
Lecture 6
Varian, Chs. 9, 10, and 17.1 to 17.5; MWG, Chs. 3.I and 4.B

1 Summary of Lectures 1, 2, and 3: Production
theory

2 Summary of Lectures 4 and 5: Consumption
theory

2.1 Preference orders

2.2 The utility function

2.3 The utility maximization problem

2.4 The expenditure minimization problem

2.5 Duality in consumption

3 Choice

3.1 Comparative statics of consumer behavior

3.2 Income and substitution e¤ects

3.2.1 The Slutsky equation

Remark 1 Integrability: if a set of demand functions give rise to symmetric
and negative semi-de�nite matrix of substitution terms then we can solve for
the indirect utility function and the expenditure function. (c.f. the condition
determining whether we can go from conditional demand functions to the tech-
nology).

3.3 Revealed preference

4 Consumers�surplus

4.1 Measuring welfare e¤ects

4.1.1 The compensating variation (CV)

In general a policy change may a¤ect both income and prices. Given that a
change takes place what income compensation is required to leave the consumer
as well of as before the change.

CV = m1 � e(p1; u0) = �(p1; p1;m1)� �(p1; p1;m0)
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where �(q; p;m) = e(q; v(p;m)). Suppose only one price changes and income
remains constant, m0 = m1. Speci�cally, let p1 fall from p01 to p

1
1. In this case,

e(p0; u0)� e(p1; u0) =
Z p01

p11

@e

@p1
dp1 =

Z p01

p11

h1(p; u
0)dp1:

4.1.2 The equivalent variation (EV)

Suppose prices and income remain the same. What income change would be
necessary to give the consumer the same utility as he would have obtained if
the price change from p01 to p

1
1 had taken place?

By the same argument as above we can obtain:

EV = e(p0; u1)� e(p1; u1) =
Z p01

p11

h1(p; u
1)dp1:

Note that the consumer surplus, CS, obeys EV > CS > CV.

4.1.3 Quasi-linear utility and no income e¤ects

No income e¤ects means that the consumption of the good depends only on
the relative prices and not on income (provided that the income su¢ ces to
�nance the desired quantity). Consequently the Hicksian demand curves and
the Marshallian demand curve coincide and CV must equal EV.

5 Demand

5.1 Endowments in the budget constraint

The UMP becomes:

Max
x

u(x)

s:t: p � x = p � !

to obtain a demand function x(p; p � !).
The Slutsky equation becomes:

@xj(p; p � !)
@pi

=
@hj(p; u)

@pi
� @xj(p; p � !)

@m
(!i � xi):

Now the income e¤ect depends on the net demand for good i.
In the case of a normal good, when the price goes up, both substitution

and income e¤ect push towards a reduced consumption of the good. But if the
consumer is a net supplier of this good, his income increases and the additional
endowment income e¤ect may actually increase the consumption of the good.
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5.2 Homothetic utility

In utility theory, a homothetic utility function � a homogenous of degree 1
utility function.
If preferences are homothetic, a proportional increase in the consumption

of all goods then yields a proportional increase in utility. For given prices the
same consumption mix is optimal regardless of income. Hence, the expenditure
function can be expressed as e(p; u) = e(p)u implying that v(p;m) = v(p)m
and (by Roy�s identity) xi(p;m) = xi(p)m, i.e., the demand functions are linear
functions of income.

5.3 Aggregation across consumers

Let xki (p;mi) denote the demand function of consumer i for good k and assume
that there are n consumers. The aggregate demand function isX(p;m1;:::;mn) =
nP
i=1

xi(p;mi) and the aggregate demand for good j is Xj(p;m), where m is the

vector of incomes.
If individual demands are continuous, the agrregate demand function is con-

tinuous - continuity of the individual demands is su¢ cient but not necessary.
Aggregate demand is a function of price and aggregate income if agents have

Gorman-type utility functions: vi(p;mi) = ai(p)+b(p)mi - Gorman-type utility
functions are su¢ cient and necessary conditions for the representative consumer
model to hold.
The crucial feature is that changes in income a¤ects all consumers�behavior

the same way. Therefore demand only depends on the aggregate income and
not on how it is distributed among individuals. Homothetic utility functions
(v(p;m) = v(p)m) and quasilinear utility functions (v(p;m) = v(p) +m) have
this property.

5.4 Strictly convex preferences ensure continuity...

6 Exchange

6.1 Walrasian equilibrium

The solution to a consumer�s utility maximization problem

Max
xi

u(xi)

s:t: p � xi = p � !i

when taking prices as given is the consumer�s demand function. In equilibrium
aggregate demand cannot exceed endowments; thus, a Walrasian equilibrium is
a pair (p�; x�) such that: P

i

xi(p
�; p� � !i) �

P
i

!i:
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If all goods are "desirable", demand equals suppply in all markets.
The aggregate excess demand function is:

z(p) =
P
i

[xi(p; p � !i)� !i]:

6.2 Edgeworth box (2 consumer case)

6.3 Existence of Walrasian equilibria

z(p) satis�es:

1. homogeneity of degree zero in prices

2. continuity (when all individual demand functions are continuous)

3. Walra�s law: for any p, p � z(p) � 0.

Proof. Since all consumers are on their budget constraints in optimum the value
of their endowments must equal the value of the demanded bundles. Aggregation
across consumers preserves this property.

Proposition 2 If we know that all markets but market k clears and pk > 0,
then market k must also clear.

Proposition 3 If a good is in excess supply in a Walrasian equilibrium, i.e.,
zj(p

�) < 0, it must be a free good: p�j = 0.

Proof. If not then pj � zj(p) < 0 implying that p � z(p) < 0 (since the excess
demand for each good in a Walrasian equilibrium is non-positive and prices are
positive). This contradicts Walras�law.

If we assume that all good are desirable so that pi = 0 implies zi(p) > 0,
then the excess demand must be equal to zero for each good.

Proposition 4 If all goods are desirable and p� is a Walrasian equilibrium,
then z�(p) = 0.

De�nition 5 Walrasian equilibrium: (x�; p�) is a Walrasian equilibrium i¤ (i)
the allocation is feasible

P
i

x�i =
P
i

!i and (ii) each agent makes an optimal

choice: if x0i is preferred to xi, then px
0
i > p!i.

When all goods are desirable a Walrasian equilibrium can be de�ned as a
(x�; p�) such that sum of the normalized prices equals 1. All possible prices can
now be represented as points on a unit simplex (with a dimension equal to the
number of prices minus one). By construction it is a compact set.

Is there a price vector p� such that excess demand is zero?
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Proposition 6 If z : Sk�1 ! <k is a continuous function that satis�es Walras�
law, pz(p) � 0, then there exists some p� such that z(p�) � 0.

For any given p the consumers�choices result in some z(p). If there is excess
demand (supply) for a good this would tend to increase (reduce) its price. This
describes a relationship between prices and new adjusted prices. We can use
this reasoning to prove the existence of an equilibrium. Speci�cally, if the price
adjustment is a continuous function, say g(p), from the price simplex to itself
Brouwer�s �xed point theorem ensures that there exists a p such that g(p) = p.
We can construct g so that this can only happen when excess demand is

zero. Let

gi(p) =
pi +max(0; zi(p))

1 +
kP
j=1

max(0; zj(p))

for i = 1; :::; k.

which is continuous in prices and maps all price vectors back into the price
simplex. Consequently, there exists a p such that z(p) = 0.
The key requirement for existence of a Walrasian equilibrium is continuity

of the aggregate excess demand function. This is the case if
consumer preferences are convex or, if there are in�nitely many consumers

so that each consumer is small compared with the size of the
market. The assumption about competitive behavior is more plausible if

there are many small consumers. Thus, when competitive behavior
seems reasonable so does equilibrium analysis.
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