Risk and Return

Gestão Financeira II
 Undergraduate Courses 2010-2011

Outline

- Common Measures of Risk and Return
- Historical Returns of Stocks and Bonds
- Historical Tradeoff between Risk and Return

Returns

- How do me measure the return from investment in one asset?
- We compare initial value of the investment in the asset with the final value, at the end of the investment period.
- For Stocks we have:
- Dollar return: $P_{t+1}+D_{t+1}-P_{t}$
- Percentage return: $r_{t+1}=\frac{P_{t+1}+D_{t+1}-P_{t}}{P_{t}}$
where
$P_{t} \quad$: price at beginning of period
P_{t+1} : price at end of period
D_{t+1} : dividend (cash flow) paid during period

Returns: Example

- Suppose you bought 100 shares of Wal-Mart one year ago at $\$ 25$. You received $\$ 20$ in dividends (20 cents per share 100 shares). At the end of the year, stock sells for $\$ 30$. How well did you do?
- Investment $\$ 25 \quad 100=\$ 2,500$; At the end of the year, stock is worth $\$ 3,000$ and dividends of $\$ 20$
- Dollar return: $520=20+(3,000-2,500)$
- Percentage return:

$$
r_{t}=\frac{3,000+20-2,500}{2,500}=20.8 \%=20 \%+0.8 \%
$$

Holding Period Returns

- The holding period return is the return that an investor would get when holding an investment over a period of n years (assumes immediate reinvestment of dividends):

Holding period return

$$
=\left(1+r_{1}\right) \times\left(1+r_{2}\right) \times \cdots \times\left(1+r_{n}\right)-1
$$

where r_{i} is the return during year i

Holding Period Returns: Example

- Suppose your investment provides the following returns over a four-year period:
- Year 1: 10\%
- Year 2: -5\%
- Year 3: 20\%
- Year 4: 15\%

Holding period return

$$
\begin{aligned}
& =\left(1+r_{1}\right) \times\left(1+r_{2}\right) \times \cdots \times\left(1+r_{n}\right)-1 \\
& =1.1 \times 0.95 \times 1.2 \times 1.15-1=0.4421=44.21 \%
\end{aligned}
$$

Average Return

- Arithmetic average: return earned in an average year over a particular period
- Geometric average: average compound return per year over a particular period
- Geometric average will be less than the arithmetic average unless all the returns are equal
- Which is better?
- Geometric average is an excellent measure of past realized performance and good estimate of annual return to be obtained over extended periods of time in the future
- Arithmetic average is best estimate of the expected return in a single period in the future

Average Return: Example

- What is the geometric average return?

$$
\begin{aligned}
& (1+r)^{4}=\left(1+r_{1}\right) \times\left(1+r_{2}\right) \times\left(1+r_{3}\right) \times\left(1+r_{4}\right) \\
& r=\sqrt[4]{1.1 \times 0.95 \times 1.2 \times 1.15}-1=9.58 \%
\end{aligned}
$$

- So, our investor made an average of 9.58\% per year, realizing a holding period return of 44.21\%
- Arithmetic average return is higher:

$$
r=\frac{10 \%+(-5 \%)+20 \%+15 \%}{4}=10 \%
$$

Return Statistics

- History of capital market returns can be summarized by describing the:
- average arithmetic return $\bar{r}=\frac{r_{1}+r_{2}+\cdots+r_{T}}{T}$
- standard deviation of those returns

$$
\sigma=\sqrt{\operatorname{Var}}=\sqrt{\frac{\left(r_{1}-\bar{r}\right)^{2}+\left(r_{2}-\bar{r}\right)^{2}+\cdots+\left(r_{T}-\bar{r}\right)^{2}}{T-1}}
$$

- the frequency distribution of the returns

Return Statistics

- Historical rates of returns on common stocks, bonds, and Treasury bills (Ibbotson and Sinquefeld).
- Year-by-year historical rates of return starting in 1926 in the United States:
- Large-company Stocks
- Small-company Stocks
- Long-term Corporate Bonds
- Long-term U.S. Government Bonds
- U.S. Treasury Bills

Historical Returns U.S. 1926-2005

Source: © Stocks, Bonds, Bills, and Inflation 2006 Yearbook $^{\text {m }}$, Ibbotson Associates, Inc., Chicago (annually updates work by Roger G. Ibbotson and Rex A. Sinquefield). All rights reserved.

Cumulative Returns U.S. 1925-2009

Risk Premium

- Risk Premium is the added return (over and above the risk-free rate) resulting from bearing risk
- Stock markets offer long-run excess of stock return over the risk-free return:
- Average excess return from large company common stocks: $8.5 \%=12.3 \%-3.8 \%$
- Average excess return from small company common stocks: $13.6 \%=17.4 \%-3.8 \%$
- Average excess return from long-term corporate bonds: $2.4 \%=6.2 \%-3.8 \%$
- Given the superior performance of stocks over such long period, why does anyone hold bonds?

Risk-Return Trade-off

- Risk is uncertainty about the future
- Stocks do better on average, but investors know that in any year, stocks may do much worse
- Summarize risk through standard deviation, σ, a measure of dispersion

1926-2005	Standard Deviation
Stocks	20.2%
T-bills	3.1%
Long-term Government Bonds	9.2%
Corporate Bonds	8.5%
Inflation	4.3%
Source: Ibbotson, CRSP	

Normal Distribution

- Suppose stock returns are normally distributed

What about the Future Returns and Risk?

- No one knows the future, but we form expectations about it.
- We will want a measure of Expected Return, based on probability distributions:

$$
\text { Expected Return }=E R=\sum_{R} P_{R} \times R
$$

- We will want a measure of Expected Risk, such as the Variance or the Standard Deviation of Expected Returns:

$$
\begin{aligned}
& \operatorname{Var}(R)=E\left[R-E R^{2}\right]=\sum_{R} P_{R} \times R-E R^{2} \\
& S D(R)=\sqrt{\operatorname{Var}(R)}
\end{aligned}
$$

- In the end, we typically use past (historical) returns to predict the future. We'll see more when presenting portfolios.

