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OBJECTIVES
o

* Students should use the main libraries
to create and fit regression model.

* Students should use the main libraries
to analyse regression model.

il

Learning
Goals
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Python module

provides classes and functions

estimation statistical models,

statistical tests,

statistical data exploration.

open source Modified BSD (3-clause) license.

https://www.statsmodels.org/



= statsmodels

* Regression and Linear Models

* Time Series Analysis

* Other Models (e.g. Non parametric models)
e Statistics and Tools

* Data Sets



. statsmodels.api:
. Cross-sectional models and methods.

. Canonically imported using
*import statsmodels.api as sm
The main statsmodels APl is

* statsmodels.tsa.api: / S
. split into models:

Time-series models and methods.
. Canonically imported using:

*import statsmodels.tsa.api as tsa

. statsmodels.formula.api:
* Aconvenience interface for specifyj odels using formula strings and DataFrames.

. Canonically imported using:

*import statsmodels.formula.api as smf




* Linear Regression
* Generalized Linear Models
* Generalized Estimating Equations

Regression  Generalized Additive Models (GAM)

e Robust Linear Models

a N d Ll N ea r  Linear Mixed Effects Models

Regression with Discrete Dependent Variable

 Generalized Linear Mixed Effects Models
Models ANOVA

https://www.statsmodels.org/stable/user-guide.html#regression-and-linear-models



* Linear models with independently and identically
distributed errors, and for errors with

Li nea r heteroscedasticity or autocorrelation.
* This module allows estimation by:

RegreSS|On « ordinary least squares (OLS),
* weighted least squares (WLS),
* generalized least squares (GLS), and



v

OLS (Ordinary Least Squares))

* Definition: OLS is the standard method for Linear
Regression, which estimates model coefficients by
minimizing the sum of squared residuals.

* Equation:
Y=Bo+B1 X +B Xyt .+ B K Fe
* Assumptions:
* Linearity
* Homoscedasticity (constant variance of errors)
* |Independence of errors

* No multicollinearity
* Normally distributed residuals

* Example: Predicting house prices based on square
footage and number of bedrooms.




Generalized Linear Models (GLM)

* Definition: Extends OLS regression to allow non-normal
response variables (e.g., binary, count data).

* Instead of assuming normally distributed errors, it uses
an exponential family of distributions (e.g., Poisson,
Binomial).

e Components:

* Random Component: The distribution of the response variable
(Normal, Poisson, Binomial).

 Systematic Component: A linear combination of predictors.

* Link Function: Transforms the mean of the response variable
(e.g., Logit, Log, Identity).

 Example: Logistic Regression (for binary classification)
is a GLM with a logit link function.




Generalized Estimating Equations
(GEE)

* Definition: Used when dealing with correlated
data, such as repeated measurements on the
same subjects (longitudinal data). Instead of
assuming independent observations, GEE
accounts for within-subject correlation.

* Advantage: Provides robust standard errors,
even if the correlation structure is misspecified.

* Example: Analyzing repeated blood pressure
measurements for patients over time.
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Generalized Additive Models
(GAM)

* Definition: Extends Generalized Linear Models (GLM) by
allowing nonlinear relationships between predictors and the
response variable.

* Instead of assuming linearity, GAM uses smooth functions
(splines, loess) to model complex relationships.

* Equation:
y=BoHf (X )+, (X,)+...+f (X ) +e

where f,(X;) are smooth functions rather than simple linear
terms.

« Example: Modeling temperature effects on crop yield, where
the relationship is non-linear.




Robust Linear Models

* Definition: A modification of OLS that reduces
the influence of outliers. Instead of minimizing
squared errors, it minimizes absolute errors or
uses M-estimators.

* When to Use:
* When data contains outliers.
* When residuals are not normally distributed.

* Example: Predicting income based on education
level when data contains extreme salaries.
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Linear Mixed Effects Models
(LMM)

* Definition: Used for hierarchical or grouped
data, where observations are not fully
iIndependent. LMM includes:

* Fixed effects (like standard regression coefficients).
* Random effects (to model group-level variations).

Example: Modeling student test scores across
different schools, where each school introduces
random variability.




Compare some alterantives

Handles Non- Handles Handles

Model Type Normal Correlated Nonlinear ?ﬂ:ﬁ::;g
Data? Data? Relationships? '

OLS/ L|r.1ear No No No No

Regression

GLM Yes No No No

GEE Yes Yes No Yes

GAM Yes No Yes No

Robust Linear

Model No No No Yes

Linear Mixed No Ves No NG

Effects Model




import matplotlib.pyplot as plﬂ

x=[1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

-r

y=[1940, 1650,1400,1170, 960, 780, 620, 490, 380, 300,240, 210,200, 220, 260, 330, 420, 540, 680, 850]

plt.plot(x,y,'c")
plt.drawl()
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* Whatis the best model to explain

e Y=f(X) ?

* Alinear Model?



import statsmodels.api as sm

xl = sm.add_constant (x) 4 I m po rt mOd u l-eS

model=sm.OLS (v, x1)
result=model.fit ()

z=result.predict (x1) o Add Consta nt

result. summary ()

OLS Regression Results L Create mOd el

Dep. Variable: ¥ R-squared: 0.441
Model: OLS  Adj. R-sguared: 0.410 [ ] F it m O d e l
Method: Least Squares F-statistic: 14.21
Date: Wed, 03 Mar 2021 Prob (F-statistic): 0.00140 [ J U S e m O d e l to
Time: 14:32:02 Log-Likelinood: -146.69 .
No. Observations: 20 AlC: 2074 p re d I Ct
Df Residuals: 18 BIC: 2004

oroder : * Use model and
Covariance Type: nonrobust S h OW S u m m a ry

coef stderr t  P=jt] [0.025 0.975]
const 12269153 168921 7263 0.000 872025 1581.805
x1 -11.4598 3.040 3770 0.001 -17.847 -5.073

Omnibus: 2.599 Durbin-Watson: 0.132
Prob{Omnibus). 0273 Jarque-Bera(JB): 1.974
Skew: 0625 Prob{JB): 0.373

Kurtosis: 2.101 Cond. No.  107.
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fig, ax = plt.subplots(figsize=(E,&)})

ax.plot(x,y, 'o'")
ax.plot(x,z, '-")

[<matplotlik.lines.Line2D at 0x208efle2ibi>]
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Graphical analysis

Estimation vs. effective data




* Whatis the best model to explain

e Y=f(X) ?

* A quadratic model?



Create
Model

Create data frame
Add columns
Identify Xand Y
Create model

Fit model

import panda=s a=s pd
xy=[x, v]
df=pd.DataFrame (xy)
dfl=df.T

dfl.columns = ['x"', "v']

dfl["=x2"]=df1["x"]**2
y=d£1['y']
xx=dfl[["x", "x2"]]

xx]1=sm.add constant (xx)
maodel==m.0LS (v, xx1)
result=model.fit ()
result.summary ()



QLS Regression Results

Dep. Variable: ¥ R-squared: 0.9949
Model: OLs Adj. R-squared: 0.9949
Method: Least Squares F-statistic: 1.663e+04

Date: Wed, 03 Mar 2021 Prob (F-statistic): 1.05e-28

Time: 14:49:02 Log-Likelihood: -76.718
R e S ' I ltS Ho. Observations: 20 AlC: 159.4
Df Residuals: 17 BIC: 1624
Of Model: 2
Covariance Type: nonrobust
coef stderr t  P=[f [0.025 0.975]
° Bad StatIStICS const 19594584 V518 260650 0000 1943598 1975319

¥ -BATH1Y 0367 -162.928 0000 60525  -5B.OTE

x2 05065 0004 136291 0.000 0.499 0.514

* But...

Omnibus: 22125 Durbin-\Watson: 1.693
ProbiOmnibus): 0000 Jarque-Bera (JB}): 39243
Skew: 1.691 Prob(JB):. 3.01e-09

Kurtosis: 8.971 Cond. No. 1.16e+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.

[2] The condition number is large, 1.16e+04. This might indicate that there
are

strong multicollinearity or other numerical problems.



Results

A graphical analysis
allows to verify that
we obtained a good
fit.

z=result.predict (xx1)

tig, ax = plt.subplots(figsize=(E, &})
ax.plot(x,v, '0")
ax.plot(x,z,"'-")

[«matplotlik.lines.Line2D at O0x208ef£20d4100:x]
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OLS Assumptions:

* 1. Linearity
* 2. No Multicollinearity

* 3. Homoscedasticity (Constant Variance of
Errors)

e 4. No Autocorrelation of Errors

* 5. Normality of Residuals




1. Linearity

* OLS assumes a linear relationship between the
iIndependent variables and the dependent
variable.

e Verification:

* Scatter plots: Visualize the relationship between
independent variables and the dependent variable.

* Residual plots: Plot residuals against fitted values to
check for nonlinearity.

* Polynomial features: Fit a polynomial regression to
see if higher-order terms improve the model.




1. Linearity

import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
# Example dataset
df = pd.DataFrame ({
'X'": np.linspace (1, 100, 100),
'Y': np.linspace(l, 100, 100) + np.random.normal (0, 5, 100)

1)
# Fit OLS model

X = sm.add constant (df['X']) # Add intercept
model = sm.OLS(df['Y'], X).fit ()




1. Linearity

# Scatter plot

sns.regplot (x=df['X'"'], y=df['Y'],

scatter kws={'alpha':0.5},

line kws={"color":"red"})

plt.title("Checking Linearity with Scatter Plot")
plt.show()

# Residual plot

plt.scatter (model.fittedvalues, model.resid,

alpha=0.5)
color='red',

plt.axhline (y=0, linestyle='--")

plt.xlabel ("Fitted Values")

plt.ylabel ("Residuals")

plt.title("Residual Plot for Linearity Check")
plt.show()
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2. No Multicollinearity

* Multicollinearity occurs when independent
variables are highly correlated.

* Verification:
* Correlation matrix: Check pairwise correlations.

* Variance Inflation Factor (VIF): VIF > 10 suggests
high multicollinearity.




2. No Multicollinearity

from statsmodels.stats.outliers influence import variance inflation factor

# Create feature matrix

X = pd.DataFrame ({'X1': np.random.rand(100), 'X2': np.random.rand(100) * 2,
'X3': np.random.rand(100) * 3})

X = sm.add constant (X)
# Compute VIF for each variable
vif values = []
for i in range (X.shape[l]) :
vif = variance inflation factor (X.values, 1)

vif values.append((X.columns([i], vif))

# Convert to DataFrame

vif data = pd.DataFrame (vif values, columns=["Variable", "VIF"])

# Display the results

print (vif data)




2. No Multicollinearity

Variable VIF
0 const 11.685989
1 X1 1.010828
2 X2 1.013169
3 X3 1.002550

VIF close to or above 10 suggests multicollinearity,
and one of the variables should be removed.




3. Homoscedasticity (Constant
Variance of Errors)

* Residuals should have constant variance across
all levels of the independent variables.

 Verification:

* Residual plot: Plot residuals against fitted values.

* Breusch-Pagan test: A statistical test for
heteroscedasticity.

* P<0.05 problem of homoscedasticity




3. Homoscedasticity

import statsmodels.stats.diagnostic as smd

# Residual plot

plt.scatter (model.fittedvalues, model.resid, alpha=0.5)
plt.axhline (y=0, color='red', linestyle='--")
plt.xlabel ("Fitted Values")

plt.ylabel ("Residuals")

plt.title ("Checking Homoscedasticity")

plt.show()

# Breusch-Pagan Test

bp test = smd.het breuschpagan (model.resid,
model .model.exoqg)

print (f"Breusch-Pagan p-value: {bp test[1]}")




3. Homoscedasticity

Checking Homoscedasticity
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Breusch-Pagan p-valus: 2, 1459857 2840480048




4. No Autocorrelation of Errors

* Residuals should not be correlated (importantin
time series data).

 Verification:

 Durbin-Watson test: Checks for first-order
autocorrelation.

* A Durbin-Watson statistic close to 2 suggests no
autocorrelation.

* Values <1 or > 3 indicate strong autocorrelation.




4. No Autocorrelation of Errors

from statsmodels.stats.stattools import durbin Watson
dw stat = durbin watson (model.resid)

print (f"Durbin-Watson Statistic: {dw stat}")

Durbin-Watson Statistic: 2.118513424817343




5. Normality of Residuals

* Residuals should be normally distributed.

 Verification:

* Histogram & KDE Plot: Visualize residual
distribution.

 Shapiro-Wilk test: Formal statistical test for
normality.

* Q-Q Plot: Check residuals against a normal
distribution.

* Anormalresidual distribution supports OLS
assumptions.

* Ap-value <0.05in the Shapiro-Wilk test suggests
non-normality.

v



5. Normality of Residuals

import scipy.stats as stats

# Histogram and KDE

sns.histplot (model.resid, kde=True, bins=30)
plt.title("Residuals Distribution™)
plt.show ()

f Q-Q Plot

sm.ggplot (model.resid, line="45")
plt.title("Q-Q Plot for Residuals")
plt.show()

# Shapiro-Wilk Test

shapiro test = stats.shapiro(model.resid)

print (f"Shapiro-Wilk p-value: {shapiro test.pvalue}")




5. Normality of Residuals

Residuals Distribution

* Ap-value <0.05in the X .
Shapiro-Wilk test / [
suggests non- . H r*’ \
normality. l { il %\H

* In this case you do not T commnses
reject the hypothesis i
of normality. ;-

!
/




Statsmodels.summary

summary() function in Statsmodels provides important regression output, but it does not directly test OLS assumptions.
However, it gives useful clues about potential violations.

What Information Does summary() Provide?

import statsmodels.api as sm
model =sm.OLS(y, X).fit()
print(model.summary())

Output:

1.R-squared & Adjusted R-squared - Indicate model fit but do not test assumptions.
2.F-statistic & Prob (F-statistic) — Tests if at least one predictor is significant.

3.Coefficients & p-values — Show predictor significance but do not check multicollinearity.
4.Standard Errors — Can be affected by heteroscedasticity.

5.Durbin-Watson Statistic — Helps detect autocorrelation (should be close to 2).

6.0mnibus & Jarque-Bera Tests — Check for normality of residuals (should have a high p-value).

What Assumptions Does summary() Not Test Directly?

*Homoscedasticity (constant variance of residuals) > Use Breusch-Pagan or White test.
eMulticollinearity > Check Variance Inflation Factor (VIF).

eIndependence of Errors > Use Durbin-Watson test (partially included in summary).
eLinear Relationship > Use residual plots or Ramsey RESET test.
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