MICROECONOMA

Tópicos de Solução do Exame

Data: 19 de Janeiro de 2010

1. No óptimo, $x_1^* = x_2^*$ e $x_3^* = x_4^*$. Logo, no óptimo, temos:

$$f(x_1^*, x_2^*, x_3^*, x_4^*) = x_1^* + x_3^*, \text{ com } x_2^* = x_1^* \text{ e } x_4^* = x_3^*.$$

Assim, dependendo dos custos dos factores, uma empresa que tem como objectivo minimizar o custo de produção usará uma combinação de x_1 e x_2 ou uma combinação de x_3 e x_4 , já que as duas combinações são substitutos perfeitos. Logo,

$$C(y, w_1, w_2, w_3, w_4) = \begin{cases} y(w_1 + w_2) \text{ se } w_1 + w_2 \le w_3 + w_4 \\ y(w_3 + w_4) \text{ se } w_1 + w_2 > w_3 + w_4 \end{cases}$$

- 2. (7 val.) Considere uma economia de troca com 2 consumidores (1 e 2) e 2 bens (representados por $x \in y$). A função de utilidade do consumidor 1 é dada por $u_1(x_1, y_1) = (1 + y_1)e^{x_1}e$ a função de utilidade do consumidor 2 é $u_2(x_2, y_2) = x_2 \cdot y_2$, onde x_i e y_i são as quantidades consumidas pelo consumidor i, i = 1, 2, dos bens $x \in y$, respectivamente. Admita ainda que o consumidor 1 tem uma dotação inicial de 2 unidades de x e 1 unidade de y e o consumidor 2 tem uma dotação inicial de 2 unidades do bem x e 3 do bem y. Normalize o vector de preços de tal forma que $p_y = 1$. Determine:
 - (a) Problema do consumidor 1: $\underset{x_1,y_1}{Max} (1+y_1)e^{x_1}$ s.a $p_xx_1+y_1=2p_x+1$. A solução é $x_1(p_x)=\frac{2}{p_x}+1$ e $y_1(p_x,p_y)=p_x-1$. Problema do consumidor 2: $\underset{x_1,y_1}{Max} x_2\cdot y_2$ s.a $p_xx_2+y_2=2p_x+3$.

A solução é $x_2(p_x) = \frac{3}{2} \frac{1}{p_x} + 1$ e $y_2(p_x) = p_x + \frac{3}{2}$.

Exc. procura de x: $z_x(p_x) = \frac{7}{2} \frac{1}{p_x} - 2$; Exc. procura de y: $z_y(p_x) =$

Em equilíbrio, $z_x(p_x) = \frac{7}{2} \frac{1}{p_x} - 2 = 0 \Leftrightarrow \frac{1}{p_x} = \frac{4}{7}$. Substituindo nas procuras, vem: $x_1(p_x) = \frac{15}{7}$; $y_1(p_x) = \frac{3}{4}$; $x_2(p_x) = \frac{13}{7}$; $y_2(p_x) = \frac{13}{4}$.

Na curva de contrato, $TMS_1 = TMS_2$. Logo, $\frac{(1+y_1)e^{x_1}}{e^{x_1}} = \frac{y_2}{x_2}$ e sabemos que $y_2 = 4 - y_1$ e $x_2 = 4 - x_1$. Obtemos a expressão da curva de contrato: $y_1 = \frac{x_1}{5-x_1}$.

No core verificam-se as seguintes condições: $y_1 = \frac{x_1}{5-x_1}, (1+y_1)e^{x_1} \ge$ $u_1(2,1)$ e $x_2 \cdot y_2 \geq u_2(2,3)$. Assim, o core é o seguinte conjunto:

$$\{(x_1, \frac{x_1}{5 - x_1}) : k \le x_1 \le \frac{34 - \sqrt{156}}{10}\}$$
, onde k é a solução de $e^k = 2\frac{5 - k}{5}e^2$.

3. (4 val.) Considere um duopólio de Cournot formado por duas empresas

com uma estrutura de custos idêntica. A função de custos totais da empresa $i,\ i=1,2,\$ como função da quantidade produzida pela empresa $i,\$ é dada por $c_i(q_i)=cq_i.$ A procura de mercado apresenta a forma $P(Q)=a-Q,\$ onde $Q=q_1+q_2.$ No entanto, a procura é incerta, podendo a assumir dois valores: $a=a^H$ com probabilidade $\theta,\$ e $a=a^L,\$ com probabilidade $1-\theta.$ Além disso, a informação é assimétrica: a empresa 1 conhece $a,\$ enquanto a empresa 2 desconhece o valor de a. Tudo isto é do conhecimento comum ($common\ knowledge$). As empresas escolhem simultâneamente as quantidades.

- (a) $G = (I, S_{i,i \in I}, h_{i,i \in I})$, onde $I = \{1, 2\}, S_1 : \{a^L, a^H\} \to [0, \infty)$ e $S_2 = [0, \infty)$.
- (b) A empresa 1 conhece a, a empresa 2 desconhece a. A sua expectativa sobre a é: $a^e = \theta a^H + (1 \theta) \mathcal{D}$. Problema da empresa 1:
- 1. i) Se $a = a^{H}$

$$\max_{q_1^H} (a^H - q_2 - q_1^H) q_1^H - c q_1^H$$

$$q_1^H = \frac{(a^H - c)}{2} - \frac{1}{2} q_2$$

ii) Se $a = a^L$,

$$\max_{q_1^L} \left(a^L - q_2 - q_1^L \right) q_1^L - c q_1^L$$

$$q_1^L = \frac{\left(a^L - c \right)}{2} - \frac{1}{2} q_2$$

Problema da empresa 2:

$$\max_{q_2} (a^e - q_1^e - q_2) q_2 - cq_2$$

$$q_2 = \frac{(a^e - c)}{2} - \frac{1}{2} q_1^e$$

Onde
$$q_1^e = \left(\frac{(a^H - c)}{2} - \frac{1}{2}q_2\right)\theta + \left(\frac{(a^L - c)}{2} - \frac{1}{2}q_2\right)(1 - \theta) = \frac{1}{2}(a^e - c) - \frac{1}{2}q_2$$

O equilíbrio obtém-se resolvendo:

$$q_1^e = \frac{1}{2}(a^e - c) - \frac{1}{2}q_2$$

$$q_2 = \frac{(a^e - c)}{2} - \frac{1}{2}q_1^e$$

Ou seja,

$$q_2 = \frac{1}{3} (a^e - c)$$

 $q_1^e = \frac{1}{3} (a^e - c)$

4. (6 val.) Considere a relação entre delegante e agente, em que existem dois níveis de esforço possíveis $e_H=3$ e $e_L=2$ e apenas dois resultados possíveis $x_1=15000$ e $x_2=7500$. A probabilidade de obter o resultado mais favorável, x_1 , quando o nível de esforço é e_H é de $\frac{2}{3}$, enquanto que o nível de esforço e_L proporciona x_1 com probabilidade de apenas $\frac{1}{3}$.

Admita que o delegante tem como objectivo maximizar o lucro líquido esperado. Em contrapartida, o agente tem uma função de utilidade dada por:

$$U(w,e) = \sqrt{w} - e^2,$$

onde w é o salário e e é o nível de esforço realizado pelo agente. Assuma ainda que a utilidade de reserva do agente é 36.

(a) O delegante tem por objectivo maximizar o lucro esperado, pelo que é neutro ao risco. O agente é avesso ao risco. De facto,

$$\frac{d^2U}{dw^2} = -\frac{1}{4} \cdot w^{-\frac{3}{2}} < 0.$$

- (b) Num cenário de informação simétrica, responda às seguintes questões:
 - i. Quando e é observável, sabemos que o contrato óptimo para induzir um dado nível de esforço tem um salário constante que dá ao agente precisamente a utilidade de reserva. Ou seja, para induzir e_H teremos de ter:

$$u(w) - e_H^2 = 36 \iff \sqrt{w} - 9 = 36 \iff w = 2025.$$

Para induzir e_L :

$$u(w) - e_H^2 = 36 \iff \sqrt{w} - 4 = 36 \iff w = 1600.$$

Para determinarmos o nível de esforço óptimo basta verificar qual dos níveis de esforço vai dar maior lucro líquido ao delegante:

$$E(x|e_H) = \frac{2}{3} \times 15000 + \frac{1}{3} \times 7500 - 2025 = 10475$$

$$E(\Pi|e_L) = \frac{1}{3} \times 15000 + \frac{2}{3} \times 7500 - 1600 = 8400$$

Logo o nível óptimo de esforço é e_H e o contrato óptimo é: w=2025 se $e=e_H$, mas w<1600 se $e\neq e_H$.

Uma vez que neste caso os dois agentes seriam avessos ao risco, a partilha do risco poderia passar a ser óptima. Assim, o salário óptimo para cada nível de esforço poderia não ser constante em x.

- (c) Suponha agora que o nível de esforço não é observável.
 - i. Para induzir e_L (o nível de esforço com menor desutilidade) o melhor contrato é oferecer um salário constante que dê ao agente a utilidade de reserva, $w_1 = w_2 = 1600$. Em contrapartida, para induzir o agente a fazer e_H , o problema do delegante é:

$$\min_{u_1, u_2} \quad \frac{2}{3}u_1^2 + \frac{1}{3}u_2^2$$

sujeito a:

$$\left\{ \begin{array}{l} \frac{2}{3}u_1 + \frac{1}{3}u_2 - 9 \ge \frac{1}{3}u_1 + \frac{2}{3}u_2 - 4 \\ \frac{2}{3}u_1 + \frac{1}{3}u_2 - 9 \ge 36 \end{array} \right. \iff \left\{ \begin{array}{l} \frac{1}{3}u_1 - \frac{1}{3}u_2 \ge 5 \\ \frac{2}{3}u_1 + \frac{1}{3}u_2 \ge 45 \end{array} \right. ,$$

com $u_1 = \sqrt{w_1}$ e $u_2 = \sqrt{w_2}$. A função lagrangeana do problema é:

$$L(u_1, u_2, \lambda_1, \lambda_2) = \frac{2}{3}u_1^2 + \frac{1}{3}u_2^2 + \lambda_1\left(5 - \frac{1}{3}u_1 + \frac{1}{3}u_2\right) + \lambda_2\left(45 - \frac{2}{3}u_1 - \frac{1}{3}u_2\right).$$

As condições de optimalidade são:

$$\begin{cases} \frac{\partial L}{\partial u_1} = \frac{4}{3}u_1 - \frac{1}{3}\lambda_1 - \frac{2}{3}\lambda_2 = 0\\ \frac{\partial L}{\partial u_2} = \frac{2}{3}u_2 + \frac{1}{3}\lambda_1 - \frac{1}{3}\lambda_2 = 0\\ \frac{\partial L}{\partial \lambda_1} = 5 - \frac{1}{3}u_1 + \frac{1}{3}u_2 \le 0; \quad \lambda_1 \ge 0; \quad \frac{\partial L}{\partial \lambda_1} \cdot \lambda_1 = 0\\ \frac{\partial L}{\partial \lambda_2} = 45 - \frac{2}{3}u_1 - \frac{1}{3}u_2 \le 0; \quad \lambda_2 \ge 0; \quad \frac{\partial L}{\partial \lambda_2} \cdot \lambda_2 = 0 \end{cases}$$

Somando as 2 primeiras condições obtemos:

$$\frac{4}{3}u_1 + \frac{2}{3}u_2 = 2 \qquad \underbrace{\left(\frac{2}{3}u_1 + \frac{1}{3}u_2\right)}_{\geq 45 \text{ pela condição participação}} = \lambda_2$$

Logo $\lambda_2 > 0$ e, por conseguinte, a restrição de participação é activa no óptimo. Também podemos mostrar que $\lambda_1 > 0$, porque se $\lambda_1 = 0$, as duas primeiras condições implicavam

$$u_2 = u_1$$

o que não pode ser, porque a condição de compatibilidade de incentivos não seria satisfeita. Mas então, a solução do problema do delegante é a solução do sistema:

$$\begin{cases} \frac{4}{3}u_1 - \frac{1}{3}\lambda_1 - \frac{2}{3}\lambda_2 = 0\\ \frac{2}{3}u_2 + \frac{1}{3}\lambda_1 - \frac{1}{3}\lambda_2 = 0\\ 5 - \frac{1}{3}u_1 + \frac{1}{3}u_2 = 0\\ 45 - \frac{2}{3}u_1 - \frac{1}{3}u_2 = 0 \end{cases} \Leftrightarrow \begin{cases} u_1 = 50\\ u_2 = 35\\ \lambda_1 = 20\\ \lambda_2 = 90 \end{cases}.$$

Por conseguinte $w_1 = 2500$ e $w_2 = 1225$. O nível óptimo de esforço é determinado por:

$$E(x|e_H) = \frac{2}{3} \times (15000 - 2500) + \frac{1}{3} \times (7500 - 2500) = 10000$$

$$E(x|e_L) = \frac{1}{3} \times 15000 + \frac{2}{3} \times 7500 + -1225 = 8775.$$

Logo, e_H continua a ser o nível de esforço óptimo.