
2025/26 - 1Carlos J. Costa (ISEG)

Object Oriented
Programming

Prof. Carlos J. Costa, PhD

2025/26 - 2Carlos J. Costa (ISEG)

Learning
Objectives

• Understand the main
concepts related to the
object-oriented approach

• Understand how object-
oriented programming is
implemented in Python

• Create a small
application with object-
oriented programming

2025/26 - 3Carlos J. Costa (ISEG)

Imperative
Programming

⚫ Procedural -
instructions grouped
into procedures

⚫ Object-Oriented -
instructions grouped
together with the
part of the state they
operate on.

2025/26 - 4Carlos J. Costa (ISEG)

Object
oriented
Approach

The main structural components of all systems
are:

⚫ Objects

⚫ Class Objects

2025/26 - 5Carlos J. Costa (ISEG)

Object
Object is something that takes up space in the real or
conceptual world with which somebody may do things

(Booch et al . 1999)

2025/26 - 6Carlos J. Costa (ISEG)

Object

The objects have :

⚫ Name (or ID)

⚫ State

⚫ Operations (or
behavior)

2025/26 - 7Carlos J. Costa (ISEG)

Class
Class is the blueprint of an object.

2025/26 - 8Carlos J. Costa (ISEG)

Instance
An object is an instance of a class.

2025/26 - 9Carlos J. Costa (ISEG)

Main caracteristics of the
approach
⚫ encapsulation

⚫ abstraction

⚫ inheritance

⚫ polymorphism

2025/26 - 10Carlos J. Costa (ISEG)

Encapsulation
⚫ is the mechanism of hiding the

implementation of the object

2025/26 - 11Carlos J. Costa (ISEG)

Abstraction
• is a principle which consists of ignoring

the aspects of a subject that is not
relevant for the present purpose

2025/26 - 12Carlos J. Costa (ISEG)

Abstraction
Abstraction is the concise

representation of a more
complex object

2025/26 - 13Carlos J. Costa (ISEG)

Inheritance

⚫ Inheritance is the mechanism of
making new classes from existing one.

2025/26 - 14Carlos J. Costa (ISEG)

Polymorphism

⚫ The word polymorphism means having
many forms.

⚫ Same function name (but different
signatures) being uses for different
types.

2025/26 - 15Carlos J. Costa (ISEG)

Class Diagrams

⚫ Elements of a class diagram :
⚫ Classes

⚫ Relations between classes

⚫ Associations

⚫ Compositions

⚫ Aggregations

⚫ Generalizations

2025/26 - 16Carlos J. Costa (ISEG)

• ID Class (Class Name)
• Refers to specific objects, but the must abstract

• Nouns associated with the textual description of a
problema

• Choose carefully the names

• using singular

• Attributes
• Values that characterize the objects of a class

• Types : Real, Integer , Text, Boolean , Enumerated , ...

• Operations
• Behaviors of the class (service, method)

Classe

Campaign

expected cost

code

description

annual Cost

pay()

do Budget()

2025/26 - 17Carlos J. Costa (ISEG)

Relationship

• A relationship UML establishes the
connection between elements

2025/26 - 18Carlos J. Costa (ISEG)

• Now let’s go to

2025/26 - 19Carlos J. Costa (ISEG)

Class

class Person:

 pass # An empty block Person

2025/26 - 20Carlos J. Costa (ISEG)

Class

class Person:

 pass # An empty block

p = Person()

print(p)

• Result:
<__main__.Person object at 0x0000021D9EED60F0>

Person

2025/26 - 21Carlos J. Costa (ISEG)

Method

• Define class with method
class Person:

 def speak(self):

 print('Hello, how are you?’)

• Create object and call method
p = Person()

p.speak()

Person

speak()

2025/26 - 22Carlos J. Costa (ISEG)

init method

• The method init() is a special method,

• Is a method that Python calls when you create
a new instance of this class.

2025/26 - 23Carlos J. Costa (ISEG)

init method

class Person:

 def __init__(self, name):

 self.name = name

 def speak(self):

 print('Hello, my name is', self.name)

p = Person('Carlos')

p.speak()

Person

speak()

__init__()

2025/26 - 24Carlos J. Costa (ISEG)

self

• The first argument of every class method,
including init, is always a reference to the
current instance of the class.

• By convention, this argument is always named
self.

2025/26 - 25Carlos J. Costa (ISEG)

Class Pet

class Pet(object):

 def __init__(self, name, species):

 self.name = name

 self.species = species

 def getName(self):

 return self.name

 def getSpecies(self):

 return self.species

 def __str__(self):

 return "%s is a %s" % (self.name, self.species)

2025/26 - 26Carlos J. Costa (ISEG)

Inheritance

class Dog(Pet):

 def __init__(self, name, chases_cats):

 Pet.__init__(self, name, "Dog")

 self.chases_cats = chases_cats

 def chasesCats(self):

 return self.chases_cats

2025/26 - 27Carlos J. Costa (ISEG)

Inheritance

class Cat(Pet):

 def __init__(self, name, hates_dogs):

 Pet.__init__(self, name, "Cat")

 self.hates_dogs = hates_dogs

 def hatesDogs(self):

 return self.hates_dogs

2025/26 - 28Carlos J. Costa (ISEG)

myPet = Pet("Boby", "Dog")

myDog = Dog("Boby", True)

isinstance(myDog, Pet)

isinstance(myDog, Dog)

isinstance(myPet, Pet)

isinstance(myPet, Dog)

2025/26 - 29Carlos J. Costa (ISEG)

Access Modifiers

• Public,

• Private

• Protected

2025/26 - 30Carlos J. Costa (ISEG)

Private

• They can be handled only from within the
class.

class Person:

 def __init__(self, name, age):

 self.__name=name

 self.__age=age

p=Person(“David",23)

p.__name

2025/26 - 31Carlos J. Costa (ISEG)

Public

class Person:

 def __init__(self, name, age):

 self.name=name

 self.age=age

p=Person(“David",23)

p.name

2025/26 - 32Carlos J. Costa (ISEG)

Protected

class Person:

 def __init__(self, name, age):

 self._name=name

 self._age=age

p=Person(“David",23)

p.name

2025/26 - 33Carlos J. Costa (ISEG)

Class Person

class Person:

 def __init__(self, money=0, energy=100):

 self.money = money

 self.energy = energy

 def work(self, hours):

 if self.energy >= hours * 10:

 self.money += hours * 10 # Assume earning $10 per hour of work

 self.energy -= hours * 10

 print(f"Worked for {hours} hours. Money increased to ${self.money}. Energy
decreased to {self.energy}.")

 else:

 print("Not enough energy to work.")

Example usage:

2025/26 - 34Carlos J. Costa (ISEG)

Adding Comments to Class

class Person:

 """

 Represents a person with attributes like money and energy.
 Attributes:

 money (int): The person's current amount of money.
 energy (int): The person's current energy level.
 Methods:

 __init__(self, money=0, energy=100):

 Initializes a new Person object with default values.
 work(self, hours):

 Simulates the person working for a certain number of hours,
 earning money but losing energy.
 """

2025/26 - 35Carlos J. Costa (ISEG)

Adding comments to init
method
class Person:

def __init__(self, money=0, energy=100):

 """
 Initializes a new Person object.
 Args:
 money (int, optional): The person's starting amount of money.

 Defaults to 0.
 energy (int, optional): The person's starting energy level.

 Defaults to 100.
 ""“

 self.money = money

 self.energy = energy

2025/26 - 36Carlos J. Costa (ISEG)

Adding comments to methods

class Person:

 ….
def work(self, hours):

 """
 Simulates the person working for a certain number of hours.
 Args:

 hours (int): The number of hours the person will work.

 Raises:
 ValueError: If the provided hours are negative.
 """
 if hours < 0:

 raise ValueError("Hours cannot be negative.")

 if self.energy >= hours * 10:

 self.money += hours * 10

 self.energy -= hours * 10

 print(f"Worked for {hours} hours. Money increased to

${self.money}. Energy decreased to {self.energy}.")

 else:

 print("Not enough energy to work.")

2025/26 - 37Carlos J. Costa (ISEG)

Conclusions

• Object Oriented Approach

• Concept of Class, Object, Methods, Variables

• Inheritance and Modifiers access

2025/26 - 38Carlos J. Costa (ISEG)

Bibliography
• Bennet, S. McRobb, S & Farmer, R., Object Oriented Systems Analysis and Design

using UML, MacGarw-Hill, 1999.

• Booch, G., Rumbaugh, J. & Jacobson, I, The Unified Modeling Language User
Guide. Addison Wesley, 1999 (tradução portuguesa brasileira _____; UML Guia do
Usuário; Campus, 2000).

• Costa, C. Desenvolvimento para Web, ITML Press, 2007

• Nunes, M & O´Neill, H. Fundamental de UML, FCA, 2001

• Silva, A & Videira, C., UML, Metodologias e Ferramentas CASE, Edições Centro
Atlântico, 2001

• Terry, Q. Visual Modeling With Rational Rose 2000 and UML, Addison-Wesley. 2000.

• Oxford Dictionary of Computing, Oxford University Press.

	Slide 1: Object Oriented Programming
	Slide 2: Learning Objectives
	Slide 3: Imperative Programming
	Slide 4: Object oriented Approach
	Slide 5: Object
	Slide 6: Object
	Slide 7: Class
	Slide 8: Instance
	Slide 9: Main caracteristics of the approach
	Slide 10: Encapsulation
	Slide 11: Abstraction
	Slide 12: Abstraction
	Slide 13: Inheritance
	Slide 14: Polymorphism
	Slide 15: Class Diagrams
	Slide 16: Classe
	Slide 17: Relationship
	Slide 18
	Slide 19: Class
	Slide 20: Class
	Slide 21: Method
	Slide 22: init method
	Slide 23: init method
	Slide 24: self
	Slide 25: Class Pet
	Slide 26: Inheritance
	Slide 27: Inheritance
	Slide 28
	Slide 29: Access Modifiers
	Slide 30: Private
	Slide 31: Public
	Slide 32: Protected
	Slide 33: Class Person
	Slide 34: Adding Comments to Class
	Slide 35: Adding comments to init method
	Slide 36: Adding comments to methods
	Slide 37: Conclusions
	Slide 38: Bibliography

