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Regular Expressions

import re
text = "The author's name 1s Porter"
result = re.search (""The.*Porters$S", text)
1f result:

print ("ok!")
else:

print ("Nop..")
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Regular Expressions

findall - Returns a list containing all matches

search - Returns a Match object if there is a match
anywhere in the string

split- Returns a list where the string has been split
at each match

sub- Replaces one or many matches with a string
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Regular Expressions

Literals: Characters that match themselves.

Example: The pattern hello will match the string "hello"
exactly.

import re

text = "hello world"

pattern = r'hello'

match = re.search (pattern, text)
print (match.group()) # Output: hello
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Regular Expressions

Character Classes: Specify a set of characters to
match.
Square brackets [ ] are used to define a character class.
Example: [aeiou] matches any vowel.

import re

text = "apple banana cherry"
pattern = r'[aeiou]"
matches = re.findall (pattern, text)

print (matches)

# Output: ['a', 'e', 'a', 'a', 'e']
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Regular Expressions

Quantifiers: Indicate how many times a character or group can occur.
*: Matches zero or more occurrences.
+: Matches one or more occurrences.
?: Matches zero or one occurrence.
{n}: Matches exactly n occurrences.
{n,}: Matches at least n occurrences.
{n,m}: Matches between n and m occurrences.

Example: \d{3} matches exactly three digits.

import re
text = "12345 67890"

pattern = r'\d{3}’

matches = re.findall (pattern, text)

print (matches) # Output: ['123', '678']
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Regular Expressions

Anchors: Specify the position in the string where the match should occur.
A Matches the start of the string.
$: Matches the end of the string.
\b: Matches a word boundary.
Example: Md{3} matches a string starting with three digits.
Other Example: Matches "start" at the beginning of the string

import re

text = "start middle end"
pattern = r'”start' # match = re.search(pattern, text)
print (match.group()) # Output: start
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Regular Expressions

Escape Sequences: Special sequences that match specific characters.
\d: Matches any digit (equivalent to [0-9]).
\w: Matches any alphanumeric character (equivalent to [a-zA-Z0-9 ]).
\s: Matches any whitespace character.

Example: Matches a digit, whitespace, and non-word character

import re
text = "abc 123 !@#"
pattern = r'\d\s\W' match = re.search(pattern, text)

print (match.group()) # Output: 3 !
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Regular Expressions

Grouping and Capturing: Use parentheses () to group characters.
( ): Groups characters together.
(?:): Non-capturing group.

Example: (ab)+ matches one or more occurrences of "ab".

import re

text = "abababab"

pattern = r' (ab)+'

match = re.search(pattern, text)

print (match.group()) # Output: abababab
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Regular Expressions

Alternation: Match one of several patterns.

|: Alternation operator.
Example: cat|dog matches either "cat" or "dog".

text = "cat dog bird"

pattern = r'cat|dog'

match = re.search(pattern, text)
print (match.group()) # Output: cat
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Regular Expressions

Modifiers: Change the behavior of a pattern.
i: Case-insensitive matching.
m: Multiline mode.
s: Dot matches newline characters.

Example: (?i)hello matches "hello" case-insensitively.

import re

text = "HELLO\nworld"

pattern = r'(?i)hello’

match = re.search(pattern, text)

print (match.group()) # Output: HELLO
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Regular Expressions

Special Characters:
Have special meanings in regular expressions.

"A’ $’ *’ +’ ?’ {’ }’ [’ ]’ (’ )’ \’l

Example: Matches one or more digits

import re

text = "I have 10 dollars."
pattern = r'\d+'

match = re.search(pattern, text)

print (match.group()) # Output: 10
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Example 01

* Matching a specific pattern in a string:
* Matches words that are exactly 5 characters long

import re

text = "The quick brown fox jumps over the lazy dog"
pattern = r'\b\w{5}\b'

matches = re.findall (pattern, text)

print (matches)

e Output: ['quick!, 'brown']
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Example 02

* Replacing patterns in a string::
* Matches email addresses

import re

text = "Hello, my email is user(@example.com"

pattern = r'\b\w+@\w+\.\w+\b'

new text = re.sub(pattern, 'your email@example.com', text)

print (new_text)

* Output:
Hello, my email is your_email@example.com
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Example 03

* Finding and extracting specific information from
a string

* Matches names and phone numbers

import re

text = "John: 555-1234, Lisa: 555-9876, Mike: 555-5678"
pattern = r' (\w+): (\d{3}-\d{4})"'

matches = re.findall (pattern, text)

print (matches)

* Qutput:
[(John!, '555-1234"), ('Lisa', '555-9876"), ('Mike', '555-5678')]
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Example 04

* Splitting a string based on a pattern
* Matches whitespace characters

text = "The quick brown fox jumps over the lazy dog"

pattern = r'\s+'
words = re.split(pattern, text)

print (words)

* Qutput:

[' The', 'quick', 'brown', 'fox', 'Jjumps',

'over', 'the', 'lazy', 'dog']
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Example 05

* Validating input format
e Matches a standard email format

import re
def is valid email (email):
pattern = r'A[\w\.-1+Q[\w\.-]1+\.\w+$'

return bool (re.match (pattern, email))

print (is _valid email ("invalid-email"))

* Output:

False
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More information

https://docs.python.org/3/library/re.html
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