INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO

época normal

INVESTIGAÇÃO OPERACIONAL – 1º Semestre

(Nota: Justifique todas as respostas e apresente os cálculos efectuados)

1. Considere o seguinte output obtido da utilização do *Solver/Excel* na resolução do problema de PL formulado com objectivo de determinar as toneladas (ton.) a fabricar de três produtos (**P1**, **P2** e **P3**), maximizando a margem mensal total:

Max
$$Z = 5x_1 + 8x_2 + 10x_3$$
 margem mensal (em $u.m.$)

s.a:
$$\begin{cases} x_1 + 2x_2 + x_3 \le 2000 & \text{máquina (capacidad e em } h.m.) \\ x_1 + 0.5x_2 + 2x_3 \le 4000 & \text{armazém (capacidad e em } m^3) \\ x_1 + x_2 & \ge 300 & \text{contrato de vendas (em } ton.) \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

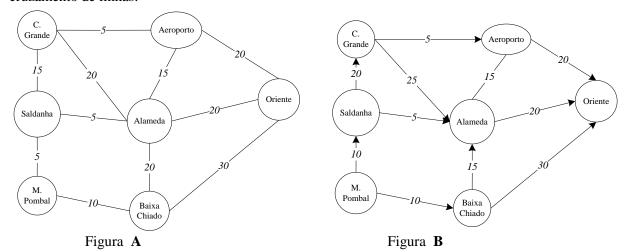
Microsoft Excel 12.0 Sensitivity Report

Adjustable Cells

2010/01/12

		Final	Reduced Objective		Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$C\$7	P1	300	0	5	5	7
\$D\$7	P2	0	-7	8	7	1E+30
\$E\$7	P3	1700	0	10	1E+30	5

Constraints


			Shadow	Constraint	Allowable	Allowable	
Cell	Name	Value	Price	R.H. Side	Increase	Decrease	
\$F\$3	máquina (h.m.)	2000	10	2000	150	1700	
\$F\$4	armazém (m³)	3700	0	4000	1E+30	300	
\$F\$5	contrato de vendas (ton.)	300	-5	300	1700	300	

- **a)** (3 valores) Escreva e interprete os resultados obtidos, fazendo referência aos valores das variáveis de decisão, das variáveis desvio e dos preços-sombra.
- **b)** (1,5 valores) Indique justificando um valor para a margem unitária de **P3** que provocaria alterações no actual plano óptimo.
- c) (2 valores) A direcção da empresa encara a hipótese de substituir a máquina actual por outra idêntica mas de maior capacidade. Justifique qual deverá ser a capacidade máxima da nova máquina se se pretender manter a actual combinação de produtos a produzir. Qual a alteração na margem total óptima se a referida substituição pela máquina de capacidade máxima originar um custo adicional de 500 u.m..
- **d)** (1,5 valores) Suponha que uma cheia obriga à redução do actual espaço de armazenagem para metade. Explique como deve alterar o modelo inicial para obter um problema que o ajude também a optar entre: i) o armazém nas condições actuais depois da cheia, e ii) o aluguer de outro armazém, por um custo de 2000 u.m., em detrimento do actual, com capacidade para 3500 m³.

(v.s.f.f.)

Duração: 2h

2. O David, estudante em Lisboa, costuma deslocar-se de metro. A parte da rede do metro por ele mais utilizada está esquematizada nas figuras **A** e **B**, em que se representam apenas as estações onde há cruzamento de linhas.

- a) (3 valores) Suponha que se pretende ligar as diferentes estações de metro através de uma rede de computadores. Para tal há que estabelecer uma rede de cabos, aproveitando a linha de metro, ligando todos os computadores das diferentes estações à rede. Considerando a rede apresentada na figura A onde sobre as ligações se representa o custo (em u.m.) entre as diferentes estações, determine a solução se pretender minimizar o custo total dos cabos a instalar.
- b) (3,5 valores) Considere que sobre as ligações da figura B se encontra o tempo (em minutos) entre as referidas estações. Pretendendo deslocar-se do M.Pombal para a estação Oriente no menor tempo possível, o David orientou as ligações de acordo com o que pensa ser mais vantajoso, deixando contudo em aberto a escolha da melhor orientação entre as duas estações Aeroporto e Alameda. Preencha a folha Excel e a respectiva janela do Solver do anexo, apresentando todos os parâmetros e fórmulas que lhe permitiriam resolver o problema do David, assumindo válidas as orientações por ele escolhidas.
- 3. Considere o seguinte quadro incompleto do simplex relativo a um problema de PL de maximização com duas variáveis de decisão e três restrições funcionais de tipo ≤:

VB	Z	x_1	x_2	x_3	x_4	<i>x</i> ₅	Termos Independentes	
Z	1	-2	0	0	1	0	10	
	0	-1	0	1	1	0	2	
	0	0	1	0	3	0	9	
	0	-2	0	0	-1	1	4	

- a) (1 valor) Escreva e classifique a solução primal do quadro.
- b) (1,5 valor) Indique as consequências na solução do quadro de aumentar o valor da variável x_4 uma unidade.
- c) (1,5 valores) Resolva o problema.
- d) (1,5 valor) Justificando, classifique a afirmação: "A região admissível do problema que deu origem ao quadro do Simplex apresentado é convexa e limitada".

	Nome:									N.º:		
	Α	В	С	D	Е	F	G	Н	1	J	K	L
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16				So	lver Para	meters						>
17				S	et Target C	_					_ [<u>S</u> olve
					qual To:	<u>M</u> ax	○Mi <u>n</u>	<u>V</u> alu	ue of:		_ [Close
					8y Changing) Cells:					_] _	
										<u>G</u> uess		
					5 <u>u</u> bject to tl	ie Constrai	rics:					Options
				-						<u>A</u> dd	_	
										⊆hange		Reset All
									~	<u>D</u> elete		Help