

Transportation Problem (TP)

Aim

To identify, formulate and solve transportation problems within the Solver/Excel.

Definition and Properties

The **Transportation Problem (TP)** requires the distribution of any homogeneous commodity from any group of *m* distribution centres – **the origins or sources** – to any group of *n* receiving centres – **the destinations or sinks** –, in such a way as to minimize the total distribution cost.

Parameters of the Model:

m – number of sources (where the commodity exists);

 s_i (*i*=1,...,*m*) – *supply* (units supplied) of the commodity at *i*;

n – number of destinations (where the commodity is requested);

 d_j (j=1,...,n) – *demand* (units of demand) of the commodity at j;

 c_{ij} (*i*=1,...,*m*; *j*=1,...,*n*) – unitary transportation cost from origin *i* to destination *j*.

Let us assume that the total supply equals the total demand, i.e. the TP is **balanced**:

$$\sum_{i=1}^{m} s_i = \sum_{j=1}^{n} d_j$$

Considering the amount to ship from the origin i (i=1,...,m) to the destination j (j=1,...,n) defined by x_{ij} , a linear programming formulation follows:

$$Min \ Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

subject to:
$$\begin{cases} \sum_{j=1}^{n} x_{ij} = s_i & i = 1, \dots, m \\ \sum_{j=1}^{m} x_{ij} = d_j & j = 1, \dots, n \\ x_{ij} \ge 0 & i = 1, \dots, m; \ j = 1, \dots, n \end{cases}$$

The first set of constraints (i=1,...,m) impose that the commodity send from each origin *i* to all the destinations equals the supply at the source (s_i) . A condition for each destination is written with the second set (j=1,...,n). Here it is guaranteed that the units of the commodity that arrive to each destination, from all the sources, equal its demand (d_j) . The third set of constraints establishes the set of valid values for the variables.

Transportation Properties

Property 1: A TP has at least a feasible solution.

Corollary: A TP has an optimal solution.

Property 2: A TP with integer supplies and demands has at least one integer optimal solution.

Resolution of the TP with the Solver/Excel

Prototype example – $\mathcal{P}\&\mathcal{T}$ – the problem must be defined in an Excel spreadsheet using two tables. The first table stands for the data: unitary costs (C8:F10), supplies (G8:G10) and the demands (C11:F11). At the second table one must write the problem solution (C18:F20), initially null, and all the formulas needed to establish the restrictions (G18:G20 for the sources, and C21:F21 for the destinations) and the objective function (G21). The relationship between the total supply and the total demand is written within formulas at cells H10 and F12.

	Α	В	С	D	E	F	G	H	1	
3				Data fo	or P&T					
4			unita	ry transpo	rtation co	sts (\$)				
6				Wareł	nuise					
7			A1	A2	A3	A4	Supply			-
8	~	F1 -	464	513	654	867	75	Total		Н
9	Plant	F2 -	352	416	690	791	125	Supply	_10 =SU	M(G8:0
10	٩	F3 -	995	682	388	685	100	300		
11		Demand	80	65	70	85				
12				Total de	mand =	300		F		
14				solution			12	=SUM(C11	1:F11)	
16 Warehouse										
17			A1	A2	A3	A4	Total		Supply	
18	t	F1 -	0	0	0	0	0	=	75	
19	Plant	F2 -	0	0	0	0	0	=	125	
20	۵.	F3 -	0	0	0	0	0	=	100	
21		Total	0	0	0	0	0	= cost		
22			=	=	=	=		-	-	
23		Demand	80	65	70	85			G	
21 =SUMPRODUCT(C8:F10;C18:F2										
Re	estrictio	ons for Destin	ations				Rest	rictions fo	or Source	s
	С	D		Ξ	F		-	G	0.000.00	<u> </u>
21 =SUM(C18:C20) =SUM(D18:D20) =SUM(E18:E20) =SUM(F18:F20) = 17 Total										
						18 =	=SUM(C18:	:F18)		
19 =SUM(C19:F19)										
						20 =	=SUM(C20:	(F20)		

Solver – Indentify the target cell (G21), the objective ("Minimize" or "Maximize") and the cells for the values of the variables (C18:F20). Definition of the functional constraints ("Add") of the model (G18:G20=I18:I20 and C21:F21=C23:F23). The problem solution may then be found ("Solve").

Change	E N	Solver Parameters		
Subject to the Constraints:		Equal To: O Max O Min O Value of: 0		
\$G\$18:\$G\$20 = \$I\$18:\$I\$20 Change Change Reset All Change		Subject to the Constraints:	Options	
		\$G\$18:\$G\$20 = \$I\$18:\$I\$20	Reset All	

Solution – Interpretation of the solution, using all the information provided by the *Excel* sheet or by the answer report.

		В	С	D	E	F	G	Н	1		
	14			solution							
16 Warehouse											
	17 A1 A2 A3 A4 Total Supp										
	18	F1 -	0	20	0	55	75	=	75		
	19	F2 -	80	45	0	0	125	=	125		
	20	F3 -	0	0	70	30	100	=	100		
	21 Total 80 65 70 85 152535 = cost										
	22 = = = =										
23 Demand 80 65 70 85											
4	A	B C)	E						
	Microsoft Excel 12.0 Answer Report										
	Target Cell (Min)										
-											

2	rarget Cell (Milli)								
4	Cell	Name	Original Value	Final Value					
5	\$G\$21	Total Total	0	152535					
6									
7	Adjustab	le Cells							
8	Cell	Name	Original Value	Final Value					
9	\$C\$18	F1 - A1	0	0					
10	\$D\$18	F1 - A2	0	20					
11	\$E\$18	F1 - A3	0	0					
12	\$F\$18	F1 - A4	0	55					
13	\$C\$19	F2 - A1	0	80					
14	\$D\$19	F2 - A2	0	45					
15	\$E\$19	F2 - A3	0	0					
16	\$F\$19	F2 - A4	0	0					
17	\$C\$20	F3 - A1	0	0					
18	\$D\$20	F3 - A2	0	0					
19		F3 - A3	0	70					
20	\$F\$20	F3 - A4	0	30					

1

Answer: From F1 send 20 trucks to A2 and 55 to A4; send 80 trucks from F2 to A1 and 45 to A2; from F3 send 70 to A3 and 30 to A4. The total cost for this transportation plan is 152'535\$.

Variants of the Transportation Problem

(1) Total Supply > Total Demand

The supply of each origin represents a maximum. Then, constraints for the origins should be of type " \leq ".

(2) Total Supply < Total Demand

The demand in each destination represents a maximum. Then, constraints for the destinations should be of type " \leq ".

(3) A destination with maximum and minimum demand

If any value between the minimum and the maximum may be shipped, the destination must have 2 constraints: one " \leq " and another " \geq ".

(4) An origin with maximum and minimum supply – similar to (3).

(5) Unfeasible linking

If the shipment between a source *i* and a destination *j* is not feasible, the variable must be set equal to zero, i.e., $x_{ij} = 0$.

Assignment Problem (AP)

Aim

To identify, formulate and solve assignment problems within the Solver/Excel.

Assignment Problem (AP) – how to assign n people to n tasks, minimizing the total assignment cost.

Parameters of the Model:

n – number of assignees and tasks;

 c_{ij} (*i*=1,...,*m*; *j*=1,...,*n*) – cost of assign person *i* to job *j*.

Defining $x_{ij} = \begin{cases} 1 & \text{if assignee } i \text{ performstask } j \\ 0 & \text{if not} \end{cases}$ with i, j = 1, ..., n, the linear programming model for the AP is:

$$Min \ Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
Minimization of the total assignment cost
s.a:
$$\begin{cases} \sum_{i=1}^{n} x_{ij} = 1 & i = 1, ..., n \\ \sum_{j=1}^{m} x_{ij} = 1 & j = 1, ..., n \\ \sum_{i=1}^{m} x_{ij} = 1 & j = 1, ..., n \end{cases}$$
each task is performed by exactly one assignee
 $x_{ij} \in \{0, 1\}$ $i, j = 1, ..., n$ binary variables.

Binary variables conditions may be replaced by non-negativity, $x_{ij} \ge 0$ (i, j = 1,...,n), and the model becomes a special type of a linear programming transportation problem. The AP is then a special case of a TP, with unitary supplies and demands, and the same number of sources and destinations.

An AP may be solved by the *Solver* software, using the process explained for the TP. Similarly, the TP variants may also be considered for the AP.