Lisbon School U

of Economics
&Management LISBOA

Universidede de Lisboa

UNIVERSIDADE
DE LISBOA

Time Series

Prof. Carlos J. Costa, PhD

4 |! Carlos J. Costa (ISEG) 2025/26 - 1

s Y

A
OBJECTIVES
o

* Use Python libraries to decompose time series

-

il

Learning . yse Python libraries to analyse series

Goals * Use Python libraries to predict

4 |! Carlos J. Costa (ISEG) 2025/26 - 2

https://www.statsmodels.org/stable/
ap1.html#statistics-and-tests

Time Serie

Statistics and Tests

Univariate Time-Series Analysis

* Exponential Smoothing

Analysis -
API '

Multivariate Time Series Models
Filters and Decompositions
Markov Regime Switching Models
Forecasting

Time-Series Tools

Time Serie
Analysis
API

https://www.statsmodels.org/stable/api.html
#statistics-and-tests

Part of the statsmodels APl is

Time-series models and methods.

Canonically imported using:

import statsmodels.tsa.apl as tsa

https://www.statsmodels.org/stable/api.html#statistics-and-tests
https://www.statsmodels.org/stable/api.html#statistics-and-tests
https://www.statsmodels.org/stable/api.html#statistics-and-tests
https://www.statsmodels.org/stable/api.html#statistics-and-tests
https://www.statsmodels.org/stable/api.html#statistics-and-tests
https://www.statsmodels.org/stable/api.html#statistics-and-tests
https://www.statsmodels.org/stable/api.html#statistics-and-tests

import pandas as pd

import matplotlik.pyplot as plt

read files and create dataframs

df = pd.read csv('tourismPortugal.csv', sep=";")
df['month'] = pd.to_datetime (df ["month'])
df=df.set_index(df['month'])

Suppose that We # create a ssrie

series = pd.Series(df['tourist=s"])

have a time Serie... .

plt.show ()

le6

30 1

* Whatis the purpose?

25 4

* Prediction.... 0

15 4

101

05

00 4

010 2012 2014 2016 2018 2020

4 |! Carlos J. Costa (ISEG) 2025/26 - 5

Decompose
Time Serie

e Parameters:

* Data (Time Serie)
* Model

¢ Periods

e Qutput:

* Observed Serie

* Trend
* Seasonal
* Residual

Carlos J. Costa (ISEG)

| import statsmodels.tsa.api as tsa
import pandas as pd

read file

df = pd.read csv('tourismPortugal.csv’',sep=";")
df ['month'] = pd.to_d.atetime (df ["month'])
df=df.set_index(df[‘month‘])
df=df.drop(['month"],axis=1)

result = tsa.seasonal decompose (df, model='multiplicative', period=12)

figure=result.plot ()

1e6
2 W’\/\/\—/W\\/\I
0.0

T T T T T T T T T T
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Seasonal
e
(=N}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

E;{ M

T T T T T T T T T T
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

2025/26 - 6

import pandas as pd
import matplotlib.pyplot as plt
from pandas.plotting impbrt autocorrelation plot

df = pd.read cev('tourismPortugal.csv',sep=";")
df['month"] = pd.to datetime (df["month'])
serie=df[["tourists", 'month']]
serie=serie.set_index('month')

serie.plot ()

plt.show ()}
autocorrelation plot(serie)
plt.show()
1e6
—— fourists
3.0 1
254
* Autocorrelation Plot 207
15 A1
104
0.5
D-G_ T T T T T T T T T T
2010 2011 2012 2013 2014 2015 2016 2017 2018 201% 2020
month
1400
0.75 4
0.50 4
E o025 {lo= --{-\---A---, --------------------------
N L A A T DA
g URVERVYAVAVWAWAWAVA
TS e o VAV A S e e
=0.50 1
-0.75 4
_100 T T T T T T
20 40 B0 a0 100 120

ARIMA

Preparing the time
serie

Setting lags number,
differencing degree,
size of moving
average

Create Model
Fit Model

import statsmodels.tsa.api as tsa
import pandas as pd

df = pd.read csv('tourismPortugal v',sep=";")
df['month'] = pd.to_datetime (df['month'])
gserie=df[["tourists", "month']]

1th")

serie=serie.set index('m

serie.index = serie.index.to period('M")

model = tsa.arima.BARIMA(serie, order=(p,d,qg))
result = model.fit ()

ryv oL L1T moaeld

print ({result.summary(}}

SARIMEX Results

Dep. Variable: tourists No. Ckbservations: 132
Model: ARIMZL (4, 1, Q) Log Likelihood -1832.341
Date: Wed, 03 Mar 2021 AIC 26T74.682
Time: 20:43:08 BIC 36B09.058
Sample: 01-31-2010 HQIC 38B0.52
- 12-31-2020

Covariance Type: opg

coef std err z Brlzl| [0.025 0.8735]
ar.L1 0.3783 0.08B8 4,304 0.000 0.208 0.531
ar.LZ 0.1787 0.11a 1.541 0.123 -0.0449 0.408&
ar.L3 -0.3248 0.113 -2.877 0.004 -0.54% -0.104
ar.L4 —-0.0445 0.07a -0.64E8 0.517 -0.1449 0.100
sigmaZ §.34e+10 3.81e-13 2.18e+23 0.000 £.34e+10 £.34e+10
Lijung-Box (L1} (Q): Q.00 Jarque-Bera (JB):
Erob () : 0.85 Prob (JB) :
Heteroskedasticity (H): 2.77 Skew:
PFrob (H) (two-sided): Q.20 Furtosis:

(=}

L

[y |

=1 o S on
o TR

Residuals

Still seasonal
information?

Errors are Gaussian and
centered on zero

All Time Serie used
Train

Test

residuals = pd.DataFrame (result.resid)
regidualsa.plot ()
plt.show()

i 7 = o
£ Aana .
Syl

T s o Aris1
plot of residuals

regiduals.plot (kind="kde")

plt.show()
summary stats of residusls
rint(residuals.describe())
0.7% lek
—_
050
0.25
oo
-0.25 J
=0.50
=0.75
-1.00
2010 2'!:"11 2':)'12 2':]"13 213'14 EDIIS 21:I|1I3 21:|I1'-r 213'13 }!ﬁlll".lI 2012(5
manth
1 g &6
—_
12 4
10 1
.. 08
E
Z 06
04
0.2 4
0.0 4
20 -15 -10 -05 00 05 10 15
1e6
a
count 1.320000e+02
mean 5.720243e+03
atd 2.929744e+05
min -1.037078e+08
25% -1.331688e+05
50% 4.510200e+04
75% 2.037718e+05
max 6.6892650e+05

predicted=3063604.080269, expected=2626644.000000
predicted=25259582.250892, expected=2288037.000000
predicted=2002943.346006, expected=1428340.000000

import statamodels.tsa.api as tsa predicted=1072516.206844, expected=1361462.000000

] predicted=1252560.779588, expected=1175182.000000
from math import agrt predicted=1372904.473562, expected=1332691.000000
from sklearn.metrics import mean sguared error predicted=1432217.143661, expected=1781196.000000

predicted=2035578.781393, expected=2108530.000000
predicted=2312727.094421, expected=2430235.000000
predicted=2483461.262802, expected=2482333.000000

t o T & o degen - PR -
split i1nto trsin and test sets predicted=2435286.970732, expected=2638691.000000
- : predicted=2650285.112961, expected=3114272.000000
X_ EEE}E .walues predicted=3279049.270532, expected=2744670.000000
gize = int(len(X) * 0.70) predicted=2666538.577637, expected=2334716.000000
2 _ : : predicted—2041275.064636, expected—1563629.000000
train, teat = K[0:a3ize], X[aize:len(X)] predicted=1221972.214214, expected=1442926.000000
; - : ; predicted=1340725.993323, expected=1266569.000000
hlatgry_ [x ED? ¥ in train] Predicted=1453534.813600, expected—1384231.000000
predictions = list() predicted=1502523.096499, expected=1851204.000000
predicted=2114363.277998, expected=2315302.000000
predicted=2593925.2060590, expected=2581650.000000
wvalk-forward wvalidation predicted=2660734.007920, expected=2721267.000000
f R {l { JJ predicted=2644743.81748%, expected=2825%315.000000
or t 1n range({len{test)): predicted=2765675.848207, expected=3310953.000000
. . predicted=3457601.2640943, expected=2876341.000000
model = tsa.arima.RRIMA(histcry, crder=(p,d,q)) predicted=2806680.256163, expected=2500312.000000
model fit = model.fit() predicted=2115370.675047, expected=1754086.000000
= ; predicted=1442101.195276, expected=1572013.000000
cutput = model fit.forecaat() predicted=1474614.230027, expected=1418459.,000000
predicted=1522335.862212, expected=1584530.000000
vhat = output[0] predicted=1757101.018737, expected=632691.000000
prEdlCtlDﬂﬂ . appEﬂli {Elrhat:l pred:!.ct.ed=456'?86 .428852, expected=53326.000000
predicted=—-480050.526637, expected=136493.000000
cbs = test[t] predicted=300477.997087, expected=422523.000000
- predicted=247710.584265, expected=1024211.000000
history.append (obs) predicted=1302801.5493562, expected=1880926.000000
print ("predicted=%£f, expected=%f"' & (vhat, ocba)) predicted=2237415.473255, expected=1362664.000000

predicted=1146468.537631, expected=938811.000000
predicted=471767.345690, expected=403446.000000
predicted=211485.252493, expected=45938&.000000

evaluate forscasts Test RMSE: 378005.333
rm3e = sgrt{mean squared error(test, predictiona)) -
print ('Test BMSE: %.3f' & rmae) as
30
plot forecasts against actual outcomes 25
plt.plot {test) =0
plt.plot{predictions, color="red') I:
plt.show() aE
0.0
-05

Carlos J. Costa (ISEG) 2025/26 - 10

Other Approaches

e LSTM
* Prophet (https://facebook.github.io/prophet/)
* Garch

* https://neptune.ai/blog/arima-vs-prophet-vs-
lstm

Memory

C)

Hidden state

H
SN J
Input X
F(t) = g(t) + s(t) + h(t)
Furecasta{poinlt TIEHU}ECIOF Seaswnality’cumpunem Holiday c-umpunenl

Forget Input I
gate gale Candldat Output
F memory gate

PRGPHET

H,

2

oy =W+

Generalized
Autoregressive
Conditional

Heteroskedasticity

(GARCH)

p 2
; OyE} :JFZ 1 Bioi;

[je-na-ra- lizd ‘o-()tG-ri- gre-siv kan-
‘dish-nal ‘he-ta-,r5- ske-,da-'sti-sa-t&]

An approach to estimating

ITITITITIIT] - e volatiity of financia

~—mulimaa

	Untitled Section
	Slide 1: Time Series
	Slide 2: Learning Goals
	Slide 3: Time Serie Analysis API
	Slide 4: Time Serie Analysis API
	Slide 5: Suppose that we have a time Serie…
	Slide 6: Decompose Time Serie
	Slide 7
	Slide 8: ARIMA
	Slide 9: Residuals
	Slide 10
	Slide 11: Other Approaches

