Network Optimisation

Aim

To identify, formulate (using network models and LP models) and solve minimum cost flow and shortest path problems within the Solver/Excel. Identify shortest spanning tree problems, and solve them by the Prim algorithm.

Definition and Properties

A graph or network is an ordered pair $G=(V, A)$ where:
$V=\{1,2, \ldots, n\}$ is the set of nodes or vertices;
$A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is the set of lines linking two nodes (a correspondence from V to V);

$$
a_{k}=(i, j), i, j \in V
$$

The directed elements of A are named arcs, and the non directed elements of A are edges (or links or undirected arcs).

An arc/edge $(i, j) \in A$ is adjacent to i and j.
$G=(V, A)$ is a directed network if all the elements of A are arcs.
$G=(V, A)$ is an undirected network if all the elements of A are edges.
If A has both arcs and edges it is a mixed network.
If $(i, j) \in A$ is an arc:
i is the initial node of $(i, j) ; j$ is the final node of (i, j);
j is the successor of $i ; i$ is predecessor of j.
If $(i, j) \in A$ is an edge:
i and j are the terminal nodes or extremities of $(i, j) ; i$ and j are adjacent nodes.
An oriented path from $x \in V$ to $y \in V$ is a sequence of distinct arcs, from x to y, represented by $C(x, y)=\left\{\left(x, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{k-1}, x_{k}\right),\left(x_{k}, y\right)\right\}$, where the final node of an arc is the initial node of the following one; and with only different nodes, with the possible exception of x and y. If $x=y$, the path is a circuit.

If the direction of the links is not considered the concepts of undirected path (or chain) and of cycle (or undirected circuit) arise.

A connected network is a network such that any two nodes are linked by at least one chain.
A tree is a connected network without cycles. Given a network, $G=(V, A)$, a tree with the same set of nodes, V, and arcs/edges belonging to A, is a spanning tree of G.

The parameters defined, to each node and link, are problem dependent; for example, costs, distances, times, capacities; supplies, demands, weights, may be considered.

In network model three types of nodes may be considered:

- source (or a supply node, or an origin) is a node that is a net generator of flow, i.e., the flow out of the node exceeds the flow into it;
- destination (or a demand node, or a sink) is a node that is a net absorber of flow, i.e., the flow into the node exceeds the flow out of it;
- transhipment node (or an intermediate node) satisfies conservation of flow, so flow in equals flow out.

Minimum Cost Flow Problem (MCFP)

Given a directed and connected network, with at least a source and at least a sink, determine how to send the available supply through the network, to satisfy the demand, respecting arc capacities, at minimum cost.

Problem Data:

$G=(V, A)$ directed and connected network;
For each node, $i \in V, b_{i}$ is its net flow, and:
if $b_{i}>0, i$ is a source with supply equal to b_{i};
if $b_{i}<0, i$ is a destination with demand $-b_{i}$;
se $b_{i}=0, i$ is a transhipment node;
For each link $(i, j) \in A$:
$c_{i j}$ is the cost for unit of flow through arc (i, j);
$u_{i j}>0$ is the arc capacity, i.e., the maximum value of flow that may traverse it.
Hypothesis: Arc capacities are compatible with supplies and demands; and the problem is balanced, i.e., the total supply equal the total demand: $\sum_{i \in V} b_{i}=0$.

To formulate the MCFP as a network model, the network must be identified, $G=(V, A)$, as well as all the problem parameters $\left(c_{i j}, u_{i j}, b_{i}\right)$ and the problem to solve (identifying the sources and the sink nodes).

Defining $x_{i j}$ as the amount of flow through arc $(i, j) \in A$, the formulation of the MCFP with an LP model is:

$$
\begin{aligned}
\operatorname{Min} Z= & \sum_{(i, j) \in A} c_{i j} x_{i j} \\
& \text { subject to: }\left\{\begin{array}{l}
\sum_{j:(i, j) \in A} x_{i j}-\sum_{k:(k, i) \in A} x_{k i}=b_{i} \quad \forall i \in V \\
0 \leq x_{i j} \leq u_{i j} \quad \forall(i, j) \in A
\end{array}\right.
\end{aligned} .
$$

In this model, the first summation represents the total flow out of node i, whereas the second summation represents the total flow into node i. So the difference is the net flow generated at this node $\left(b_{i}\right)$. A set of restrictions is needed to guarantee that the flow on each arc does not exceed its capacity.

Properties of the MCFP

Property 1: The MCFP has, at least, a feasible solution.
Corollary: The MCFP has an optimal solution
Property 2: A MCFP where every b_{i} and $u_{i j}$ are integer values, has, at least, one optimal solution with all variables assuming integer values.

Resolution of the MCFP with the Solver/Excel

Prototype example 1 - Distribution Vnfimited Co. ($\mathrm{HL}^{1}, \& 3.4$, pp. 58) - write down the problem to solve in an Excel sheet. Consider two tables: i) one with the network data for arcs: arc identifiers (B5-C11); flow values (D5:D11), initially equal to zero; arc capacities (F5:F11); unit costs (G5:G11); ii) a second table with all the data for the nodes: node identifiers (I5:I9); formulas representing the difference between the flow out of each node and the flow into that node (J5:J9); and the net flow at each node (L5:L9). The objective function formula must also be written (D13).

	A B	c	D	E		F		G	H	1	J	K	L
1						data							
2 Distribution Unlimited $\mathrm{co}^{\text {a }}$											-		
3					\checkmark	,		Unitary			Flow		Supply/
4	From	To	Flow			Capacity		Cost		Node	"in-out"		Demand
5	F1	W1	0	$\stackrel{ }{<}$			\$	900		F1	0	$=$	50
6	F1	DC	0	<			\$	400		F2	0	$=$	40
7	F1	F2	0	<		10	\$	200		DC	0	$=$	0
8	F2	DC	0	<			\$	300		W1	0	$=$	-30
9	DC	W2	0	<		80	\$	100		W2	0	$=$	-60
10	W1	W2	0	<				300				Total	0
11	W2	W1	0	<				200					
12													
		Total Cost	\$										
11						I		J					
	1 D ${ }^{\text {d }}$				5	F1							
13 =SUMPRODUCT(D5:D11;G5:G11)					6	F2							
					7	D							
					8	W							
					9	W							

[^0]Solver - Identify the target cell (D13), the objective ("Minimize" or "Maximize") and the cells for the values of the variables (D5:D11). Define the functional constraints ("Add") of the model (J5:J9=L5:L9 and D5:D11<=F5:F11). The problem solution may then be found ("Solve").

Solution - Interpretation of the solution, using all the information provided by the Excel sheet or by the answer report.

The solution may also be presented using the network, where flows are depicted by:

Variants of the MCFP

(1) Total Supply $>$ Total Demand: $\sum_{i \in V} b_{i}>0$

The net flow at the sources is a maximum value that must be respected, and the constraints at the sources should be of type " \leq ".
(2) Total Supply < Total Demand: $\sum_{i \in V} b_{i}<0$

The net flow at the sinks is a maximum value that must be respected, and the constraints at the sink nodes should be of type " \geq ".

Shortest-Path Problem (SPP)

Given a directed and connected network, with only one origin and only one destination node, determine a path with the minimum total distance from the origin to the destination.

Problem Data:

$G=(V, A)$ directed network; $s \in V$ origin; $t \in V$ destination
$c_{i j}>0$ distance (cost, time, length) of arc $(i, j) \in A$.

To formulate the SPP within a network model, the network must be identified, $G=(V, A)$, as well as the origin, the destination and all the distances $\left(c_{i j}\right)$ and the problem to solve.
Defining $x_{i j}=\left\{\begin{array}{ll}1 & \text { if }(i, j) \text { is in the path } \\ 0 & \text { otherwise }\end{array} \forall(i, j) \in A\right.$, the LP model associated to the SPP is:

$$
\begin{aligned}
\operatorname{Min} Z & =\sum_{(i, j) \in A} c_{i j} x_{i j} \\
& \text { subject to: }\left\{\begin{array}{l}
\sum_{j:(s, j) \in A} x_{s j}=1 \\
\sum_{i:(i, t) \in A} x_{i t}=1 \\
\sum_{j:(i, j) \in A} x_{i j}-\sum_{k:(k, i) \in A} x_{k i}=0 \quad \forall i \in V \backslash\{s, t\} \\
x_{i j} \in\{0,1\} \quad \forall(i, j) \in A
\end{array}\right.
\end{aligned}
$$

In this formulation, the first two constraints are needed to ensure that the path starts at the origin, s, and ends at the destination, t. The third set of restrictions defines the remaining nodes as nodes that may be used to form the path.
It may be proved that the feasible range for variables values may be replaced by nonnegative constraints $x_{i j} \geq 0$. Additionally, if all the arcs in the network are assumed to have capacity one, the SPP is a particular MCFP with only one source with supply one, and one sink, with demand one.

Resolution of the SPP with the Solver/Excel

Prototype example $2-S E E R V \mathcal{A} \mathcal{A} \mathscr{P} \mathcal{A R K}, 1^{\text {st }}$ - write down the problem to solve in an Excel sheet. As in the MCFP, consider two tables: i) one with the network data for arcs: arc identifiers (A4:B18); solution (C4:C18), initially equal to zero; distances (D4:D18); ii) a second table with all the data for the nodes: node identifiers ($\mathrm{F} 4: \mathrm{F} 10$); formulas representing the difference between the flow out of each node and the flow into that node (G4:G10); and the value of one for the origin node (I4); -1 for the destination node (I10); and zero for remaining nodes (I5:I9). The objective function formula must also be written (D20).

,	A	B	C	D	E	F	G	H	I	
1	Seervada Park			data						
2							-			
3	From	To	Solution	Distance		Node	Total		Supply/Demand	
4	0	A	0	2		0	0	$=$	1	
5	0	B	0	5		A	0	$=$	0	
6	0	C	0	4		B	0	$=$	0	
7	A	B	0	2		C	0	$=$	0	
8	A	D	0	7		D	0	$=$	0	
9	B	A	0	2		E	0	=	0	
10	B	C	0	1		T	0	$=$	-1	
11	B	D	0	4						
12	B	E	0	3						
13	C	B	0	1	4 G					
14	C	E	0	4	$4=$ SUMIF(\$AS4:SA\$18;F4;SC\$4:\$C\$18)-SUMIF(\$BS\$4:\$C\$18;F4;\$C\$4:\$C\$18)					
15	D	E	0	1						
16	D	T	0	5	$5=$ SUMIF(\$AS4:SA\$18;F5;\$C\$4:SC\$18)-SUMIF(\$B\$4:SC\$18;F5;\$C\$4:\$C\$18)					
17	E	D	0	1	$6=$ SUMIF(\$AS4:SA\$18;F6;\$C\$4:\$C\$18)-SUMIF(\$BS\$4:\$C\$18;F6;\$C\$4:\$C\$18)					
18	E	T	0	7	7 =SUMIF(\$AS4:\$A\$18;F7;\$C\$4:\$C\$18)-SUMIF(\$BS4:\$C\$18;F7;\$C\$4:\$C\$18)					
19					8 $=$ =SUMIF(\$A\$4:\$A\$18;F8;\$CS4:SC\$18)-SUMIF(\$BS4:SC\$18;F8;\$C\$4:\$C\$18)					
20			Distance	0						
			D		$10=$ SUMIF(\$AS4:\$A\$18;F10;\$C\$4:SC\$18)-SUMIF(\$B\$4:\$C\$18;F10;SC\$4:SC\$18)					

Solver - Identify the target cell (D20), the objective ("Minimize" or "Maximize") and the cells for the values of the variables ($\mathrm{C} 4: \mathrm{C} 18$). Define the functional constraints ("Add") of the model (G4:G10=I4:I10).

Solution - Interpretation of the solution, using all the information provided by the Excel sheet or by the answer report.

4	A	B	C	D	E	F	G	H	1
1	Seervad	Par							
2									
3	From	To	Solution	Distance		Node	Total		Supply/Demand
4	0	A	1	2		O	1	$=$	1
5	0	B	0	5		A	0	$=$	0
6	0	C	0	4		B	0	=	0
7	A	B	1	2		C	0	=	0
8	A	D	0	7		D	0	=	0
9	B	A	0	2		E	0	=	0
10	B	C	0	1		T	-1	=	-1
11	B	D	1	4					
12	B	E	0	3					
13	C	B	0	1					
14	C	E	0	4		Answer: The shortest path from O to T is (O, A, B, D, T), and the total distance of this path is 13 .			
15	D	E	0	1					
16	D	T	1	5					
17	E	D	0	1					
18	E	T	0	7					
19									
20		Total Distance		13					

Minimum Spanning Tree Problem (MSTP)

Given an undirected and connected network, with lengths associated to the network edges, choose the set of edges that represent a spanning tree (a tree including all network nodes) with minimum total length.

Having an associated linear programming model with many constraints to guarantee the connectivity of the solution, this problem is only modeled within a network context. The solution may be easily found by Prim's algorithm.

Problem Data:

$G=(V, A)$ undirected network.
$c_{i j}>0$ distance (cost, time, length) of edge $(i, j) \in A$.

To formulate the MSTP within a network model, the network must be identified, $G=(V, A)$, as well as all the distances $\left(c_{i j}\right)$ and the problem to solve.

Property 3: A spanning tree of a network with n nodes has n nodes and $n-1$ edges (no cycles).
Prim Algorithm de Prim (1957) - determines the minimum spanning tree of G
Objective for iteration k-Select from the nodes not yet included in the tree the one that is closest to it. Link the node to the tree.
Repeat until all the nodes are in the tree.

Algorithm

0. Input: Undirected connected network with n nodes $G=(V, A)$;

Lengths of the edges;

1. Initialisation

Choose any node and the shortest edge incident on it;
Initialise the tree with the edge and respective nodes;
$k \leftarrow 2 ;$

2. Iteration k

If all the nodes are in the tree $(k=n)$ go to step 3.
otherwise, select the shortest edge linking a node outside the tree to a node
already in the tree;
Add the edge to the tree;
$k \leftarrow k+1 ;$
Go to step 2.
3. Draw the minimum spanning tree and determine the total length of the tree. Stop.

Resolution of the MSTP with the Prim Algorithm Solver/Excel

Prototype example $-\operatorname{SEER} \vee \mathcal{A} \mathcal{D} \mathcal{A} \mathcal{A} \mathcal{R K}, 2^{\text {nd }}-$ the graph has $n=7$ nodes $\Rightarrow n-1=6$ iterations.

Iteration	Node in the Tree	Closest and Adjacent Node \notin Tree	Edge Length	Edge to include in the Tree
1	O	A	2	(O, A)
2	\bigcirc	C	4	(A, B)
	A	B	$2 \leftarrow$	
3	O	C	4	(B, C)
	A	D	7	
	B	C	$1 \leftarrow$	
4	O	-		(B, E)
	A	D	7	
	B	E	$3 \leftarrow$	
	C	E	4	
5	A	D	7	(E,D)
	B	D	4	
	C	-		
	E	D	$1 \leftarrow$	
6	D	T	$5 \leftarrow$	(D, T)
	E	T	7	

Minimum Spanning Tree

The total MST length is 14

Legend: " \leftarrow " is the link with the shortest length.

[^0]: ${ }^{1}$ Hillier, Lieberman, "Introduction to Operations Research", 9 th ed., McGraw-Hill 2010.

