
2025/26 - 1Carlos J. Costa (ISEG)

REGULAR
EXPRESSIONS

Carlos J. Costa

2025/26 - 2Carlos J. Costa (ISEG)

Regular
Expressions

• Regular expressions are a powerful
language for matching text
patterns.

2025/26 - 3Carlos J. Costa (ISEG)

Regular Expressions

import re

text = "The author's name is Porter"

result = re.search("^The.*Porter$", text)

if result:

 print("ok!")

else:

 print("Nop…")

2025/26 - 4Carlos J. Costa (ISEG)

Regular Expressions

findall - Returns a list containing all matches

search - Returns a Match object if there is a match

anywhere in the string

split- Returns a list where the string has been split

at each match

sub- Replaces one or many matches with a string

2025/26 - 5Carlos J. Costa (ISEG)

Regular Expressions

Literals: Characters that match themselves.
Example: The pattern hello will match the string "hello"
exactly.

import re

text = "hello world"

pattern = r'hello'

match = re.search(pattern, text)

print(match.group()) # Output: hello

2025/26 - 6Carlos J. Costa (ISEG)

Regular Expressions

Character Classes: Specify a set of characters to
match.

Square brackets [] are used to define a character class.
Example: [aeiou] matches any vowel.

import re

text = "apple banana cherry"

pattern = r'[aeiou]'

matches = re.findall(pattern, text)

print(matches)

Output: ['a', 'e', 'a', 'a', 'e']

2025/26 - 7Carlos J. Costa (ISEG)

Regular Expressions
Quantifiers: Indicate how many times a character or group can occur.

 *: Matches zero or more occurrences.

 +: Matches one or more occurrences.

 ?: Matches zero or one occurrence.

 {n}: Matches exactly n occurrences.

 {n,}: Matches at least n occurrences.

 {n,m}: Matches between n and m occurrences.

 Example: \d{3} matches exactly three digits.

import re

text = "12345 67890"

pattern = r'\d{3}’

matches = re.findall(pattern, text)

print(matches) # Output: ['123', '678']

2025/26 - 8Carlos J. Costa (ISEG)

Regular Expressions

Anchors: Specify the position in the string where the match should occur.

 ^: Matches the start of the string.

 $: Matches the end of the string.

 \b: Matches a word boundary.

 Example: ^\d{3} matches a string starting with three digits.

 Other Example: Matches "start" at the beginning of the string

import re

text = "start middle end"

pattern = r'^start' # match = re.search(pattern, text)

print(match.group()) # Output: start

2025/26 - 9Carlos J. Costa (ISEG)

Regular Expressions

Escape Sequences: Special sequences that match specific characters.

 \d: Matches any digit (equivalent to [0-9]).

 \w: Matches any alphanumeric character (equivalent to [a-zA-Z0-9_]).

 \s: Matches any whitespace character.

 Example: Matches a digit, whitespace, and non-word character

import re

text = "abc 123 !@#"

pattern = r'\d\s\W' match = re.search(pattern, text)

print(match.group()) # Output: 3 !

2025/26 - 10Carlos J. Costa (ISEG)

Regular Expressions

 Grouping and Capturing: Use parentheses () to group characters.

 (): Groups characters together.

 (?:): Non-capturing group.

 Example: (ab)+ matches one or more occurrences of "ab".

import re

text = "abababab"

pattern = r'(ab)+'

match = re.search(pattern, text)

print(match.group()) # Output: abababab

2025/26 - 11Carlos J. Costa (ISEG)

Regular Expressions

Alternation: Match one of several patterns.

 |: Alternation operator.

 Example: cat|dog matches either "cat" or "dog".

text = "cat dog bird"

pattern = r'cat|dog'

match = re.search(pattern, text)

print(match.group()) # Output: cat

2025/26 - 12Carlos J. Costa (ISEG)

Regular Expressions

Modifiers: Change the behavior of a pattern.

 i: Case-insensitive matching.

 m: Multiline mode.

 s: Dot matches newline characters.

 Example: (?i)hello matches "hello" case-insensitively.

import re

text = "HELLO\nworld"

pattern = r'(?i)hello’

match = re.search(pattern, text)

print(match.group()) # Output: HELLO

2025/26 - 13Carlos J. Costa (ISEG)

Regular Expressions

Special Characters:

 Have special meanings in regular expressions.

 ., ^, $, *, +, ?, {, }, [,], (,), \, |

 Example: Matches one or more digits

import re

text = "I have 10 dollars."

pattern = r'\d+'

match = re.search(pattern, text)

print(match.group()) # Output: 10

2025/26 - 14Carlos J. Costa (ISEG)

Example 01

• Matching a specific pattern in a string:
• Matches words that are exactly 5 characters long

import re

text = "The quick brown fox jumps over the lazy dog"

pattern = r'\b\w{5}\b'

matches = re.findall(pattern, text)

print(matches)

• Output: ['quick', 'brown']

2025/26 - 15Carlos J. Costa (ISEG)

Example 02

• Replacing patterns in a string::
• Matches email addresses

import re

text = "Hello, my email is user@example.com"

pattern = r'\b\w+@\w+\.\w+\b'

new_text = re.sub(pattern, 'your_email@example.com', text)

print(new_text)

• Output:
Hello, my email is your_email@example.com

2025/26 - 16Carlos J. Costa (ISEG)

Example 03

• Finding and extracting specific information from
a string

• Matches names and phone numbers
import re

text = "John: 555-1234, Lisa: 555-9876, Mike: 555-5678"

pattern = r'(\w+): (\d{3}-\d{4})'

matches = re.findall(pattern, text)

print(matches)

• Output:
[('John', '555-1234'), ('Lisa', '555-9876'), ('Mike', '555-5678')]

2025/26 - 17Carlos J. Costa (ISEG)

Example 04

• Splitting a string based on a pattern
• Matches whitespace characters

text = "The quick brown fox jumps over the lazy dog"

pattern = r'\s+'

words = re.split(pattern, text)

print(words)

• Output:
['The', 'quick', 'brown', 'fox', 'jumps',
'over', 'the', 'lazy', 'dog']

2025/26 - 18Carlos J. Costa (ISEG)

Example 05

• Validating input format
• Matches a standard email format

import re

def is_valid_email(email):

 pattern = r'^[\w\.-]+@[\w\.-]+\.\w+$'

 return bool(re.match(pattern, email))

print(is_valid_email("invalid-email"))

• Output:
False

2025/26 - 19Carlos J. Costa (ISEG)

More information

https://docs.python.org/3/library/re.html

	Slide 1: Regular Expressions
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Regular Expressions
	Slide 6: Regular Expressions
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Example 01
	Slide 15: Example 02
	Slide 16: Example 03
	Slide 17: Example 04
	Slide 18: Example 05
	Slide 19

