Lisbon School U

of Economics
& Management LISBOA

Universidade de Lisboa

UNIVERSIDADE
DE LISBOA

REGULAR
EXPRESSIONS

Carlos J. Costa

‘! Carlos J. Costa (ISEG) 2025/26 - 1
v



Regular expression boundary

Match as many times

Match anything as possible e — :
contained within g1|$r:ltLlr;w,-LJ5rP?-|5 o
brackets Match the @ symbol :

A through Z

[[\W._%+-]1+@[\w.-]+\.[a-ZzA-Z]{2,4}/

Match . Match a single period Match at
%, +, and - least two
if found times but no
more than
menebare AT four times

Regular expressions are a powerful

Regu lar | language for matching text
. patterns.
Expressions



Regular Expressions

import re
text = "The author's name 1s Porter"
result = re.search (""The.*Porters$S", text)
1f result:

print ("ok!")
else:

print ("Nop..")

‘! Carlos J. Costa (ISEG) 2025/26 - 3
v



Regular Expressions

findall - Returns a list containing all matches

search - Returns a Match object if there is a match
anywhere in the string

split- Returns a list where the string has been split
at each match

sub- Replaces one or many matches with a string

IS, ! Carlos J. Costa (ISEG) 2025/26 - 4
v




Regular Expressions

Literals: Characters that match themselves.

Example: The pattern hello will match the string "hello"
exactly.

import re

text = "hello world"

pattern = r'hello'

match = re.search (pattern, text)
print (match.group()) # Output: hello

‘! Carlos J. Costa (ISEG) 2025/26 - 5
v



Regular Expressions

Character Classes: Specify a set of characters to
match.
Square brackets [ ] are used to define a character class.
Example: [aeiou] matches any vowel.

import re

text = "apple banana cherry"
pattern = r'[aeiou]"
matches = re.findall (pattern, text)

print (matches)

# Output: ['a', 'e', 'a', 'a', 'e']

‘! Carlos J. Costa (ISEG) 2025/26 - 6
v



v

Regular Expressions

Quantifiers: Indicate how many times a character or group can occur.
*: Matches zero or more occurrences.
+: Matches one or more occurrences.
?: Matches zero or one occurrence.
{n}: Matches exactly n occurrences.
{n,}: Matches at least n occurrences.
{n,m}: Matches between n and m occurrences.

Example: \d{3} matches exactly three digits.

import re
text = "12345 67890"

pattern = r'\d{3}’

matches = re.findall (pattern, text)

print (matches) # Output: ['123', '678']

Carlos J. Costa (ISEG)

2025/26 - 7




Regular Expressions

Anchors: Specify the position in the string where the match should occur.
A Matches the start of the string.
$: Matches the end of the string.
\b: Matches a word boundary.
Example: Md{3} matches a string starting with three digits.
Other Example: Matches "start" at the beginning of the string

import re

text = "start middle end"
pattern = r'”start' # match = re.search(pattern, text)
print (match.group()) # Output: start

‘! Carlos J. Costa (ISEG) 2025/26 - 8
v



Regular Expressions

Escape Sequences: Special sequences that match specific characters.
\d: Matches any digit (equivalent to [0-9]).
\w: Matches any alphanumeric character (equivalent to [a-zA-Z0-9 ]).
\s: Matches any whitespace character.

Example: Matches a digit, whitespace, and non-word character

import re
text = "abc 123 !@#"
pattern = r'\d\s\W' match = re.search(pattern, text)

print (match.group()) # Output: 3 !

‘! Carlos J. Costa (ISEG) 2025/26 - 9
v



Regular Expressions

Grouping and Capturing: Use parentheses () to group characters.
( ): Groups characters together.
(?:): Non-capturing group.

Example: (ab)+ matches one or more occurrences of "ab".

import re

text = "abababab"

pattern = r' (ab)+'

match = re.search(pattern, text)

print (match.group()) # Output: abababab

‘! Carlos J. Costa (ISEG) 2025/26 - 10
v



Regular Expressions

Alternation: Match one of several patterns.

|: Alternation operator.
Example: cat|dog matches either "cat" or "dog".

text = "cat dog bird"

pattern = r'cat|dog'

match = re.search(pattern, text)
print (match.group()) # Output: cat

2025/26 - 11

‘! Carlos J. Costa (ISEG)
v



v

Regular Expressions

Modifiers: Change the behavior of a pattern.
i: Case-insensitive matching.
m: Multiline mode.
s: Dot matches newline characters.

Example: (?i)hello matches "hello" case-insensitively.

import re

text = "HELLO\nworld"

pattern = r'(?i)hello’

match = re.search(pattern, text)

print (match.group()) # Output: HELLO

Carlos J. Costa (ISEG) 2025/26 - 12




Regular Expressions

Special Characters:
Have special meanings in regular expressions.

"A’ $’ *’ +’ ?’ {’ }’ [’ ]’ (’ )’ \’l

Example: Matches one or more digits

import re

text = "I have 10 dollars."
pattern = r'\d+'

match = re.search(pattern, text)

print (match.group()) # Output: 10

2025/26 - 13

‘! Carlos J. Costa (ISEG)
v



Example 01

* Matching a specific pattern in a string:
* Matches words that are exactly 5 characters long

import re

text = "The quick brown fox jumps over the lazy dog"
pattern = r'\b\w{5}\b'

matches = re.findall (pattern, text)

print (matches)

e Output: ['quick!, 'brown']

‘! Carlos J. Costa (ISEG) 2025/26 - 14
v



Example 02

* Replacing patterns in a string::
* Matches email addresses

import re

text = "Hello, my email is user(@example.com"

pattern = r'\b\w+@\w+\.\w+\b'

new text = re.sub(pattern, 'your email@example.com', text)

print (new_text)

* Output:
Hello, my email is your_email@example.com

‘! Carlos J. Costa (ISEG) 2025/26 - 15
v



Example 03

* Finding and extracting specific information from
a string

* Matches names and phone numbers

import re

text = "John: 555-1234, Lisa: 555-9876, Mike: 555-5678"
pattern = r' (\w+): (\d{3}-\d{4})"'

matches = re.findall (pattern, text)

print (matches)

* Qutput:
[(John!, '555-1234"), ('Lisa', '555-9876"), ('Mike', '555-5678')]

‘! Carlos J. Costa (ISEG) 2025/26 - 16
v



v

Example 04

* Splitting a string based on a pattern
* Matches whitespace characters

text = "The quick brown fox jumps over the lazy dog"

pattern = r'\s+'
words = re.split(pattern, text)

print (words)

* Qutput:

[' The', 'quick', 'brown', 'fox', 'Jjumps',

'over', 'the', 'lazy', 'dog']

Carlos J. Costa (ISEG)

2025/26 - 17




v

Example 05

* Validating input format
e Matches a standard email format

import re
def is valid email (email):
pattern = r'A[\w\.-1+Q[\w\.-]1+\.\w+$'

return bool (re.match (pattern, email))

print (is _valid email ("invalid-email"))

* Output:

False

Carlos J. Costa (ISEG)

2025/26 - 18




More information

https://docs.python.org/3/library/re.html

‘! Carlos J. Costa (ISEG) 2025/26 - 19
v



	Slide 1: Regular Expressions
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Regular Expressions
	Slide 6: Regular Expressions
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Example 01 
	Slide 15: Example 02 
	Slide 16: Example 03 
	Slide 17: Example 04 
	Slide 18: Example 05 
	Slide 19

