
 
 

Lecture 3 
 
1. Summary of Lecture 1: Technology 

1.1. Describing technologies 

1.2. Properties of technologies 

1.3. Properties of technologies cont.: TRS 

 

2. Summary of Lecture 2: Profit maximization 
2.1. The profit maximization problem: 
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2.2. Implications of profit maximization 

2.2.1. Factor demand function x(p,w) and supply function y(p,w)=f(x(p,w)). 

2.2.2. Comparative statics: the Weak Axiom of Profit Maximization (WAPM) 

implies that ópóy≥0. 

 

2.3. The profit function 

2.3.1. Properties 

• Π(·) is increasing (decreasing) in pi if i is an output (input); 

• Π(·) is homogeneous of degree 1 in p; 

• Π(·) is convex in p; intuition: by responding to the price change and adjusting the 

output level or input mix, the firm is at least as well of as if it did not respond; 

• Π(·) is continuous in p; 

• Hotelling’s lemma: ),()( py
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2.3.2. Implications 
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• y(·) and x(·) are homogeneous of degree 0; 
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2.4. Cost minimization 

2.4.1. The cost minimization problem 
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• The solutions of the above problem are the conditional input demands, denoted 

by xi(w, y).  
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∂=λ  tells us how much the cost increases if we tighten the 

constraint by requiring an extra unit of y, i.e., λ equals the marginal cost. 

 

2.4.2. Implications of cost minimization: comparative statics 

 

Given a list of input price vectors wt and the associated optimal factor levels xt, 

t=1,…,T, an obvious necessary condition for cost minimization is that wt xt ≤ wt xs for 

all t,s such that ys≥yt. This is the Weak Axiom of Cost Minimization (WACM) and 

implies that ówóx≤0. 

 

 

 

 



3. The cost function 
3.1.  Definitions 

 

• Short and long-term total costs, average costs (SAC and LAC), and marginal cost 

functions (SMC and LMC). 

 

• Facts:  

1. AC are U-shaped; 

2. MC=AC at minAC; 

3. MC(1)=AC(1); 

4. if the technology exhibits constant returns to scale then AC=MC; 

5. SAC≥LAV (in the short run all factors cannot be adjusted in response to a 

change in input prices; thus, short run total cost must exceed long run total 

cost for any output level and the same is also true for average costs); 

6. SMC> or <LMC (they are equal when the output level is such that the fixed 

factors are optimally utilized; for lower levels of output there is too much of 

the fixed factor in the short run which makes the total cost higher than its 

long run value but the high level of the fixed factor makes it cheaper to 

produce an additional unit of output -SMC- than it would be once the fixed 

factor is adjusted to its long run level); 

7. SAC is tangent to LAC at the optimum (where SMC = LMC). 

 

3.2. Properties 

a. c(·) is increasing in y and nondecreasing in w; 

 

b. c(·) is homogeneous of degree 1 in w; 

 

c. c(·) is concave in w; intuition: by responding to the price change and 

adjusting the input mix, the cost is at least as low as if the firm did not 

respond; 

 

d. c(·) is continuous in w, for wà0; 



 

 

e. Shepard’s lemma: ),,(),( ywx
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Proofs: V, p. 72, 73, and 74 

 

3.3. Implications 
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b. b. above implies that the xi(·) are homogeneous of degree 0; 
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4. Duality 
4.1. Mathematical introduction 

 

• A half-space is a set of the form {xœn:p.x≥c} for some pœn, p≠0, called the normal 

vector to the half-space; 

 

• Its boundary {xœn:p.x=c} is called a hyperplane; 

 

• Half-spaces and hyperplanes are convex sets; 

 

• Given a closed and convex set K⊂ n and a point x outside K, the separating 

hyperplane theorem states that there is a half-space containing K and excluding x, i.e., 

there is a pœn and a cœ such that p.x<c≤p.x’, for all x’œK; 

 



• Idea: a convex set may be equivalently described as the intersection of half-spaces that 

contain it; more generally, if the set K is not convex, the intersection of half-spaces is 

the smallest closed, convex set that contains K (known as the closed convex hull of K). 

 

4.2. Duality in Production 

 
The input requirement set V(y) describes the technology. Depending on the relative prices of 

inputs firms choose different input bundles along the isoquant. 

 

Suppose that we do not know the underlying technology but can observe the input choices of a 

cost minimizing firm for all possible prices. 

 

Suppose the bundle x is chosen at prices w. Then the set of all input bundles more expensive 

than this must include the true input requirement set. Let V* (y) be the set of input bundles that 

are at least as expensive as the bundle chosen at w, for all prices w. (V* (y) is the convex hull 

of V(y)). 

 

If the technology is convex and monotonic it turns out that V* (y) = V(y). 

 

In this case we can go from the cost function to the true technology. But even if the true 

technology is non-convex its cost function will coincide with that of V*(y), i.e. c*(w,y) = 

c(w,y). 

 

V(y) ⊂ V*(y) ⇒ c*(w,y) ≤ c(w,y). Can V* (y) contain bundles, not in V(y), that are strictly 

cheaper? No. By definition V* (y) contains bundles that are at least as expensive as the optimal 

one in V(y) for any given w. 

 

Thus the cost function summarizes the economically relevant information about the technology.   

 

Furthermore, it turns out that: 

• A differentiable function satisfying the properties for cost functions above is indeed a 

cost function for some technology. 



• Functions satisfying the properties of the conditional demand functions - (i) 

homogeneity of degree 0 in prices and (ii) that the matrix of partial derivatives with 

respect to prices is symmetric and negative semidefinite - can be show to be a 

conditional demand function for some technology. 

 

Going from costs to technology: See example in Varian, p 87. 

 

Geometry of duality 

 

The isocost curve is the set of input prices that allows us to produce a given output at the same 

cost. The slope of the isocost curve is simply, i.e.it equals the ratio of the factor demands. The 

slope of the isoquants is given by -TRS which must equal the ratio of the input prices in 

optimum. 

 

A very curved isoquant means that large changes in factor prices lead to small changes in input 

choices. Thus the ratio of factor demands will remain relatively unchanged which means that 

the isocost curve is quite flat. Conversely, if the technology is linear (linear isoquant) we will 

only use the best input. Small changes in the prices of other inputs obviously has no effect on 

cost but a sufficiently large change will lead the firm to switch input, in which case only the 

price of the new input matters. 

 

Consequently, the curvature of the isocost and the isoquant are inversely related. 

 

 

 
 



 

 

In this section, we have shown that: 

1. We can recover information on a firm’s technology – as described by the input requirement 

set V(y) – using the intersection of half-spaces built by means of the cost function c(·), so 

that the cost function summarizes the economically relevant information about the 

technology; 

2. A differentiable function satisfying the properties for cost functions above is indeed a cost 

function for some technology; 

3. Functions satisfying the properties of the conditional demand functions (homogeneity of 

degree 0 in prices and symmetric and negative semi-definite matrix of partial derivatives 

with respect to prices) can be show to be a conditional demand function for some 

technology. 

 

Proofs: V, p. 83-86 

 

Example: V, p. 87 

 


