing one.

WE HavE TUE SAME DNA,SO el WORST.
NOV'LL PROBABLY GET | INHERITANCE,
SOME OF MY FEATURES. EVER.

d Carlos J. Costa (ISEG) 2025/26 - 13

"9

Polymorphism

« The word polymorphism means having
many forms.

« Same function name (but different
signatures) being uses for different
types.

d Carlos J. Costa (ISEG) 2025/26 - 14

||-v-

Class Diagrams

Rectangle

. Elements of a class diagram : ==

[area: double

« Classes : s earger et
« Relations between classes __
« Associations ok
. Compositions e e
: frs———
. Aggregations
. Generalizations
Carlos J. Costa (ISEG) 2025/26 - 15

v

Classe

» |ID Class (Class Name)
» Refers to specific objects, but the must abstract

Campaign » Nouns associated with the textual description of a
problema

« Choose carefully the names
 using singular

o Attributes

» Values that characterize the objects of a class
pay() « Types : Real, Integer, Text, Boolean , Enumerated , ...

code
description
annual Cost

expected cost

do Budget() * Operations
« Behaviors of the class (service, method)

Carlos J. Costa (ISEG) 2025/26 - 16

v

Relationship

* Arelationship UML establishes the
connection between elements

Association

Class A > Class B

Aggregation

Class A [Class B

Composition

Class A | 4 Class B

v

Carlos J. Costa (ISEG) 2025/26 - 17

* Now let’'s go to

python

Programming

Class

class Person:
pass # An empty block Person

(ﬂ Carlos J. Costa (ISEG) 2025/26 - 19

"v

v

Class

class Person:
pass #An empty block

Person

p = Person()

print(p)

* Result:
< __main__.Person object at 0x0000021D9EEDGOF0>

Carlos J. Costa (ISEG)

2025/26 - 20

Method

* Define class with method

class Person:

def speak(self):

print('Hello, how are you?’) Person

 Create object and call method

p = Person()
p.speak()

speak()

@ Carlos J. Costa (ISEG) 2025/26 - 21
v

Init method

* The method init() is a special method,

* |s a method that Python calls when you create
a new instance of this class.

d Carlos J. Costa (ISEG) 2025/26 - 22

"v-

Init method

Person

class Person: -
def _init_ (self, name): !
self.name = name
def speak(self):
print('Hello, my name is', self.name)
p = Person('Carlos')

p.speak()

d Carlos J. Costa (ISEG) 2025/26 - 23

"v-

self

* The first argument of every class method,

iIncluding init, is always a reference to the
current instance of the class.

« By convention, this argument is always named
self.

@ Carlos J. Costa (ISEG) 2025/26 - 24

v

Class Pet

class Pet(object):

def __init_ (self, name, species):
self.name = name
self.species = species

def getName(self):
return self.name

def getSpecies(self):
return self.species

def _ str_ (self):

return "%s is a %s" % (self.name, self.species)

Carlos J. Costa (ISEG) 2025/26 - 25

v

v

Inheritance

class Dog(Pet):

def _init_ (self, name, chases_cats):

Pet. _init_ (self, name, "Dog")

self.chases_cats = chases_cats

def chasesCats(self):

return self.chases_cats

Carlos J. Costa (ISEG)

Pet

2025/26 - 26

Inheritance

Pet

class Cat(Pet):
def _init_ (self, name, hates_dogs): 7@

Pet. _init__ (self, name, "Cat")

Cat

self.hates_dogs = hates_dogs

def hatesDogs(self):
return self.hates_dogs

v

Carlos J. Costa (ISEG) 2025/26 - 27

myPet = Pet("Boby", "Dog")
myDog = Dog("Boby", True)
iIsinstance(myDog, Pet)
iIsinstance(myDog, Dog)
iIsinstance(myPet, Pet)
isinstance(myPet, Dog)

d Carlos J. Costa (ISEG) 2025/26 - 28

"v-

Access Modifiers

* Public,
 Private
 Protected

Private

« They can be handled only from within the
class.
class Person:
def __init__ (self, name, age):
self. _name=name

self.__age=age

p=Person(“David",23)

p.__name

v

Carlos J. Costa (ISEG) 2025/26 - 30

Public

class Person:
def _init_ (self, name, age):
self.name=name
self.age=age

p=Person(“David",23)
p.name

d Carlos J. Costa (ISEG) 2025/26 - 31

"9

Protected

class Person:
def _init_ (self, name, age):
self. name=name
self. age=age

p=Person(“David",23)
p.name

d Carlos J. Costa (ISEG) 2025/26 - 32

"9

Class Person

class Person:
def __init__ (self, money=0, energy=100):
self.money = money
self.energy = energy

def work(self, hours):
if self.energy >= hours * 10:
self.money += hours * 10 # Assume earning $10 per hour of work
self.energy -= hours * 10

print(f"Worked for {hours} hours. Money increased to ${self.money}. Energy
decreased to {self.energy}.")

else:
print("Not enough energy to work.")

Example usage:

Carlos J. Costa (ISEG) 2025/26 - 33

v

v

Adding Comments to Class

class Person:
Represents a person with attributes like money and energy.
Attributes:
money (int): The person's current amount of money.
energy (int): The person's current energy level.
Methods:
__init (self, money=0, energy=100):
Initializes a new Person object with default values.
work (self, hours):
Simulates the person working for a certain number of hours,
earning money but losing energy.

Carlos J. Costa (ISEG) 2025/26 - 34

Adding comments to Init
method

class Person:
def init (self, money=0, energy=100):

Initializes a new Person object.

Args:
money (int, optional): The person's starting amount of money.
Defaults to 0.
energy (int, optional): The person's starting energy level.
Defaults to 100.

mmw

self.money = money
self.energy = energy

@ Carlos J. Costa (ISEG) 2025/26 - 35
v

v

Adding comments to methods

class Person:

def work(self, hours):

Simulates the person working for a certain number of hours.
Args:
hours (int): The number of hours the person will work.

Raises:
ValueError: If the provided hours are negative.

mwiwn

if hours < O0:
raise ValueError ("Hours cannot be negative.")

if self.energy >= hours * 10:
self.money += hours * 10
self.energy -= hours * 10
print (f"Worked for {hours} hours. Money increased to
S{self.money}. Energy decreased to {self.energy}.")
else:

print ("Not enough energy to work.")

Carlos J. Costa (ISEG)

2025/26 - 36

Conclusions

* Object Oriented Approach
« Concept of Class, Object, Methods, Variables
 Inheritance and Modifiers access

d Carlos J. Costa (ISEG) 2025/26 - 37

"v-

Bibliography

Bennet, S. McRobb, S & Farmer, R., Object Oriented Systems Analysis and Design
using UML, MacGarw-Hill, 1999.

Booch, G., Rumbaugh, J. & Jacobson, |, The Unified Modeling Language User
Guide. Addison Wesley, 1999 (traducao portuguesa brasileira ; UML Guia do
Usuario; Campus, 2000).

Costa, C. Desenvolvimento para Web, ITML Press, 2007
Nunes, M & O’Neill, H. Fundamental de UML, FCA, 2001

Silva, A & Videira, C., UML, Metodologias e Ferramentas CASE, Edi¢goes Centro
Atlantico, 2001

Terry, Q. Visual Modeling With Rational Rose 2000 and UML, Addison-Wesley. 2000.
Oxford Dictionary of Computing, Oxford University Press.

Carlos J. Costa (ISEG) 2025/26 - 38

v

	Slide 1: Object Oriented Programming
	Slide 2: Learning Objectives
	Slide 3: Imperative Programming
	Slide 4: Object oriented Approach
	Slide 5: Object
	Slide 6: Object
	Slide 7: Class
	Slide 8: Instance
	Slide 9: Main caracteristics of the approach
	Slide 10: Encapsulation
	Slide 11: Abstraction
	Slide 12: Abstraction
	Slide 13: Inheritance
	Slide 14: Polymorphism
	Slide 15: Class Diagrams
	Slide 16: Classe
	Slide 17: Relationship
	Slide 18
	Slide 19: Class
	Slide 20: Class
	Slide 21: Method
	Slide 22: init method
	Slide 23: init method
	Slide 24: self
	Slide 25: Class Pet
	Slide 26: Inheritance
	Slide 27: Inheritance
	Slide 28
	Slide 29: Access Modifiers
	Slide 30: Private
	Slide 31: Public
	Slide 32: Protected
	Slide 33: Class Person
	Slide 34: Adding Comments to Class
	Slide 35: Adding comments to init method
	Slide 36: Adding comments to methods
	Slide 37: Conclusions
	Slide 38: Bibliography

