Statistics for
 Business and Economics $7^{\text {th }}$ Edition

Chapter 1

Describing Data: Graphical

Chapter Goals

After completing this chapter, you should be able to:

- Explain how decisions are often based on incomplete information
- Explain key definitions:
- Population vs. Sample
- Parameter vs. Statistic
- Descriptive vs. Inferential Statistics
- Describe random sampling
- Explain the difference between Descriptive and Inferential statistics
- Identify types of data and levels of measurement

Chapter Goals

After completing this chapter, you should be able to:

- Create and interpret graphs to describe categorical variables:
- frequency distribution, bar chart, pie chart, Pareto diagram
- Create a line chart to describe time-series data
- Create and interpret graphs to describe numerical variables:
- frequency distribution, histogram, ogive, stem-and-leaf display
- Construct and interpret graphs to describe relationships between variables:
- Scatter plot, cross table
- Describe appropriate and inappropriate ways to display data graphically

1.1

Dealing with Uncertainty

Everyday decisions are based on incomplete information

Consider:

- Will the job market be strong when I graduate?
- Will the price of Yahoo stock be higher in six months than it is now?
- Will interest rates remain low for the rest of the year if the federal budget deficit is as high as predicted?

Dealing with Uncertainty

(continued)

Numbers and data are used to assist decision making

- Statistics is a tool to help process, summarize, analyze, and interpret data

Key Definitions

- A population is the collection of all items of interest or under investigation
- N represents the population size
- A sample is an observed subset of the population
- n represents the sample size
- A parameter is a specific characteristic of a population
- A statistic is a specific characteristic of a sample

Population vs. Sample

Population

Values calculated using population data are called parameters

Sample

Values computed from sample data are called statistics

Examples of Populations

- Names of all registered voters in the United States
- Incomes of all families living in Daytona Beach
- Annual returns of all stocks traded on the New York Stock Exchange
- Grade point averages of all the students in your university

Random Sampling

Simple random sampling is a procedure in which

- each member of the population is chosen strictly by chance,
- each member of the population is equally likely to be chosen,
- every possible sample of n objects is equally likely to be chosen

The resulting sample is called a random sample

Descriptive and Inferential Statistics

Two branches of statistics:

- Descriptive statistics
- Graphical and numerical procedures to summarize and process data
- Inferential statistics
- Using data to make predictions, forecasts, and estimates to assist decision making

Descriptive Statistics

- Collect data
- e.g., Survey

- Present data
- e.g., Tables and graphs

- Summarize data
- e.g., Sample mean $=\frac{\sum_{n}}{n}$

Inferential Statistics

- Estimation
- e.g., Estimate the population mean weight using the sample mean weight
- Hypothesis testing
- e.g., Test the claim that the population mean weight is 140 pounds

Inference is the process of drawing conclusions or making decisions about a population based on sample results

Types of Data

Measurement Levels

Differences between measurements, true zero exists

Differences between measurements but no true zero

Ordered Categories (rankings, order, or scaling)

Categories (no ordering or direction)

Graphical Presentation of Data

- Data in raw form are usually not easy to use for decision making
- Some type of organization is needed
- Table
- Graph
- The type of graph to use depends on the variable being summarized

Graphical Presentation of Data

- Techniques reviewed in this chapter:

Categorical Variables

- Frequency distribution
- Bar chart
- Pie chart
- Pareto diagram

Numerical Variables

- Line chart
- Frequency distribution
- Histogram and ogive
- Stem-and-leaf display
- Scatter plot

Tables and Graphs for Categorical Variables

The Frequency Distribution Table

Summarize data by category

Example: Hospital Patients by Unit

Hospital Unit	Number of Patients
Cardiac Care	1,052
Emergency	2,245
Intensive Care	340
Maternity	552
Surgery	4,630

Bar and Pie Charts

- Bar charts and Pie charts are often used for qualitative (category) data
- Height of bar or size of pie slice shows the frequency or percentage for each category

Bar Chart Example

Hospital Unit	Number of Patients
Cardiac Care	1,052
Emergency	2,245
Intensive Care	340
Maternity	552
Surgery	4,630

Pie Chart Example

Hospital Unit	Number of Patients	\% of Total
Cardiac Care	1,052	11.93
Emergency	2,245	25.46
Intensive Care	340	3.86
Maternity	552	6.26
Surgery	4,630	52.50

Pareto Diagram

- Used to portray categorical data
- A bar chart, where categories are shown in descending order of frequency
- A cumulative polygon is often shown in the same graph
- Used to separate the "vital few" from the "trivial many"

Pareto Diagram Example

Example: 400 defective items are examined for cause of defect:

Source of Manufacturing Error	Number of defects
Bad Weld	34
Poor Alignment	223
Missing Part	25
Paint Flaw	78
Electrical Short	19
Cracked case	21
Total	$\mathbf{4 0 0}$

Pareto Diagram Example

Step 1: Sort by defect cause, in descending order Step 2: Determine \% in each category

Source of Manufacturing Error	Number of defects	\% of Total Defects
Poor Alignment	223	55.75
Paint Flaw	78	19.50
Bad Weld	34	8.50
Missing Part	25	6.25
Cracked case	21	5.25
Electrical Short	19	4.75
Total	$\mathbf{4 0 0}$	$\mathbf{1 0 0 \%}$

Pareto Diagram Example

Step 3: Show results graphically

1.4
 Graphs for Time-Series Data

- A line chart (time-series plot) is used to show the values of a variable over time
- Time is measured on the horizontal axis
- The variable of interest is measured on the vertical axis

Line Chart Example

Graphs to Describe Numerical Variables

Numerical Data

Frequency Distributions and
Cumulative Distributions

Ogive

Frequency Distributions

What is a Frequency Distribution?

- A frequency distribution is a list or a table ...
- containing class groupings (categories or ranges within which the data fall) ...
- and the corresponding frequencies with which data fall within each class or category

Why Use Frequency Distributions?

- A frequency distribution is a way to summarize data
- The distribution condenses the raw data into a more useful form...
- and allows for a quick visual interpretation of the data

Class Intervals and Class Boundaries

- Each class grouping has the same width
- Determine the width of each interval by

$$
\mathrm{w}=\text { interval width }=\frac{\text { largest number }- \text { smallest number }}{\text { number of desired intervals }}
$$

- Use at least 5 but no more than 15-20 intervals
- Intervals never overlap
- Round up the interval width to get desirable interval endpoints

Frequency Distribution Example

Example: A manufacturer of insulation randomly selects 20 winter days and records the daily high temperature

$$
\begin{aligned}
& 24,35,17,21,24,37,26,46,58,30 \\
& 32,13,12,38,41,43,44,27,53,27
\end{aligned}
$$

Frequency Distribution Example

- Sort raw data in ascending order: 12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58
- Find range: 58-12 = 46
- Select number of classes: 5 (usually between 5 and 15)
- Compute interval width: 10 ($46 / 5$ then round up)
- Determine interval boundaries: 10 but less than 20,20 but less than $30, \ldots, 60$ but less than 70
- Count observations \& assign to classes

Frequency Distribution Example

Data in ordered array:

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

Interval	Frequency	Relative Frequency	Percentage
10 but less than 20	3	.15	15
20 but less than 30	6	.30	30
30 but less than 40	5	.25	25
40 but less than 50	4	.20	20
50 but less than 60	2	.10	10
Total	20	1.00	100

Histogram

- A graph of the data in a frequency distribution is called a histogram
- The interval endpoints are shown on the horizontal axis
- the vertical axis is either frequency, relative frequency, or percentage
- Bars of the appropriate heights are used to represent the number of observations within each class

Histogram Example

Interval	Frequency
10 but less than 20	3
20 but less than 30	6
30 but less than 40	5
40 but less than 50	4
50 but less than 60	2

Histogram: Daily High Temperature

Histograms in Excel

Histograms in Excel

Input data range and bin

 range containing the upper interval endpoints for each class grouping)

Select Chart Output and click "OK"

Output options

C Output Range:
(* New Worksheet Ply:
C New Workbook
Γ Pareto (sorted histogram)
「 Cumulative Percentage
Chart Output

Questions for Grouping Data into Intervals

- 1. How wide should each interval be?
(How many classes should be used?)
- 2. How should the endpoints of the intervals be determined?
- Often answered by trial and error, subject to user judgment
- The goal is to create a distribution that is neither too "jagged" nor too "blocky"
- Goal is to appropriately show the pattern of variation in the data

How Many Class Intervals?

- Many (Narrow class intervals)
- may yield a very jagged distribution with gaps from empty classes
- Can give a poor indication of how frequency varies across classes

- Few (Wide class intervals)
- may compress variation too much and yield a blocky distribution
- can obscure important patterns of variation.

(X axis labels are upper class endpoints)

The Cumulative Frequency Distribuiton

Data in ordered array:

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

Class	Frequency	Percentage	Cumulative Frequency	Cumulative Percentage
10 but less than 20	3	15	3	15
20 but less than 30	6	30	9	45
30 but less than 40	5	25	14	70
40 but less than 50	4	20	18	90
50 but less than 60	2	10	20	100
Total	20	100		

Stem-and-Leaf Diagram

- A simple way to see distribution details in a data set

METHOD: Separate the sorted data series into leading digits (the stem) and the trailing digits (the leaves)

Example

Data in ordered array:

(21.) $24,24,26,27,27,30,32$. 38) 41

- Here, use the 10's digit for the stem unit:

	Stem	Leaf
- 21 is shown as	$\rightarrow 2$	1
- 38 is shown as	$\rightarrow 3$	8

Example

Data in ordered array:

21, 24, 24, 26, 27, 27, 30, 32, 38, 41

- Completed stem-and-leaf diagram:

Stem	Leaves						
2	1	4	4	6	7	7	
3	0	2	8				
4	1						

Using other stem units

- Using the 100's digit as the stem:
- Round off the 10 's digit to form the leaves

	Stem	Leaf
- 613 would become	$\rightarrow 6$	1
- 776 would become	$\rightarrow 7$	8
- 1224 becomes	$\rightarrow \quad 12$	2

Using other stem units

- Using the 100's digit as the stem:
- The completed stem-and-leaf display:

$$
\begin{aligned}
& \text { Data: } \\
& \text { 613, 632, 658, 717, } \\
& 722,750,776,827, \\
& 841,859,863,891 \\
& 894,906,928,933, \\
& 955,982,1034, \\
& 1047,1056,1140, \\
& 1169,1224
\end{aligned}
$$

Stem	Leaves
6	136
7	2258
8	346699
9	13368
10	356
11	47
12	2

1.6
 Relationships Between Variables

- Graphs illustrated so far have involved only a single variable
- When two variables exist other techniques are used:

Scatter Diagrams

- Scatter Diagrams are used for paired observations taken from two numerical variables
- The Scatter Diagram:
- one variable is measured on the vertical axis and the other variable is measured on the horizontal axis

Scatter Diagram Example

Volume per day	Cost per day
23	125
26	140
29	146
33	160
38	167
42	170
50	188
55	195
60	200

Cost per Day vs. Production Volume

Scatter Diagrams in Excel

(3)
When prompted, enter the data range, desired legend, and desired destination to complete the scatter diagram

Cross Tables

- Cross Tables (or contingency tables) list the number of observations for every combination of values for two categorical or ordinal variables
- If there are r categories for the first variable (rows) and c categories for the second variable (columns), the table is called an $r \times c$ cross table

Cross Table Example

- 4×3 Cross Table for Investment Choices by Investor (values in \$1000's)

Investment Category	Investor A	Investor B	Investor C	Total
Stocks	46.5	55	27.5	$\mathbf{1 2 9}$
Bonds	32.0	44	19.0	95
CD	15.5	20	13.5	$\mathbf{4 9}$
Savings	16.0	28	7.0	$\mathbf{5 1}$
Total	$\mathbf{1 1 0 . 0}$	$\mathbf{1 4 7}$	$\mathbf{6 7 . 0}$	$\mathbf{3 2 4}$

Graphing Multivariate Categorical Data

- Side by side bar charts

E

Side-by-Side Chart Example

- Sales by quarter for three sales territories:

	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
East	20.4	27.4	59	20.4
West	$\mathbf{3 0 . 6}$	38.6	$\mathbf{3 4 . 6}$	$\mathbf{3 1 . 6}$
North	45.9	46.9	45	43.9

Data Presentation Errors

Goals for effective data presentation:

- Present data to display essential information
- Communicate complex ideas clearly and accurately
- Avoid distortion that might convey the wrong message

Data Presentation Errors

- Unequal histogram interval widths
- Compressing or distorting the vertical axis
- Providing no zero point on the vertical axis
- Failing to provide a relative basis in comparing data between groups

Chapter Summary

- Reviewed incomplete information in decision making
- Introduced key definitions:
- Population vs. Sample
- Parameter vs. Statistic
- Descriptive vs. Inferential statistics
- Described random sampling
- Examined the decision making process

Chapter Summary

- Reviewed types of data and measurement levels
- Data in raw form are usually not easy to use for decision making -- Some type of organization is needed:
- Table
- Graph
- Techniques reviewed in this chapter:
- Frequency distribution
- Bar chart
- Pie chart
- Pareto diagram
- Line chart
- Frequency distribution
- Histogram and ogive
- Stem-and-leaf display
- Scatter plot
- Cross tables and side-by-side bar charts

