CAPÍTULO 2 # PADRÕES DE MUDANÇA NAS TECNOLOGIAS E NOS MERCADOS ## 2.1. A CURVA S: EVOLUÇÃO E ADOPÇÃO DE TECNOLOGIAS Key factor industries Waves of technological development, 1770-1990 Fonte: Dodgson (2000) | 1950s and 1960s
'Convergence & aggregation'
(the 4th wave?) | 1990s onwards 'Divergence & disaggregation' (the 5th wave?) Decentralized, network-based, flexible firms | | | | |--|---|--|--|--| | Dominance of large-scale,
vertically integrated firms | | | | | | Mass production systems,
dedicated machinery | Lean production systems, flexible machinery | | | | | Mass, stable, standardized
markets | Niche, rapidly changing markets, customer sovereignty | | | | | Centralized management | Decentralized management | | | | | Monopoly and oligopoly | Intense competition | | | | | Strongly directive government,
state-owned utilities and telecoms,
protectionist industry policies,
tri-partisanship between
government, unions and
employers | Non-interventionism, privatization
and deregulation, government as
regulator not provider,
free-trade policies | | | | | Strong role of trade unions: from policy-making to demarcation decisions | Declining power of unions,
employers' concern for
'employees', multiskilling | | | | | Separation of management and ownership | Share-owning incentives and management buy-outs | | | | | Full-time secure employment | Significant part-time, contractual employment | | | | | Some internationalization of
industrial production | Globalization of business | | | | | Nationalism in trade and industry policies | Pan-nationalism in trade and industry (EU, NAFTA, APEC) | | | | | Predominance of Western models of management | Integration of international best practice in models of management | | | | | Science and research undertaken
in universities and large firms | Substantial increase in scale and
scope of science and research and
diversity in provision ('the new
production of knowledge') | | | | | Technology development a
feature of individual firms;
not-invented-here syndrome;
anti-trust legislation | Technological collaboration a feature of government policies and corporate strategies | | | | | Clear distinction between
manufacturing, services, and
resources sectors | Blurred boundaries in the
knowledge economy | | | | | Competitiveness derived from tangible assets: capital, land, and labour | Competitiveness derived from intangible assets: skills, capabilities, creativity. | | | | Fonte: Dodgson (2000) State of maturity; time Figure 6.3 Innovation cycles and management implications for their strategic management Fonte: Birchall & Tovstiga (2005) **FIGURE 3.** Technology Evolution and Penetration of Application Domains by Video Recorders Fonte: Ron Adner e Daniel Levinthal (2003), 'The emergence of emerging technologies', California Management Review, Vol. 45, n.º1, pp. 50-66. **EXHIBIT 4** The Landscape of the Technology Adoption Life Cycle. Fonte: Moore (2000) # 2.2. TRAJECTÓRIAS TECNOLÓGICAS #### TRAJECTÓRIAS TECNOLÓGICAS TRAJECTÓRIA TECNOLÓGICA é "a actividade de progresso tecnológico através dos trade-offs económios e tecnológicos definidos por um paradigma*" (Dosi e Orsenigo, 1988) As trajectórias tecnológicas definem caminhos possíveis de evolução tecnológica As estratégias de inovação empresarial são condicionadas pelos caminhos percorridos, nomeadamente em resultado de 2 tipos de restrições: - Estado actual do conhecimento tecnológico - Competências acumuladas (Base de Conhecimentos) *Um paradigma tecnológico incorpora um conjunto de propriedades técnicas, heurísticas de solução de problemas e experiência acumulada. Cada paradigma envolve uma definição dos problemas a abordar, das tarefas a desempenhar, do padrão de investigação, da tecnologia material a ser utilizada, e dos tipos de artefactos básicos a serem desenvolvidos e melhorados (Dosi e Orsenigo, 1988: 16) Table 5.1 Five major technological trajectories | | Supplier-
dominated | Scale-
intensive | Information-
intensive | Science-
based | Specialized suppliers | |---|---|--|--|--|---| | Typical core sectors | Agriculture
Services
Traditional
manufacture | Bulk materials Automobiles Civil Engineering | Finance
Retailing
Publishing
Travel | Electronics
Chemicals | Machinery
Instruments
Software | | Main sources
of technology | Suppliers
Production
learning | Production engineering Production learning Design offices Specialised suppliers | Software and
systems
departments
Specialised
suppliers | R&D
Basic research | Design
Advanced
users | | Main tasks of
technology
strategy | Use
technology
from
elsewhere to
strengthen
other
competitive
advantages | Incremental integration of changes in complex systems Diffusion of best design and production practice | Design and operation of complex information processing systems Development of related products | Exploit basic science Development of related products Obtain complementary assets Redraw divisional boundaries | Monitor advanced use needs Integrate new technology incrementally | Copyright © 1990, by The Regents of the University of California. Reprinted from the California Management Review, Vol. 32, No. 3. By permission of The Regents. # 2.3. DESCONTINUIDADES TECNOLÓGICAS: DOS NOVOS PARADIGMAS ÀS CONCEPÇÕES DOMINANTES E ÀS PLATAFORMAS FIGURE 8-2. Waves of Innovation and Change | Industry | Waves of Innovation | |-----------------------|---| | Typewriters | manual electric word processors personal computers with word-processing software | | Ice and refrigeration | harvested ice machine-made ice electromechanical refrigeration asceptic packaging | | Lighting | candles and oil lamps distilled gas incandescent electric lamps fluorescent lamps | | Plate glassmaking | crown glasscast glassfloat glass | | Photography | daguerrotype tin type glass plates dry plates celluloid roll film electronic imaging | Fonte: Utterback (1994) #### IGURE 4-3. The Dynamics of Innovation | Product | From high variety, to dominant design, to incremental innovation on standardized products | |--------------|---| | Process | Manufacturing progresses from heavy reliance on skilled labor and general-purpose equipment to specialized equipment tended by low-skilled labor | | Organization | From entrepreneurial <i>organic</i> firm to hierarchical <i>mechanistic</i> firm with defined tasks and procedures and few rewards for radical innovation | | Market | From fragmented and unstable with diverse products and rapid feedback to commodity-like with largely undifferentiated products | | Competition | From many small firms with unique products to an oligopoly of firms with similar products | Figure 4-4. Significant Characteristics in the Three Phases of Industrial Innovation | | Fluid phase | | | | |-------------------------------------|--|--|--|--| | Innovation | Frequent major product changes | | | | | Source of innovation | Industry pioneers; product users | | | | | Products | Diverse designs, often customized | | | | | Production processes | Flexible and inefficient, major changes easily accommodated | | | | | R&D | Focus unspecified because of high degree of technical uncertainty | | | | | Equipment | General-purpose, requiring skilled labor | | | | | Plant | Small-scale, located near user or source of innovation | | | | | Cost of process change | Low | | | | | Competitors | Few, but growing in numbers with widely fluctuating market shares | | | | | Basis of competition | Functional product performance | | | | | Organizational control | Informal and entrepreneurial | | | | | Vulnerabilities of industry leaders | To imitators, and patent challenges; to successful product breakthroughs | | | | | Transitional phase | Specific phase | | | |--|---|--|--| | Major process changes required by rising demand | Incremental for product and with cumulative improvements in productivity and quality | | | | Manufacturers; users | Often suppliers | | | | At least one product design, stable enough to have significant production volume | Mostly undifferentiated, standard products | | | | Becoming more rigid, with changes occurring in major steps | Efficient, capital intensive, and rigid; cost of change high | | | | Focus on specific product features once dominant design emerges | Focus on incremental product technologies; emphasis on process technology | | | | Some subprocesses automated, creating islands of automation | Special-purpose, mostly automatic, with labor focused on tending and monitoring equipment | | | | General-purpose with specialized sections | Large-scale, highly specific to particular products | | | | Moderate | High | | | | Many, but declining in numbers after emergence of dominant design | Few; classic oligopoly with stable market shares | | | | Product variation; fitness for use | Price | | | | Through project and task groups | Structure, rules, and goals | | | | To more efficient and higher-quality producers | To technological innovations that present superior product substitutes | | | FIGURE 9-3. Competence-Destroying Product and Process Discontinuities | Assembled/ Substitutes Photolithographic aligners (A) Radial tires (A) Diesel locomotive (A) Ballpoint pen (A) Jet aircraft engine (A) Refrigerators (A) Incandescent lamps (A) All-steel automobile (A) | Assembled/ Market Broadening Solid-state minicomputers (N) Integrated circuits minis (A) Transistor (A) Electronic calculator (A) Tufted carpet (A) Massively parallel supercomputers (A) | | | |--|---|--|--| | Nonassembled/ Substitutes Suspended preheating (D) Glass drawing (D) Continuous forming (D) Float glass process (D) Basic oxygen steel (A) Direct reduction of iron (A) Optical fibers (A) | Nonassembled/ Broadening Rotary kiln (A) Container machine (N) Owens process (A) Vinyl (E) Celluloid film (A) Manufactured ice (A) Synthetic gems (A) Small liquid oxygen plants (A) | | | (A) denotes an innovation originated predominantly from a new entrant or attacker; (D) denotes an innovation originated predominantly from an established firm or defender; (N) denotes that the origin of the innovation has not been classified, mainly cases in which no prior industry existed. Fonte: Utterback (1994) # FIGURE 9-4. Competence-Enhancing Product and Process Discontinuities #### Assembled/ Substitutes Nuclear steam supply (A) Air-cooled engines (D) Nylon tire cord (N) Hydrogen-cooled generator (D) Fluorescent lamps (N) #### Assembled/ Market Broadening Semiconductor memory (D) Electric typewriter (A) #### Nonassembled/Substitutes Computerized kiln (D) Edison long kiln (D) Machine cylinder glass (D) Gob-fed bottle machine (D) Double gob machine (D) Continuous casting (D) Continuous drawn copper (D) Oriented strand board (D) #### Nonassembled/Broadening Integrated circuits (A) Continuous vertical kiln (A) - (A) denotes an innovation originated predominantly from a new entrant or attacker; - (D) denotes an innovation originated predominantly from an established firm or defender; - (N) denotes that the origin of the innovation has not been classified, mainly cases in which no prior industry existed. Fonte: Utterback (1994) #### FIGURE 3-3 #### Sources of Complexity in the Empirical Environments ## EXHIBIT 1 A Technology Cycle #### **PLATAFORMAS:** - A PLATAFORMA como base orientadora do desenvolvimento de novas aplicações/modelos e como base de redução de custos de produção - ❖ PLATAFORMAS E DESENHOS ROBUSTOS Exemplos SONY: 200 modelos diferentes do Walkman baseados em 3 plataformas INDÚSTRIA AUTOMÓVEL: A plataforma como base de concepção e produção de diversos modelos Fonte: Constantinos Charitou e Constantinos Markides (2003), 'Response to disruptive strategic innovation', Sloan Management Review, Winter, p. 55-63 # 2.4. AS BATALHAS PELA DOMINÂNCIA TECNOLÓGICA Fig. 1. Firm- and environment-level factors influencing the outcome of technology battles. **Fonte**: Fernando Suarez (2004), 'Battles for technological dominance: an integrative framework', Research Policy, Vol. 33, pp. 271-286 | Factor
Type | | Phase | Phase
II | Phase
III | Phase
IV | Phase
V | |-----------------|--|-------|-------------|--------------|-------------|------------------| | Firm-
level | Technological superiority | | *** | | | - | | | Credibility/complementary
Assets | *** | | | *** | | | | Installed base | | | | *** | *** | | | Strategic manoeuvering | | | *** | | | | | Regulation | | *** | | | | | Environ
- | Network effects and switching costs | | | _ | *** | *** | | mental
level | Regime of Appropriability | *** | | | | | | | Characteristics of the technological field | *** | | | | Z. T. T. Walland | Fig. 3. Key factors of success at each stage of the dominance process. **Fonte**: Fernando Suarez (2004), 'Battles for technological dominance: an integrative framework', Research Policy, Vol. 33, pp. 271-286