

Risk and Return

Gestão Financeira II Undergraduate Courses 2010-2011

Instituto Superior de Economia e Gestão UNIVERSIDADE TÉCNICA DE LISBOA Gestão Financeira II LicenciaturaClara Raposo2010-20111

Outline

- Common Measures of Risk and Return
- Historical Returns of Stocks and Bonds
- Historical Tradeoff between Risk and Return

Returns

- How do me measure the return from investment in one asset?
 - We compare initial value of the investment in the asset with the final value, at the end of the investment period.
- For Stocks we have:
 - **Dollar return:** $P_{t+1} + D_{t+1} P_t$

- Percentage return:
$$r_{t+1} = \frac{P_{t+1} + D_{t+1} - P_t}{P_t}$$

where

- : price at beginning of period
- : price at end of period
 - : dividend (cash flow) paid during period

Instituto Superior de Economia e Gestão UNIVERSIDADE TÉCNICA DE LISBOA

 P_t

 P_{t+1}

 D_{t+1}

Returns: Example

- Suppose you bought 100 shares of Wal-Mart one year ago at \$25. You received \$20 in dividends (20 cents per share 100 shares). At the end of the year, stock sells for \$30. How well did you do?
 - Investment \$25 100 = \$2,500; At the end of the year, stock is worth \$3,000 and dividends of \$20
 - Dollar return: 520 = 20 + (3,000 2,500)
 - Percentage return:

$$r_t = \frac{3,000 + 20 - 2,500}{2,500} = 20.8\% = 20\% + 0.8\%$$

Holding Period Returns

 The holding period return is the return that an investor would get when holding an investment over a period of *n* years (assumes immediate reinvestment of dividends):

> Holding period return = $(1+r_1) \times (1+r_2) \times \cdots \times (1+r_n) - 1$

where r_i is the return during year i

Holding Period Returns: Example

- Suppose your investment provides the following returns over a four-year period:
 - Year 1: 10%
 - Year 2: -5%
 - Year 3: 20%
 - Year 4: 15%

Holding period return = $(1 + r_1) \times (1 + r_2) \times \cdots \times (1 + r_n) - 1$ = $1.1 \times 0.95 \times 1.2 \times 1.15 - 1 = 0.4421 = 44.21\%$

Average Return

- Arithmetic average: return earned in an average year over a particular period
- Geometric average: average compound return per year over a particular period
- Geometric average will be less than the arithmetic average unless all the returns are equal
- Which is better?
 - Geometric average is an excellent measure of past realized performance and good estimate of annual return to be obtained over extended periods of time in the future
 - Arithmetic average is best estimate of the expected return in a single period in the future

Average Return: Example

• What is the **geometric** average return?

$$(1+r)^{4} = (1+r_{1}) \times (1+r_{2}) \times (1+r_{3}) \times (1+r_{4})$$

r = $\sqrt[4]{1.1 \times 0.95 \times 1.2 \times 1.15} - 1 = 9.58\%$

- So, our investor made an average of 9.58% per year, realizing a holding period return of 44.21%
- Arithmetic average return is higher:

$$r = \frac{10\% + (-5\%) + 20\% + 15\%}{4} = 10\%$$

Return Statistics

- History of capital market returns can be summarized by describing the:
 - average arithmetic return \bar{h}

$$\frac{\bar{r}}{r} = \frac{r_1 + r_2 + \dots + r_T}{T}$$

standard deviation of those returns

$$\sigma = \sqrt{Var} = \sqrt{\frac{(r_1 - \bar{r})^2 + (r_2 - \bar{r})^2 + \dots + (r_T - \bar{r})^2}{T - 1}}$$

- the frequency distribution of the returns

Return Statistics

- Historical rates of returns on common stocks, bonds, and Treasury bills (Ibbotson and Sinquefeld).
- Year-by-year historical rates of return starting in 1926 in the United States:
 - Large-company Stocks
 - Small-company Stocks
 - Long-term Corporate Bonds
 - Long-term U.S. Government Bonds
 - U.S. Treasury Bills

Historical Returns U.S. 1926-2005

	Average	Standard	
Series	Annual Return	Deviation	Distribution
Large Company Stocks	12.3%	20.2%	
Small Company Stocks	17.4	32.9	
Long-Term Corporate Bonds	6.2	8.5	
Long-Term Government Bonds	5.8	9.2	
U.S. Treasury Bills	3.8	3.1	
Inflation	3.1	4.3	
		⊣ – 90	

Source: © Stocks, Bonds, Bills, and Inflation 2006 Yearbook™, Ibbotson Associates, Inc., Chicago (annually updates work by Roger G. Ibbotson and Rex A. Sinquefield). All rights reserved.

Cumulative Returns U.S. 1925-2009

Risk Premium

- Risk Premium is the added return (over and above the risk-free rate) resulting from bearing risk
- Stock markets offer long-run excess of stock return over the risk-free return:
 - Average excess return from large company common stocks: 8.5% = 12.3% – 3.8%
 - Average excess return from small company common stocks: 13.6% = 17.4% – 3.8%
 - Average excess return from long-term corporate bonds:
 2.4% = 6.2% 3.8%
- Given the superior performance of stocks over such long period, why does anyone hold bonds?

Risk-Return Trade-off

SEG

- **Risk** is uncertainty about the future
 - Stocks do better on average, but investors know that in any year, stocks may do much worse
- Summarize risk through standard deviation, σ, a measure of dispersion

	Standard
1926-2005	Deviation
Stocks	20.2%
T-bills	3.1%
Long-term Government Bonds	9.2%
Corporate Bonds	8.5%
Inflation	4.3%

Source: Ibbotson, CRSP

Normal Distribution

Suppose stock returns are normally distributed

What about the Future Returns and Risk?

- No one knows the future, but we form expectations about it.
- We will want a measure of Expected Return, based on probability distributions:

Expected Return = $E R = \sum_{R} P_{R} \times R$

 We will want a measure of Expected Risk, such as the Variance or the Standard Deviation of Expected Returns:

$$Var(R) = E\left[\begin{array}{ccc} R & -E & R \end{array}^{2}\right] = \sum_{R} P_{R} \times R - E & R \end{array}^{2}$$
$$SD(R) = \sqrt{Var(R)}$$

• In the end, we typically use past (historical) returns to predict the future. We'll see more when presenting portfolios.