Instituto Superior de Economia e Gestāo

Correspondence between a pair of dual problems

PRIMAL (DUAL)	\square DUAL (PRIMAL)
Maximise Max Z (Max W)	Minimise $\operatorname{Min} W(\operatorname{Min} \mathrm{Z})$
1 constraint	1 decision variable
i-th " \leq " constraint	$y_{i} \geq 0 \quad\left(x_{i} \geq 0\right)$
i-th " \geq " constraint	$y_{i} \leq 0 \quad\left(x_{i} \leq 0\right)$
i-th " = " constraint	y_{i} free (x_{i} free)
Right-hand-sides $b_{i} \quad i=1, \ldots, m \quad\left(c_{j} j=1, \ldots, n\right)$	Objective function's coefficients $W=b_{1} y_{l}+\ldots+b_{m} y_{m} \quad\left(Z=c_{1} x_{l}+\ldots+c_{n} x_{n}\right)$
Objective function's coefficients $Z=c_{1} x_{1}+\ldots+c_{n} x_{n} \quad\left(W=b_{1} y_{l}+\ldots+b_{m} y_{m}\right)$	Right-hand- sides $c_{j} \quad j=1, \ldots, n \quad\left(b_{i} \quad i=1, \ldots, m\right)$
1 decision variable	1 constraint
$x_{j} \geq 0 \quad\left(y_{j} \geq 0\right)$	j-th " \geq " constraint
$x_{j} \leq 0 \quad\left(y_{j} \leq 0\right)$	j-th " \leq "constraint
x_{j} free (y_{j} free)	j-th " = "constraint
Technical coefficients' matrix $A\left(A^{T}\right)$	Technical coefficients' matrix $A^{T}(A)$

The i-th shadow price (y_{i}) represents the ratio of change in the objective function originated by an increase of the i-th right-hand-side.

Relation between the variables of a pair of dual problems:

Number of variables	Primal	Dual
n	Decision variables	Slack/surplus variables
m	Slack/surplus variables	Decision variables

Duality Properties

Property 1: Symmetry - The dual of the dual is the primal.

Property 2: Week Duality theorem

If $\mathbf{x}^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ is a feasible solution (FS) for the primal maximisation problem and $\mathbf{y}^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right)$ is a FS for the dual, then

$$
Z^{\prime}=c_{1} x_{1}^{\prime}+c_{2} x_{2}^{\prime}+\ldots+c_{n} x_{n}^{\prime} \leq b_{1} y_{1}^{\prime}+b_{2} y_{2}^{\prime}+\ldots+b_{m} y_{m}^{\prime}=W^{\prime} .
$$

Property 3: If $\mathbf{x}^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ is a FS for the primal, $\mathbf{y}^{*}=\left(y_{1}^{*}, \ldots, y_{m}^{*}\right)$ is a FS for the dual and

$$
Z^{*}=c_{1} x_{1}^{*}+c_{2} x_{2}^{*}+\ldots+c_{n} x_{n}^{*}=b_{1} y_{2}^{*}+b_{2} y_{2}^{*}+\ldots+b_{m} y_{m}^{*}=W^{*}
$$

then, $\mathbf{x}^{*} \mathrm{e} \mathbf{y}$ * are optimal solutions for the problems.

Property 4: Strong Duality theorem

Given a pair of dual problems, if one of them has optimum then the other also has optimum and both optimal values are equal, i.e., $Z^{*}=W^{*}$.

Property 5: Given a pair of dual problems, if one of them has feasible solutions and unbounded objective function (so no optimal solution), then the other has no feasible solutions.

Property 6: Given a pair of dual problems, if one of them has no feasible solutions, then the other has either no feasible solutions or an unbounded objective function.

Table: Primal/Dual solution

DUAL	with FS	without FS
with FS	Both problems have OS and $z^{*}=w^{*}$	Primal without FS Dual unbounded
without FS	Primal unbounded Dual without FS	Primal without FS Dual without FS

Property 7: The shadow prices are the optimal values for the decision variables of the dual.

Complementary relationships between a pair of dual solutions:

Number of variables	Primal variable	Dual variable
m	basic	non basic
$\ell-m$	non basic	basic

