PRIMAL (DUAL)	DUAL (PRIMAL)	
Maximise	Minimise	
Max Z (Max W)	Min W (Min Z)	
1 constraint	1 decision variable	
<i>i</i> -th "≤" constraint	$y_i \ge 0$ $(x_i \ge 0)$	
<i>i</i> -th "≥" constraint	$y_i \le 0 (x_i \le 0)$	
<i>i</i> -th "=" constraint	y_i free (x_i free)	
Right-hand-sides	Objective function's coefficients	
$b_i i = 1,,m (c_j j = 1,,n)$	$W = b_1 y_1 + \dots + b_m y_m$ ($Z = c_1 x_1 + \dots + c_n x_n$)	
Objective function's coefficients	Right-hand- sides	
$Z = c_1 x_1 + \dots + c_n x_n (W = b_1 y_1 + \dots + b_m y_m)$	c_{j} $j = 1,,n$ $(b_{i} \ i = 1,,m)$	
1 decision variable	1 constraint	
$x_j \ge 0 (y_j \ge 0)$	<i>j</i> -th "≥" constraint	
$x_j \leq 0 (y_j \leq 0)$	<i>j</i> -th "≤"constraint	
x_j free (y_j free)	<i>j</i> -th "= "constraint	
Technical coefficients' matrix	Technical coefficients' matrix	
$A(A^T)$	A^T (A)	

Correspondence between a pair of dual problems

The **i-th shadow price** (y_i) represents the ratio of change in the objective function originated by an increase of the *i*-th right-hand-side.

Relation between the variables of a pair of dual problems:

Number of variables	Primal	Dual
п	Decision variables	Slack/surplus variables
т	Slack/surplus variables	Decision variables

Duality Properties

Property 1: **Symmetry** - The dual of the dual is the primal.

Property 2: Week Duality theorem

If $\mathbf{x}' = (x'_1, x'_2, ..., x'_n)$ is a feasible solution (FS) for the primal maximisation problem and $\mathbf{y}' = (y'_1, ..., y'_m)$ is a FS for the dual, then

$$Z' = c_1 x'_1 + c_2 x'_2 + \ldots + c_n x'_n \leq b_1 y'_1 + b_2 y'_2 + \ldots + b_m y'_m = W'.$$

Property 3: If $\mathbf{x}^* = (x_1^*, \dots, x_n^*)$ is a FS for the primal, $\mathbf{y}^* = (y_1^*, \dots, y_m^*)$ is a FS for the dual and

$$Z^* = c_1 x_1^* + c_2 x_2^* + \dots + c_n x_n^* = b_1 y_2^* + b_2 y_2^* + \dots + b_m y_m^* = W^*$$

then, $\mathbf{x}^* \in \mathbf{y}^*$ are optimal solutions for the problems.

Property 4: Strong Duality theorem

Given a pair of dual problems, if one of them has optimum then the other also has optimum and both optimal values are equal, i.e., $Z^* = W^*$.

- **Property 5**: Given a pair of dual problems, if one of them has feasible solutions and unbounded objective function (so no optimal solution), then the other has no feasible solutions.
- **Property 6**: Given a pair of dual problems, if one of them has no feasible solutions, then the other has either no feasible solutions or an unbounded objective function.

Table: Primal/Dual solution

PRIMAL DUAL	with FS	without FS
with FS	Both problems have OS and $z^* = w^*$	Primal without FS Dual unbounded
without FS	Primal unbounded Dual without FS	Primal without FS Dual without FS

Property 7: The shadow prices are the optimal values for the decision variables of the dual.

Complementary relationships between a pair of dual solutions:

Number of variables	Primal variable	Dual variable
m	basic	non basic
$\ell - m$	non basic	basic