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Learning 
Objectives

• Understand the main 
concepts related to the 
object-oriented approach

• Understand how object-
oriented programming is 
implemented in Python

• Create a small 
application with object-
oriented programming
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Imperative 
Programming

⚫ Procedural -
instructions grouped 
into procedures

⚫ Object-Oriented -
instructions grouped 
together with the 
part of the state they 
operate on.
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Object
oriented
Approach

The main structural components of all systems
are:

⚫ Objects

⚫ Class Objects
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Object
Object is something that takes up space in the real or 
conceptual world with which somebody may do things 

( Booch et al . 1999)
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Object

The objects have :

⚫ Name (or ID )

⚫ State

⚫ Operations (or 
behavior )
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Class
Class is the blueprint of an object.
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Instance
An object is an instance of a class.
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Main caracteristics of the 
approach
⚫ encapsulation

⚫ abstraction

⚫ inheritance

⚫ polymorphism
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Encapsulation
⚫ is the mechanism of hiding the 

implementation of the object 
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Abstraction
• is a principle which consists of ignoring 

the aspects of a subject that is not 
relevant for the present purpose
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Abstraction
Abstraction is the concise 

representation of a more 
complex object
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Inheritance

⚫ Inheritance is the mechanism of
making new classes from existing one.
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Polymorphism

⚫ The word polymorphism means having 
many forms. 

⚫ Same function name (but different 
signatures) being uses for different 
types.
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Class Diagrams

⚫ Elements of a class diagram :
⚫ Classes

⚫ Relations between classes

⚫ Associations

⚫ Compositions

⚫ Aggregations

⚫ Generalizations
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• ID Class ( Class Name )
• Refers to specific objects, but the must abstract

• Nouns associated with the textual description of a 
problema

• Choose carefully the names

• using singular

• Attributes
• Values that characterize the objects of a class

• Types : Real, Integer , Text, Boolean , Enumerated , ...

• Operations
• Behaviors of the class ( service, method)

Classe

Campaign

expected cost

code

description

annual Cost

pay()

do Budget()
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Relationship

• A relationship UML establishes the
connection between elements
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• Now let’s go to
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Class

class Person:

    pass  # An empty block Person
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Class

class Person:

    pass  # An empty block

p = Person()

print(p)

• Result:
<__main__.Person object at 0x0000021D9EED60F0>

Person
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Method

• Define class with method
class Person:

    def speak(self):

        print('Hello, how are you?’)

• Create object and call method
p = Person()

p.speak()

Person

speak()
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init method

• The method init() is a special method, 

• Is a method that Python calls when you create 
a new instance of this class.
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init method

class Person:

    def __init__(self, name):

        self.name = name

    def speak(self):

        print('Hello, my name is', self.name)

p = Person('Carlos')

p.speak()

Person

speak()

__init__()
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self

• The first argument of every class method, 
including init, is always a reference to the 
current instance of the class. 

• By convention, this argument is always named 
self. 
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Class Pet

class Pet(object):

    def __init__(self, name, species):

        self.name = name

        self.species = species

    def getName(self):

        return self.name

    def getSpecies(self):

        return self.species

    def __str__(self):

        return "%s is a %s" % (self.name, self.species)
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Inheritance

class Dog(Pet):

    def __init__(self, name, chases_cats):

        Pet.__init__(self, name, "Dog")

        self.chases_cats = chases_cats

    def chasesCats(self):

        return self.chases_cats
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Inheritance

class Cat(Pet):

    def __init__(self, name, hates_dogs):

        Pet.__init__(self, name, "Cat")

        self.hates_dogs = hates_dogs

    def hatesDogs(self):

        return self.hates_dogs
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myPet = Pet("Boby", "Dog")

myDog = Dog("Boby", True)

isinstance(myDog, Pet)

isinstance(myDog, Dog)

isinstance(myPet, Pet)

isinstance(myPet, Dog)
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Access Modifiers

• Public, 

• Private 

• Protected 
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Private

• They can be handled only from within the 
class.

class Person:

    def __init__(self, name, age):

        self.__name=name

        self.__age=age

p=Person(“David",23)

p.__name
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Public

class Person:

    def __init__(self, name, age):

        self.name=name

        self.age=age

p=Person(“David",23)

p.name
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Protected

class Person:

    def __init__(self, name, age):

        self._name=name

        self._age=age

p=Person(“David",23)

p.name
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Class Person

class Person:

    def __init__(self, money=0, energy=100):

        self.money = money

        self.energy = energy

    def work(self, hours):

        if self.energy >= hours * 10:

            self.money += hours * 10  # Assume earning $10 per hour of work

            self.energy -= hours * 10

            print(f"Worked for {hours} hours. Money increased to ${self.money}. Energy 
decreased to {self.energy}.")

        else:

            print("Not enough energy to work.")

# Example usage:
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Adding Comments to Class

class Person:

    """

    Represents a person with attributes like money and energy.
    Attributes:

        money (int): The person's current amount of money.
        energy (int): The person's current energy level.
    Methods:

        __init__(self, money=0, energy=100):

            Initializes a new Person object with default values.
        work(self, hours):

            Simulates the person working for a certain number of hours,
            earning money but losing energy.
    """
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Adding comments to init 
method
class Person:

def __init__(self, money=0, energy=100):

        """
        Initializes a new Person object.
        Args:
            money (int, optional): The person's starting amount of money.            

       Defaults to 0.
            energy (int, optional): The person's starting energy level.           

       Defaults to 100.
        ""“

        self.money = money

        self.energy = energy
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Adding comments to methods

class Person:

 ….
def work(self, hours):

        """
        Simulates the person working for a certain number of hours.
        Args:

            hours (int): The number of hours the person will work.

        Raises:
            ValueError: If the provided hours are negative.
        """
        if hours < 0:

            raise ValueError("Hours cannot be negative.")

        if self.energy >= hours * 10:

            self.money += hours * 10

            self.energy -= hours * 10

            print(f"Worked for {hours} hours. Money increased to 

${self.money}. Energy decreased to {self.energy}.")

        else:

            print("Not enough energy to work.")
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Conclusions

• Object Oriented Approach

• Concept of Class, Object, Methods, Variables

• Inheritance and Modifiers access
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