

Cadeira de Tecnologias de Informação Ano lectivo 2009/2010

Hardware

Tópicos

- 1. Arquitectura de um Computador
 - 1. Unidade de Processamento Central (CPU)
 - 2. Memória do computador
- 2. Tecnologias de Input e Output
 - 1. Tipos de Periféricos de Input/Output
- 3. Tipos de computador
 - 1. Hierarquia dos computadores
- 4. Tecnologias emergentes

Hardware

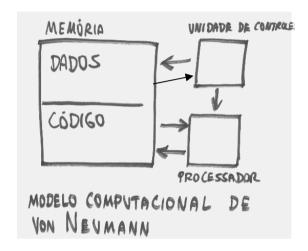
Hardware

é a designação do

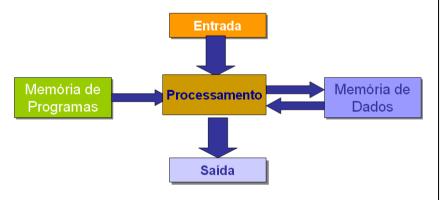
equipamento físico

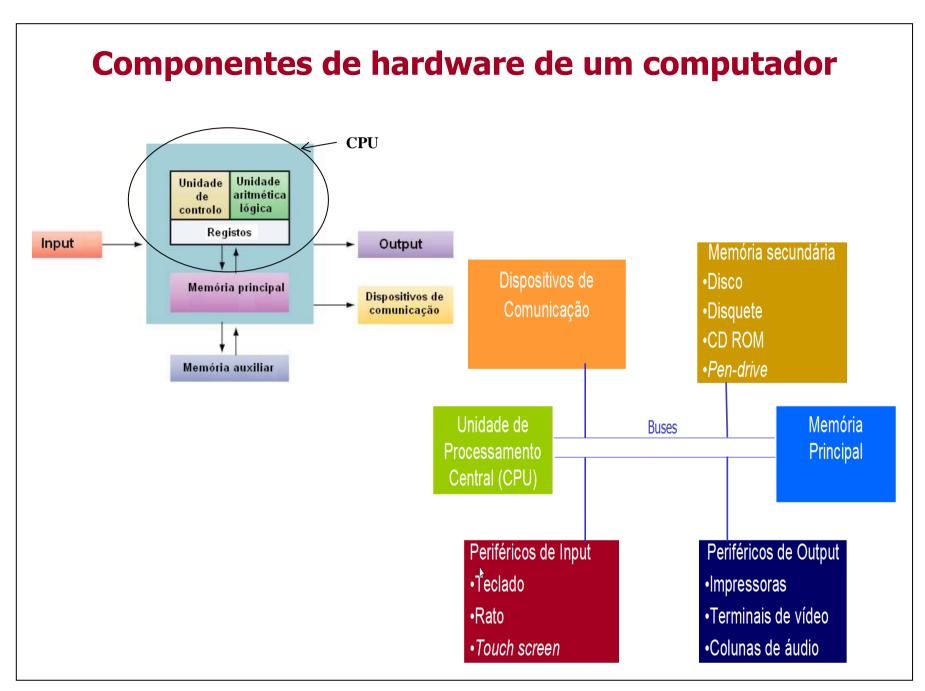
usado para ler dados (*input*), processar esses dados, exibir o resultado do processamento (*output*) e armazenar programas e dados/informações. Não confundir com **Hardware**, conceito americano de loja de ferramentas ou drogaria do tipo DIY (*do it yourself*) que vende ferramentas manuais, ferramentas eléctricas, chaves, fechaduras, dobradiças, material sanitário, de abastecimento eléctrico, produtos de limpeza, utensílios para pintar e, produtos para relva e jardins. Muitas destas lojas podem ainda incluir artigos de caça e pesca, plantas e produtos de viveiro, material marítimo de recreio, comida e produtos para animais, produtos para piscinas, produtos químicos, etc. Um exemplo em Portugal será o das lojas AKI.

Nos E.U.A., nas cidades pequenas, os correios estabelecem protocolos com estas lojas para incluírem um serviço postal completo no balcão da loja e que é operado por funcionários da própria loja.


Arquitectura do Hardware

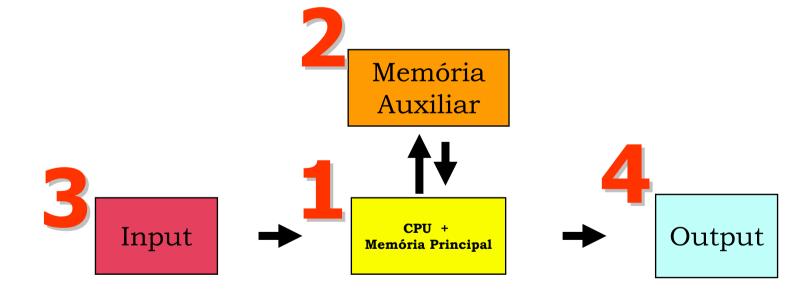
- A Arquitectura do Hardware corresponde à estrutura e à organização do hardware que permite o funcionamento de um computador.
- A elaboração primeiro modelo de um computador é da autoria de John Von Neummann (1903-1957) da Universidade de Princetown, New Jersey.




Modelo de Von Neumann

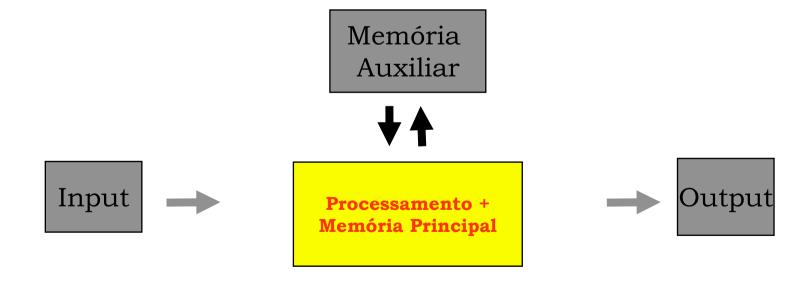
- Modelo seguido pela grande maioria dos computadores existentes - proposto por Von Neumann em 1940.
- Os principais pontos a destacar no modelo são:
 - Código e dados compartilham a memória de uma forma homogénea
 - Instruções podem ser vistas como dados e vice versa

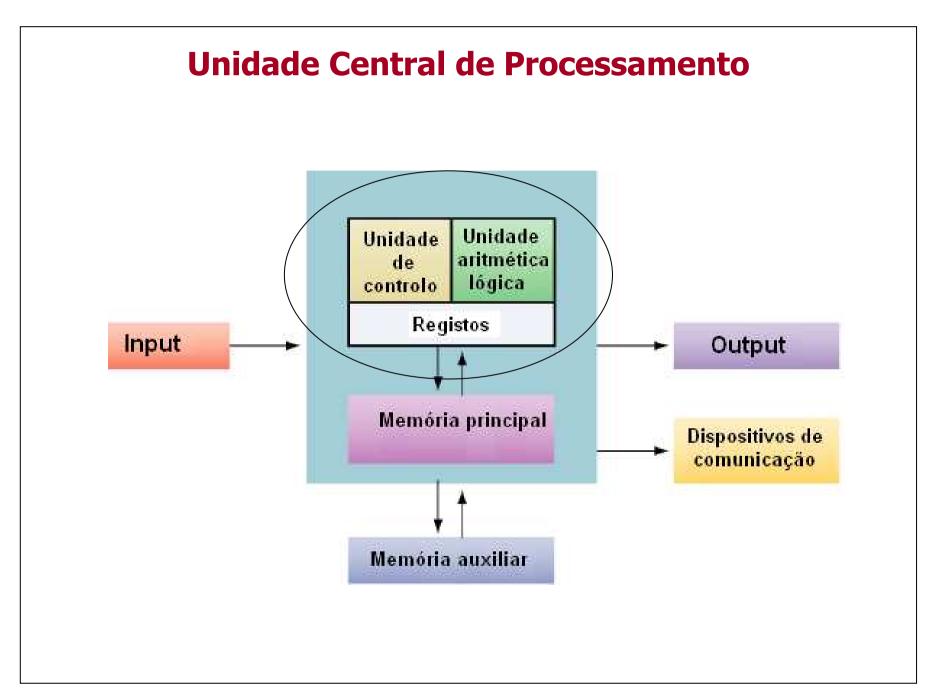
que se converteu no modelo mais elaborado


Conceitos

- Unidade de Processamento Central (CPU, do inglês Central Processing Unit) manipula os dados e controla as tarefas executadas pelos outros componentes.
- Memória Principal ou Armazenamento Primário armazena temporariamente dados e instruções de programa durante o processamento.
- Memória Secundária ou Armazenamento Auxiliar é o conjunto de equipamento onde se armazenam os dados e programas para uso futuro.

- Tecnologias de Input aceitam os dados e instruções e convertem-nos de forma que o computador os possa entender.
- Tecnologias de Output apresentam os dados e informações processadas no computador de forma a que as pessoas as possam entender.
- Tecnologias de Comunicação facultam e controlam o fluxo de dados transmitidos a partir redes de computadores externos (por exemplo, Internet e Intranets) para a CPU, ou da CPU para redes externas de computadores.


Componentes de um Computador


Existem quatro componentes principais num computador:

1 - Processamento

Vamos concentrar-nos na Unidade Central de Processamento (*CPU* de *Central Processing Unit*) com mais detalhe.

Conceitos da Unidade Central de Processamento

- Unidade Central de Processamento (CPU) executa a computação actual ou "trata os dados" dentro de qualquer computador.
- Microprocessador é a CPU, de um computador pessoal. É designado frequentemente por chip.
- Unidade Aritmética Lógica (ALU de Arithmetic-Logic Unit) executa os cálculos matemáticos e realiza as operações lógicas.

- Registos são áreas de armazenamento de alta velocidade que guardam pequenas porções de dados e instruções por curtos períodos de tempo.
- Unidade de Controlo acede sequencialmente às instruções do programa, descodifica-as e controla:
 - o fluxo de dados de e para a ALU (*Arithmetic-logic Unit*);
 - os registos;
 - a memória cache;
 - a memória principal;
 - a memória secundária e
 - e vários dispositivos de output.

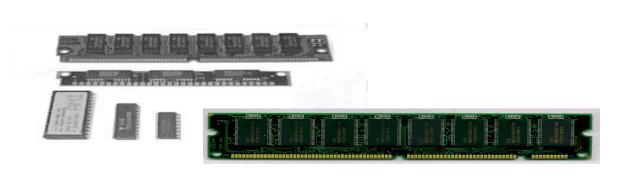
Motherboard

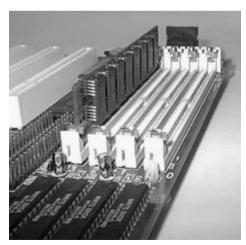
- Nos computadores pessoais (PC de personal computer) a Motherboard ou placa principal contém todos os componentes e dispositivos vitais ao funcionamento do sistema (CPU, Memória RAM e ROM, slots de expansão...)
- Determina o tipo e a quantidade máxima de memória RAM e o número e tipo de placas que se podem colocar no sistema
- Normalmente traz incluídas placas de vídeo, placas de som, placas de rede, etc.

Memória do Computador

- Duas categorias básicas de memória de computador: memória principal (ou armazenamento primário) e memória auxiliar (ou armazenamento secundário).
 - A memória principal armazena quantidades pequenas de dados e informações que serão usados imediatamente pela CPU. É volátil.
 - A memória auxiliar armazena quantidades maiores de dados e informações (um programa de software inteiro, por exemplo) por períodos alargados de tempo. Não é volátil.

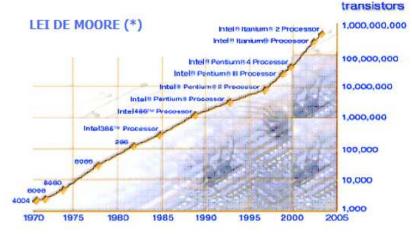
Memória Principal do Computador


- A memória principal ou armazenamento primário armazena três tipos de informação por muito breves períodos de tempo:
 - Dados a ser processados pela CPU
 - Instruções de programas para a CPU
 - Programas do sistema operativo que administram vários aspectos da operação do computador
- Existem mais três tipos principais de armazenamento primário além da memória principal propriamente dita (do tipo *random access memory*, RAM):
 - registos;
 - memória cache e
 - memória somente de leitura (ROM).


Memória Principal do Computador

- Registos: os registos fazem parte da CPU. Têm pouca capacidade, só armazenando imediatamente quantidades muito limitadas de instruções e dados antes e depois do processamento
- Memória cache: a memória cache é um bloco relativamente pequeno de memória muito rápida; os dados e as instruções carregadas na cache são aquelas que são usadas mais recentemente e mais frequentemente; as velocidades da cache representam a transferência interna dos dados e das instruções de software; trata-se portanto de um tipo de armazenamento primário onde o computador pode armazenar temporariamente os blocos de dados de uso mais frequente
- Memória somente de leitura (read-only memory, ROM): tipo de armazenamento primário onde são salvaguardadas certas instruções críticas; o armazenamento é não volátil e retém as instruções quando a energia elétrica que abastece o computador é desligada. Vem já normalmente gravada pelo fabricante

Memória Principal no Computador Pessoal


- É constituída por módulos de memória, tipo "pente", conectados ao *bus* da *motherboard*.
- A quantidade de memória RAM que um computador deve ter, depende dos programas com os quais se pretende trabalhar, bem como do orçamento disponível.
- A quantidade de memória habitual ou necessária tem, mais ou menos, duplicado a cada 2 ou 3 anos (Lei de Moore)

Lei de Moore

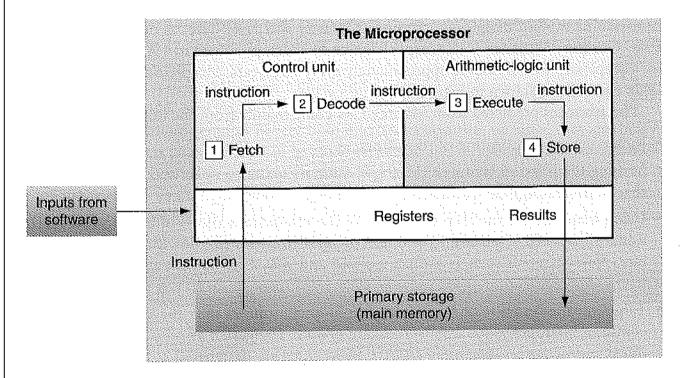
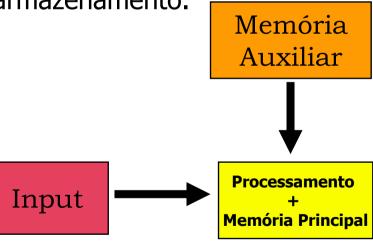
A Lei de Moore diz que a complexidade do microprocessador deverá duplicar a cada dois anos, como resultado das seguintes alterações:

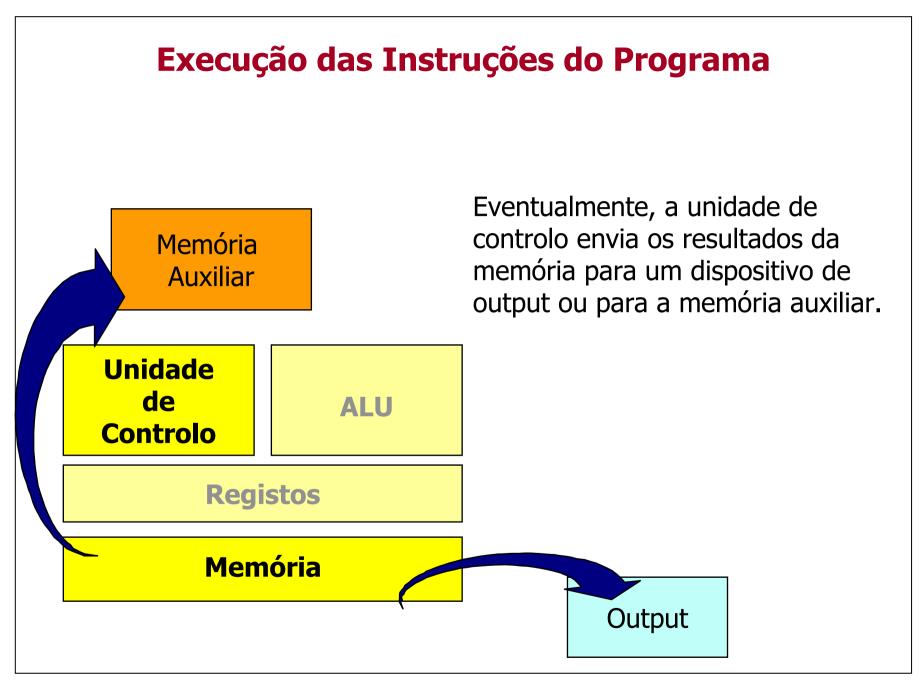
(*) Gordon E. Moore, presidente da Intel em 1965

- aumento da miniaturização dos transístores.
- inovação de *layout* físico de componentes, como os *chips*, compactos e eficientes quanto possível.
- utilização de materiais para os chips que melhoram a condutividade (fluxo) de electricidade.
- orientação da quantidade de instruções básicas programadas no chip.
- um chip, também conhecido por circuito integrado, é um dispositivo microeletrónico que consiste em muitos transistores e outros componentes interligados capazes de desempenhar muitas funções, de dimensões extremamente reduzidas, e que são formados em pastilhas de material semicondutor.

Para constatar a evolução dos chips, aceda à Intel

Como a CPU Executa Instruções do Programa

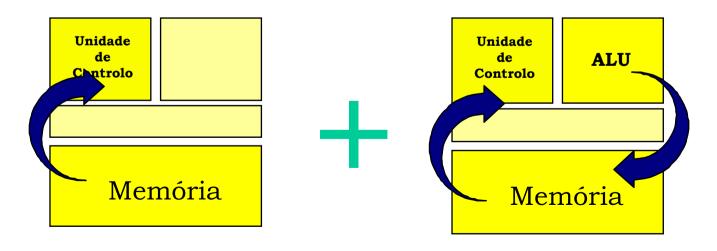




FIGURE TG1.2 How the CPU works.

Vejamos estes processo em "câmara lenta"...

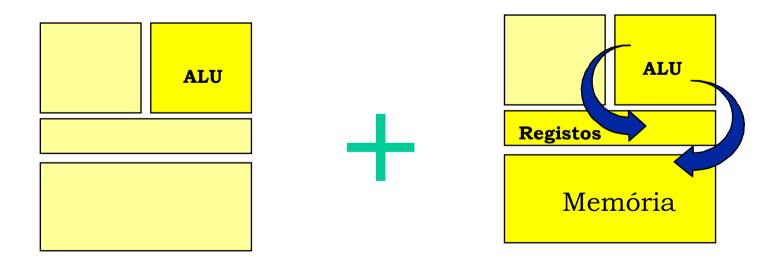
Como a CPU Executa Instruções do Programa

Antes que a CPU possa executar um programa, as instruções do programa e os dados devem ser colocados em memória principal a partir de um dispositivo de input ou dispositivo de armazenamento.



Execução das Instruções do Programa

Instruction Time (tempo de instrução)


O tempo necessário para **ir buscar** uma instrução e para a **descodificar** é designado por *instruction time*.

Execução das Instruções do Programa

Execution Time (tempo de execução)

O tempo necessário para **executar** uma operação ALU e para depois **gravar** o resultado é designado por **execution time.**

Ciclo de Máquina

A combinação do *Instruction Time* e do *Execution Time* é designada por ciclo de máquina.

Velocidade do Microprocessador

A velocidade do processador mede-se em **hertz (Hz)**, correspondendo **1 hertz a um ciclo por segundo**

Por exemplo:

1 megahertz (MHz) corresponde a um milhão de ciclos de máquina por segundo

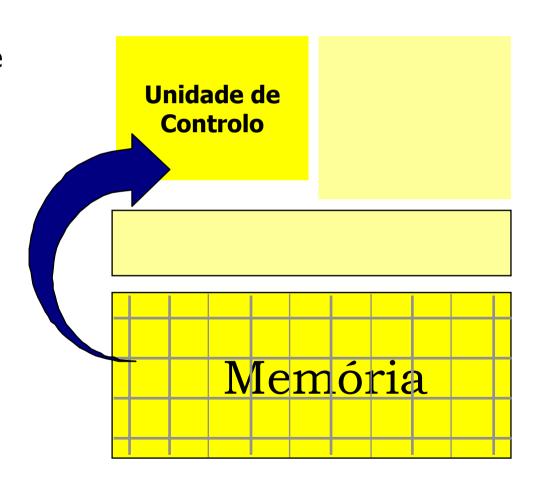
1 gigahertz (GHz) corresponde a mil milhões de ciclos de máquina por segundo

Veja-se, por exemplo, as seguintes características do PC onde foi feita esta apresentação

Computer:

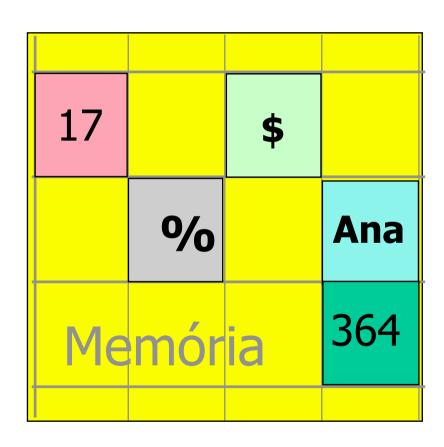
AMD Athlon(tm) XP 2600+ 1.92 GHz, 512 MB of RAM

Velocidades de um processador


As velocidades de um processador para além de poderem ser medidas em ciclos de máquina (Hz) podem também ser medidas em MIPS ou Megaflops.

- Um MIP corresponde a um milhão de instruções por segundo
- Um Megaflop corresponde a um milhão de operações de vírgula flutuante por segundo

Localizações de Memória e Endereços


A unidade de controlo pode encontrar os dados e as instruções porque cada localização em memória tem um endereço.

Endereços na RAM

A escolha da localização em memória é arbitrária.

Os endereços só conseguem albergar um número ou um conjunto de caracteres cujo número máximo depende do comprimento da "palavra" (32 ou 64 bits).

Representação dos Dados

O sistema binário é a forma na qual todos os dados do computador são representados e manipulados.

O sistema binário tem somente dois dígitos para representar todos os valores.

Isto corresponde aos dois estados do sistema eléctrico dos circuitos — *on* e *off* (ligado ou desligado).

Os números binários têm a base 2

Número Binário	2^3=8	2^2=4	2^1=2	2^0=1	Equivalente Decimal
0001	0*8	0*4	0*2	1*1	1
0010	0*8	0*4	1*2	0*1	2
0011	0*8	0*4	1*2	1*1	3
0100	0*8	1*4	0*2	0*1	4
0101	0*8	1*4	0*2	1*1	5
0110	0*8	1*4	1*2	0*1	6
0111	0*8	1*4	1*2	1*1	7
1000	1*8	0*4	0*2	0*1	8

Conversão de binário para decimal

Converta o número 11011012 (em binário) para decimal:

•
$$1*(2^6=64) = 64$$

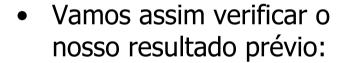
•
$$1*(2^5=32) = 32$$

•
$$0*(2^4=16) = 0$$

•
$$1*(2^3=8) = 8$$

•
$$1*(2^2=4) = 4$$

•
$$0*(2^1=2) = 0$$

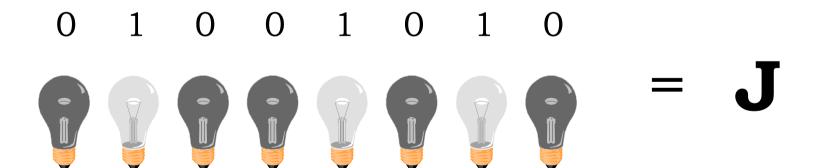

•
$$1*(2^0=1) = 1$$

$$64+32+8+4+1 = 109$$

Conversão de decimal para binário

Converta o número 10910 (em decimal) para binário

- 109 : 2 = 54 resto **1**
- 54 : 2 = 27 resto **0**
- 27 : 2 = 13 resto **1**
- 13 : 2 = 6 resto **1**
- 6:2 = 3 resto **0**
- 3:2 = 1 resto 1
- 1:2 = 0 resto 1



• $109_{10} = 1101101_2$

Codificação dos Caracteres (1/3)

Um grupo de 8 *bits* é designado por *byte*.

Cada *byte* representa um carácter de dados (uma letra, número, sinal de pontuação, símbolo ou qualquer elemento de um código que equivale para o computador a uma unidade de informação).

Codificação dos Caracteres (2/3)

- Um caracter é codificado em 8 bits, em que 1 representa a paridade.
- Nos 7 bits restantes podemos codificar 2⁷ caracteres ou seja 128 (letras maiúsculas e minúsculas, dígitos e caracteres especiais).
- Os dois sistemas de codificação mais divulgados são o **ASCII** e
 o **EBCDIC.**

Codificação dos Caracteres (3/3) Parte do Código ASCII

DEC	BIN	Symbol
44	101100	,
45	101101	-
46	101110	
47	101111	/
48	110000	0
49	110001	1
50	110010	2
51	110011	3
52	110100	4
53	110101	5
54	110110	6
55	110111	7
56	111000	8
57	111001	9
58	111010	:
59	111011	;
60	111100	<
61	111101	=
62	111110	>
63	111111	?
64	1000000	@

Unidades de medida de memória

O armazenamento e a capacidade de memória são expressos pelo número de *bytes* :

- **bit** = digito binário (0 ou 1)
- *byte* = 8 bits
- *kilobyte* (Kb) = 2^{10} ou 1024 bytes
- megabyte (Mb) = 2^{20} ou 1.048.576 bytes
- *gigabyte* (Gb) = 2^{30} ou 1.073.741.824 bytes
- *terabyte* (Tb) = 2⁴⁰ ou mais de um trilião de bytes
- **petabyte** (Pb) = aproximadamente 2⁵⁰ bytes
- *exabyte* (Eb) = aproximadamente 2⁶⁰ bytes
- zettabyte (Zb) = correspondendo a 270 bytes
- yottabyte (Yb) = correspondendo a 280 bytes.

Exemplos comuns

• 1 página txt ASCII : 2 Kb

• 1 página Word : 28 Kb

• 1 disquete : 1,44 Mb

Dicionário completo : 24 Mb

• 1 CD (Compact Disk) : 800 Mb

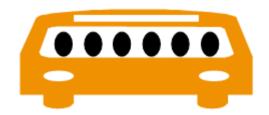
• 1 DVD (*Digital Video Disc*) : 5,2 Gb

• 1 HD/HDD (Hard Disk/ Hard Disk Drive) : 1,5 Tb (*)

(*) A Seagate informou que em 2010 irá lançar um HD de 200 TB

Computador Power

O **Computer Power** ou **Poder do Computador** corresponde ao seu **desempenho**


Para além da respectiva velocidade de processamento, depende de outros factores, tais como:

- Linhas em bus e largura do bus
- Memória *Cache*
- Arquitectura RISC ou CISC
- Processamento Paralelo

Linhas em *bus* e largura para o *bus*

- A transferência de dados entre os vários componentes de um computador é efectuada em conjuntos de linhas em paralelo (normalmente conjuntos de 8, 16, 32, 64 e 128 linhas de bits); a este tipo de circulação de dados chama-se **bus** (ou barramento)
- Uma linha em bus é um conjunto de caminhos eléctricos paralelos.
- Um bus representa um modo de transporte para os dados.
- A quantidade de dados que podem ser transportados de uma só vez é a largura do bus (bus width em que mais largo = mais dados).

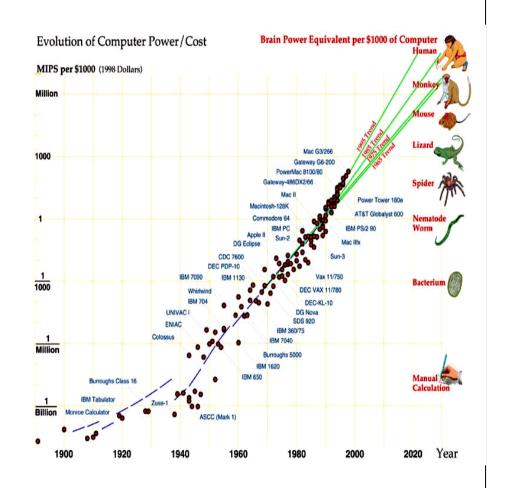
Memória Cache

- A memória *cache* é um bloco relativamente pequeno de memória muito rápida.
- Os dados e as instruções carregadas na cache são aquelas que são usadas mais recentemente e mais frequentemente.
- As velocidades da cache representam a transferência interna dos dados e das instruções de software.

Arquitecturas CISC ou RISC

As duas arquitecturas mais comuns em processadores são a complex instruction set computing (CISC) e a reduced instruction set computing (RISC).

- CISC é um processador com um conjunto complexo de instruções máquina.
- Exemplos de processadores CISC são os 386 e os 486 da Intel.
- As máquinas mais antigas e mais lentas têm *chips* (chamados CISC) com instruções que são usadas raras vezes ou nunca.


- RISC é um processador com um conjunto reduzido de instruções máquina.
- Esta arquitectura apareceu em meados da década de 80 do século passado.
- A maioria dos microprocessadores modernos são RISC, pois têm *chips* com um menor número de instruções como forma de as fazer correr mais rapidamente.

Processamento Paralelo

- Ao usar uma série de processadores ao mesmo tempo (em paralelo) aumenta-se substancialmente a capacidade de processamento.
- Aquando em processamento paralelo, o computador pode começar outras tarefas antes que o ciclo de execução da CPU (a sequência do "fetch-descodifica-executa-armazena") esteja completo.

Evolução do binário preço/ capacidade do computador

- Este gráfico vem do trabalho de Ray Kurzweil.
- Note-se a escala logarítmica no eixo-Y. que dá aparência "linear" ao gráfico.
- Note também a tendência das linhas (1965, 1975, 1985 e 1995) na parte superior direita do gráfico.
- Estas linhas de tendência apontam que a melhoria da tecnologia informática estão a acelerar ainda mais rapidamente do que previsto.

2 - Memória Auxiliar do Computador

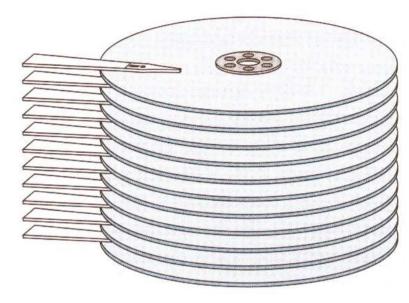
É a memória que pode armazenar quantidades muito grandes de dados por períodos prolongados de tempo.

- É não volátil
- Leva muito mais tempo para aceder aos dados por causa da natureza electromecânica do seu funcionamento
- É mais barata do que a memória primária
- Pode acontecer numa grande variedade de meios de suporte

Memórias Auxiliares (1/7)

- Não são acedidas directamente pelo CPU, mas através de interfaces ou controladores especiais
- Memórias permanentes que não se apagam quando o computador está desligado, servindo para armazenamento de programas e dados por um longo período
- Têm alta capacidade de armazenamento e um custo muito mais baixo do que o da memória principal

Memórias Auxiliares (2/7)

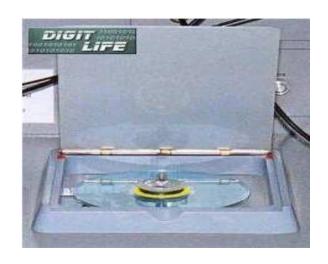

- Banda magnética: Um meio de armazenamento secundário em um carretel aberto grande ou em cartuchos menores ou cassetes. As bandas magnéticas normalmente são processadas em acesso sequencial, ou seja, para aceder a um determinado dado tem que se percorrer em sequência todos os que o antecedem; também designadas por cartridges.
- As grandes organizações usam robots de tapes

Memórias Auxiliares (3/7)

Discos magnéticos: Forma de armazenamento secundário numa superfície magnetizada dividido em pistas e sectores que atribuem endereços aos dados; também designados por discos rígidos; esta tecnologia permite o acesso directo, ou seja, é consentido o acesso a qualquer pedaço de dados de uma maneira não sequencial localizando os dados através do endereço da sua localização.

Memórias Auxiliares (4/7)

- Disquetes de 1,4 Kb.
- CD-ROM de compact disk, read-only memory; um CD-ROM é idêntico aos compactos discos de música, e tem até 800 Mb de capacidade.
- DVD de digital video disc ou digital versatile disc que pode armazenar de 4.7 Gb (mais de sete vezes a capacidade de um CD-ROM) até mais de 17 Gb; a mesma drive pode ler/escrever CD e DVD; os HD (high density) DVD podem ir até aos 90 Gb
- Cartões de memória (pen drives, memory sticks, thumb drives e keychain memory)


Memórias Auxiliares (5/7)

Disco de múltiplo nível fluorescente

(fluorescent multilayer disk FMD-ROM): é um formato de disco óptico que usa materiais fluorescentes, em vez de materiais refletivos, para armazenar os dados. Os formatos de disco reflectivos (como CD e DVD) têm uma limitação prática de cerca de duas camadas, principalmente devido às interferências. Porém, o uso de fluorescência permite aos FMD operar de acordo com os princípios 3D armazenamento de dados óptico e ter até 100 camadas de dados. Estas camadas extras permitem aos FMD ter potencialmente capacidades até um Tb (terabyte), o mantendo o mesmo tamanho físico de discos ópticos tradicionais.

Velocidade maior que a dos CD e DVD e menor que a dos discos rígidos.

Memórias Auxiliares (6/7)

• Discos externos (expandable storage devices): embalagens autónomas contendo um ou mais discos, usadas principalmente para efeitos de cópia de segurança (backup) dos discos internos do computador, com capacidades que podem ir aos muitos Gb.

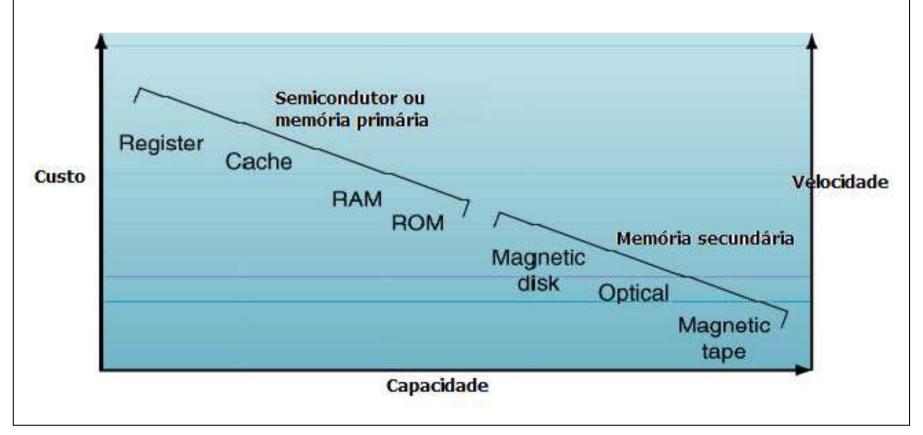
Memórias Auxiliares (7/7) Sistemas de Armazenamento Empresariais Discos em RAID

- RAID significa *Redundant Array of Independent (or Inexpensive) Disks e* corresponde a uma categoria de unidades de disco que utiliza duas ou mais *drives* em combinação para tolerância a falhas e melhoria de desempenho.
- As unidades de disco em RAID são usados frequentemente em servidores, não sendo geralmente necessárias para computadores pessoais.
- O RAID permite guardar os mesmos dados redundantemente (em vários discos) para melhorar a confiabilidade e segurança de sistemas.
- Existem vários nível de RAID, de que o RAID 1 corresponde a escrita duplicada de cada dado.

Sistemas de armazenamento empresariais Storage Area Network (SAN)

- Uma arquitectura para conectar dispositivos de armazenamento remoto (normalmente arrays de discos) de forma transparente a um conjunto de servidores através de fibra óptica.
- Esta arquitectura é
 normalmente configurada em
 RAID e é sobretudo utilizada
 para armazenamento nos
 grandes Centros de Dados.

Sistemas de armazenamento empresariais Network-attached storage (NAS)


- O NAS, é um dispositivo dedicado ao armazenamento de ficheiros dentro de uma rede, disponibilizando o acesso aos dados aos clientes dessa rede.
- Basicamente o NAS é um computador conectado à rede cujo único objectivo é fornecer serviços de armazenamento de dados a outros postos de trabalho na rede.
- Pode ser utilizado em RAID

Sistemas de armazenamento empresariais SAN versus NAS — Principais diferenças

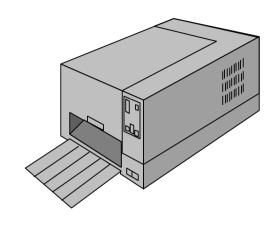
SAN	NAS
Utiliza fibra óptica nas ligações, tendo uma rede própria separada do rede local. Tem grandes dimensões	Utiliza ligações TCP/IP, esta ligado a própria rede local, pequena dimensão
Oferece apenas armazenamento de dados, deixando o sistema de ficheiros a cargo do cliente	Oferece armazenamento e sistema de ficheiros. Gere tudo o que é necessário para a correcta disponibilização dos dados de forma totalmente autónoma
O acesso aos dados é de "baixo nível" idêntico ao usado em discos ATA, pois o servidor pede blocos de dados, é portanto "block-level"	O acesso aos dados é de "alto nível" pois os clientes pedem uma porção de um determinado ficheiro abstracto em vez de um bloco de dados de um disco, é "filelevel"
Caro e complexo de implementar e gerir, necessita de mão obra especializada. Só justificada em grandes organizações com grandes redes de computadores	Simples e barato, fácil de gerir, normalmente é possível gerir um sistema NAS por uma interface WEB de forma simples e rápida

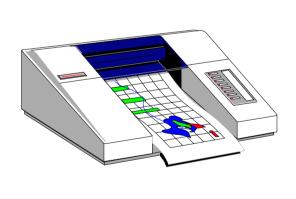
Evolução do Homem e do Armazenamento

3 - Periféricos de *Input*

As Tecnologias de *input* permitem às pessoas e a outras tecnologias entrar dados num computador. Os dois tipos principais de dispositivos de input são:

- dispositivos de entrada de dados humanos incluem teclados, rato, trackball, joystick, touch screen, manuscrito, olhar e reconhecimento de voz;
- dispositivos de entrada de dados automáticos que permitem a introdução com intervenção humana mínima (por exemplo leitor de código de barras, leitor de caracteres magnéticos, optical character reader, scanner).
 - aceleram a entrada de dados;
 - reduzem erros.


Teclado *Bluetooth* virtual de laser


Teclado Maltron

4 - Periféricos de *Output*

- O output gerado por um computador pode ser transmitido ao utilizador através de vários dispositivos de output, tais como:
 - Monitores, impressoras, plotters, som, imagem, música, vídeo e voz.

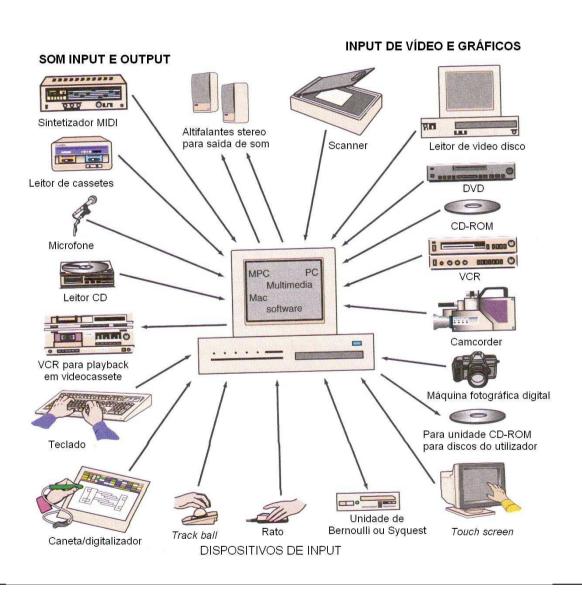
Portas de Input e Output

Permitem ligar dispositivos de entrada de dados, dispositivos de saída de dados e dispositivos de entrada/saída de dados

- Porta paralela normalmente utilizada para impressoras, scanners
- Porta de série vulgarmente utilizada para modems, rato.
- Porta USB (Universal Serial Bus)
 permite ligar até 127
 dispositivos externos diferentes
- Porta SCSI (Small Computer System Interface) – normalmente usada nos computadores Macintosh para ligar vários drives
- Porta firewire com um conceito idêntico ao do USB, permite ligar 63 periféricos distintos, como vídeos.

- Porta de infravermelhos permite ligar até 126 periféricos ou computadores à mesma porta com recurso aos infravermelhos
- Porta PCMCIA (Personal Computer Card Interface Adapter) – permite ligar dispositivos de tamanho de um cartão de crédito
- Porta de teclado permite ligar o teclado
- Porta de rato PS/2 (Mini Din)
 permite ligar o rato

Tecnologia Multimédia

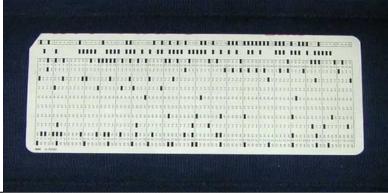

- A Tecnologia Multimédia corresponde à integração computorizada de texto, som, imagem, animação e vídeo digital.
- Congrega as capacidades dos computadores com televisão, vídeo, CD, DVD, áudio, música e tecnologias de jogo.

- Multimédia é qualquer combinação de:
 - texto
 - ilustrações
 - fotos
 - narração
 - música
 - animação
 - vídeo
 - cinema

XBOX Natal:

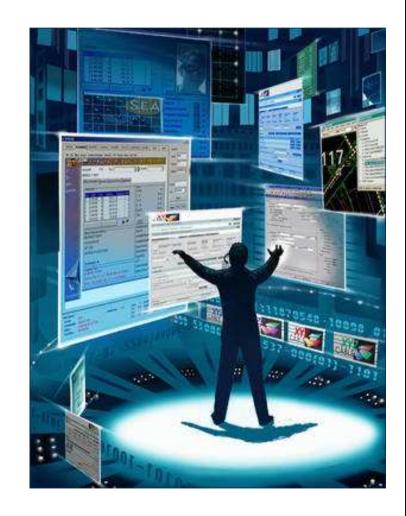
http://www.youtube.com/watch?v=p2q1HoxPioM

Tecnologia Multimédia



Um caminho longo desde a ...

Máquina Perfuradora


Cartão de 80 colunas

... até à Computação de Superfície da Microsoft ...

O *Microsoft Surface Computing* oferece um novo interface aos utilizadores. Esta tecnologia é também chamada de "mesa de café" da Microsoft Demo

Outra visão do *Microsoft Surface*Computing Demo

Tipos de Computador

- Supercomputador
- Computador empresarial (*mainframe*)
- Computador de médio porte (*midrange*)
- Computadores pessoais
 - Computadores de secretária (desktop)
 - Computadores portáteis (laptops e notebooks)
 - Computadores de bolso (PDA)

NASA Supercomputador

Computadores Mainframes e Midrange

IBM System Z mainframe

Computador IBM iSeries Midrange

Desktops, Laptops, Notebooks

Dell desktop

HP notebook

Ultramobile PC

Inovações no uso do Hardware

- Server Farms
- Virtualização
- Grid computing
- Edge Computing
- Computação Autonómica
- Nanotecnologia

Inovações no uso do Hardware (1/2)

- Server Farms centros de dados maciços que contêm milhares de servidores de computadores ligados à rede.
- Virtualização é o uso do software para criar partições num único servidor, correspondendo cada uma a uma máquina virtual.
- Grid computing envolve a aplicação dos recursos de vários computadores numa rede para resolver um único problema, em determinado período de tempo. Muito utilizado em computação científica.

Inovações no uso do Hardware (2/2)

- Edge Computing é um processo em que partes do conteúdo da Web são copiadas para perto do utilizador para diminuir o tempo resposta.
- Computação Autonómica sistemas que se gerem a si próprios, sem intervenção humana directa.
- Nanotecnologia (veja estes <u>slides</u>) refere-se à criação de materiais, dispositivos e sistemas numa escala de 1 para 100 nanómetros (bilionésima parte de um metro).

Pretendemos com esta aula sobre os Conceitos fundamentais de Hardware que os alunos compreendessem:

Arquitectura de um Computador

Unidade de Processamento Central (CPU) Memória do computador

Tipos de Periféricos de Input/Output

Tecnologias de Input e Output

Tipos de computador

Hierarquia dos computadores

Tecnologias emergentes