Statistics for Business and Economics

 $7^{\text {th }}$ Edition

 $7^{\text {th }}$ Edition}

Chapter 2

Describing Data: Numerical

Chapter Goals

After completing this chapter, you should be able to:

- Compute and interpret the mean, median, and mode for a set of data
- Find the range, variance, standard deviation, and coefficient of variation and know what these values mean
- Apply the empirical rule to describe the variation of population values around the mean
- Explain the weighted mean and when to use it
- Explain how a least squares regression line estimates a linear relationship between two variables

Chapter Topics

- Measures of central tendency, variation, and shape
- Mean, median, mode, geometric mean
- Quartiles
- Range, interquartile range, variance and standard deviation, coefficient of variation
- Symmetric and skewed distributions
- Population summary measures
- Mean, variance, and standard deviation
- The empirical rule and Bienaymé-Chebyshev rule

Chapter Topics

- Five number summary and box-and-whisker plots
- Covariance and coefficient of correlation
- Pitfalls in numerical descriptive measures and ethical considerations

Describing Data Numerically

${ }^{2.1}$ Measures of Central Tendency

Overview

$\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$
Arithmetic
average

Midpoint of ranked values

Most frequently observed value

Arithmetic Mean

- The arithmetic mean (mean) is the most common measure of central tendency
- For a population of N values:

$$
\mu=\frac{\sum_{i=1}^{N} x_{i}}{N}=\frac{x_{1}+x_{2}+\cdots+x_{N}}{N} \begin{aligned}
& \text { Population } \\
& \text { values }
\end{aligned}
$$

- For a sample of size n :

$$
\overline{\mathrm{x}}=\frac{\sum_{i=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{n}} \longleftarrow \begin{array}{l}
\text { Observed } \\
\text { values }
\end{array}}{\mathrm{n}}
$$

Arithmetic Mean

(continued)

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

$$
\frac{1+2+3+4+5}{5}=\frac{15}{5}=3
$$

$$
\frac{1+2+3+4+10}{5}=\frac{20}{5}=4
$$

Median

- In an ordered list, the median is the "middle" number (50\% above, 50\% below)

- Not affected by extreme values

Finding the Median

- The location of the median:

$$
\text { Median position }=\frac{\mathrm{n}+1}{2} \text { position in the ordered data }
$$

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers
- Note that $\frac{\mathrm{n}+1}{2}$ is not the value of the median, only the position of the median in the ranked data

Mode

- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may may be no mode
- There may be several modes

Review Example

- Five houses on a hill by the beach

House Prices:

$$
\begin{array}{r}
\$ 2,000,000 \\
500,000 \\
300,000 \\
100,000 \\
100,000
\end{array}
$$

Review Example: Summary Statistics

```
House Prices:
    \$2,000,000
    500,000
    300,000
    100,000
    100,000
Sum 3,000,000
- Mean: (\$3,000,000/5)
= \$600,000
- Median: middle value of ranked data
= \$300,000
```

- Mode: most frequent value
= \$100,000

Which measure of location is the "best"?

- Mean is generally used, unless extreme values (outliers) exist . . .
- Then median is often used, since the median is not sensitive to extreme values.
- Example: Median home prices may be reported for a region - less sensitive to outliers

Shape of a Distribution

- Describes how data are distributed
- Measures of shape
- Symmetric or skewed

Right-Skewed
Median < Mean

Geometric Mean

- Geometric mean
- Used to measure the rate of change of a variable over time

$$
\bar{x}_{g}=\sqrt[n]{\left(x_{1} \times x_{2} \times \cdots \times x_{n}\right)}=\left(x_{1} \times x_{2} \times \cdots \times x_{n}\right)^{1 / n}
$$

- Geometric mean rate of return
- Measures the status of an investment over time

$$
\bar{r}_{g}=\left(x_{1} \times x_{2} \times \ldots \times x_{n}\right)^{1 / n}-1
$$

- Where x_{i} is the rate of return in time period i

Example

An investment of $\$ 100,000$ rose to $\$ 150,000$ at the end of year one and increased to $\$ 180,000$ at end of year two:

$$
X_{1}=\$ 100,000 \quad X_{2}=\$ 150,000 \quad X_{3}=\$ 180,000
$$

50\% increase 20\% increase

What is the mean percentage return over time?

Example

Use the 1-year returns to compute the arithmetic mean and the geometric mean:

Arithmetic mean rate of return:

$$
\bar{x}=\frac{(50 \%)+(20 \%)}{2}=35 \%
$$

Misleading result

Geometric mean rate of return:

$$
\begin{aligned}
\mathrm{r}_{\mathrm{g}} & =\left(\mathrm{x}_{1} \times \mathrm{x}_{2}\right)^{1 / n}-1 \\
& =[(50) \times(20)]^{1 / 2}-1 \\
& =(1000)^{1 / 2}-1=31.623-1=30.623 \%
\end{aligned}
$$

More
accurate result

Measures of Variability

- Measures of variation give information on the spread or variability of the data values.

Range

- Simplest measure of variation
- Difference between the largest and the smallest observations:

$$
\text { Range }=X_{\text {largest }}-X_{\text {smallest }}
$$

Example:

$$
\text { Range }=14-1=13
$$

Disadvantages of the Range

- Ignores the way in which data are distributed

- Sensitive to outliers

$$
\begin{gathered}
\text { 1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,5 } \\
\text { Range }=5-1=4 \\
\text { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,2,2,2,2,2,2,2,2,3,3,3,3,4,120 } \\
\text { Range }=120-1=119 \\
\hline
\end{gathered}
$$

Interquartile Range

- Can eliminate some outlier problems by using the interquartile range
- Eliminate high- and low-valued observations and calculate the range of the middle 50% of the data
- Interquartile range $=3^{\text {rd }}$ quartile $-1^{\text {st }}$ quartile

$$
\text { IQR }=Q_{3}-Q_{1}
$$

Interquartile Range

Example:

Interquartile range

$$
=57-30=27
$$

Quartiles

- Quartiles split the ranked data into 4 segments with an equal number of values per segment

- The first quartile, Q_{1}, is the value for which 25% of the observations are smaller and 75% are larger
- Q_{2} is the same as the median (50% are smaller, 50% are larger)
- Only 25% of the observations are greater than the third quartile

Quartile Formulas

Find a quartile by determining the value in the appropriate position in the ranked data, where

First quartile position: $\quad Q_{1}=0.25(n+1)$
Second quartile position: $Q_{2}=0.50(n+1)$
(the median position)
Third quartile position: $\quad Q_{3}=0.75(n+1)$
where n is the number of observed values

Quartiles

- Example: Find the first quartile

so use the value half way between the $2^{\text {nd }}$ and $3^{\text {rd }}$ values,

$$
\text { so } \quad Q_{1}=12.5
$$

Population Variance

- Average of squared deviations of values from the mean
- Population variance:

$$
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}
$$

Where

$$
\begin{aligned}
& \mu=\text { population mean } \\
& N=\text { population size } \\
& x_{i}=i^{\text {th }} \text { value of the variable } x
\end{aligned}
$$

Sample Variance

- Average (approximately) of squared deviations of values from the mean
- Sample variance:

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Where $\bar{X}=$ arithmetic mean
$\mathrm{n}=$ sample size
$\mathrm{X}_{\mathrm{i}}=\mathrm{i}^{\text {th }}$ value of the variable X

Population Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
- Population standard deviation:

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}}
$$

Sample Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
- Sample standard deviation:

$$
S=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

Calculation Example: Sample Standard Deviation

Sample Data $\left(\mathrm{x}_{\mathrm{i}}\right)$:

$$
s=\sqrt{\frac{(10-\bar{X})^{2}+(12-\bar{x})^{2}+(14-\bar{x})^{2}+\cdots+(24-\bar{x})^{2}}{n-1}}
$$

$$
=\sqrt{\frac{(10-16)^{2}+(12-16)^{2}+(14-16)^{2}+\cdots+(24-16)^{2}}{8-1}}
$$

$$
=\sqrt{\frac{126}{7}}=4.2426 \Longrightarrow
$$

A measure of the "average" scatter around the mean

Measuring variation

Comparing Standard Deviations

$$
\begin{gathered}
\text { Mean }=15.5 \\
s=3.338
\end{gathered}
$$

$$
\begin{gathered}
\text { Mean }=15.5 \\
s=0.926
\end{gathered}
$$

$$
\begin{gathered}
\text { Mean }=15.5 \\
s=4.570
\end{gathered}
$$

Advantages of Variance and Standard Deviation

- Each value in the data set is used in the calculation
- Values far from the mean are given extra weight
(because deviations from the mean are squared)

Coefficient of Variation

- Measures relative variation
- Always in percentage (\%)
- Shows variation relative to mean
- Can be used to compare two or more sets of data measured in different units

$$
\mathrm{CV}=\left(\frac{\mathrm{s}}{\overline{\mathrm{x}}}\right) \cdot 100 \%
$$

Comparing Coefficient of Variation

- Stock A:
- Average price last year = \$50
- Standard deviation = \$5

$$
\mathrm{CV}_{\mathrm{A}}=\left(\frac{\mathrm{s}}{\overline{\mathrm{x}}}\right) \cdot 100 \%=\frac{\$ 5}{\$ 50} \cdot 100 \%=10 \%
$$

- Stock B:
- Average price last year = \$100
- Standard deviation = \$5

$$
C V_{B}=\left(\frac{s}{\bar{x}}\right) \cdot 100 \%=\frac{\$ 5}{\$ 100} \cdot 100 \%=5 \%
$$

Both stocks
have the same standard
deviation, but
stock B is less variable relative to its price

Using Microsoft Excel

- Descriptive Statistics can be obtained from Microsofte Excel
- Select:
data / data analysis / descriptive statistics
- Enter details in dialog box

Using Excel

- Select data / data analysis / descriptive statistics

Using Excel

Excel output

Microsoft Excel

 descriptive statistics output, using the house price data:House Prices:
\$2,000,000
500,000
300,000
100,000
100,000

Chebychev's Theorem

- For any population with mean μ and standard deviation σ, and $k>1$, the percentage of observations that fall within the interval

$$
[\mu+k \sigma]
$$

Is at least

$$
100\left[1-\left(1 / k^{2}\right)\right] \%
$$

Chebychev's Theorem

(continued)

- Regardless of how the data are distributed, at least ($1-1 / k^{2}$) of the values will fall within k standard deviations of the mean (for $k>1$)
- Examples:

At least	within
$\left(1-1 / 1.5^{2}\right)=55.6 \% \ldots \ldots \ldots k=1.5 \quad(\mu \pm 1.5 \sigma)$	
$\left(1-1 / 2^{2}\right)=75 \% \ldots \ldots \ldots \ldots k=2 \quad(\mu \pm 2 \sigma)$	
$\left(1-1 / 3^{2}\right)=89 \% \ldots \ldots \ldots . . k=3 \quad(\mu \pm 3 \sigma)$	

The Empirical Rule

- If the data distribution is bell-shaped, then the interval:
- $\mu \pm 1 \sigma$ contains about 68% of the values in the population or the sample

The Empirical Rule

- $\mu \pm 2 \sigma$ contains about 95% of the values in the population or the sample
- $\mu \pm 3 \sigma$ contains almost all (about 99.7\%) of the values in the population or the sample

Weighted Mean

- The weighted mean of a set of data is

$$
\bar{x}=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{n}=\frac{w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}}{n}
$$

- Where w_{i} is the weight of the $\mathrm{i}^{\text {th }}$ observation and $n=\sum \mathrm{w}_{\mathrm{i}}$
- Use when data is already grouped into n classes, with w_{i} values in the $\mathrm{i}^{\text {th }}$ class

Approximations for Grouped Data

Suppose data are grouped into K classes, with frequencies $f_{1}, f_{2}, \ldots f_{k}$, and the midpoints of the classes are $m_{1}, m_{2}, \ldots, m_{K}$

- For a sample of n observations, the mean is

$$
\bar{x}=\frac{\sum_{i=1}^{K} f_{i} m_{i}}{n}
$$

$$
\text { where } n=\sum_{i=1}^{k} f_{i}
$$

Approximations for Grouped Data

Suppose data are grouped into K classes, with frequencies $f_{1}, f_{2}, \ldots f_{k}$, and the midpoints of the classes are $m_{1}, m_{2}, \ldots, m_{k}$

- For a sample of n observations, the variance is

$$
s^{2}=\frac{\sum_{i=1}^{K} f_{i}\left(m_{i}-\bar{x}\right)^{2}}{n-1}
$$

The Sample Covariance

- The covariance measures the strength of the linear relationship between two variables
- The population covariance:

$$
\operatorname{Cov}(\mathrm{x}, \mathrm{y})=\sigma_{\mathrm{xy}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{y}}\right)}{\mathrm{N}}
$$

- The sample covariance:

$$
\operatorname{Cov}(x, y)=s_{x y}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}
$$

- Only concerned with the strength of the relationship
- No causal effect is implied

Interpreting Covariance

- Covariance between two variables:
$\operatorname{Cov}(x, y)>0 \longrightarrow x$ and y tend to move in the same direction
$\operatorname{Cov}(\mathrm{x}, \mathrm{y})<0 \longrightarrow \mathrm{x}$ and y tend to move in opposite directions
$\operatorname{Cov}(x, y)=0 \longrightarrow x$ and y are independent

Coefficient of Correlation

- Measures the relative strength of the linear relationship between two variables
- Population correlation coefficient:

$$
\rho=\frac{\operatorname{Cov}(x, y)}{\sigma_{X} \sigma_{Y}}
$$

- Sample correlation coefficient:

$$
r=\frac{\operatorname{Cov}(x, y)}{s_{X} s_{Y}}
$$

Features of Correlation Coefficient, r

- Unit free
- Ranges between -1 and 1
- The closer to -1 , the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0 , the weaker any positive linear relationship

Scatter Plots of Data with Various Correlation Coefficients

Using Excel to Find the Correlation Coefficient

- Select Data / Data Analysis

- Choose Correlation from the selection menu
- Click OK . . .

Using Excel to Find the Correlation Coefficient

- Input data range and select appropriate options
- Click OK to get output

Interpreting the Result

. $r=.733$

- There is a relatively strong positive linear relationship between test score \#1 and test score \#2
- Students who scored high on the first test tended to score high on second test

Chapter Summary

- Described measures of central tendency
- Mean, median, mode
- Illustrated the shape of the distribution
- Symmetric, skewed
- Described measures of variation
- Range, interquartile range, variance and standard deviation, coefficient of variation
- Discussed measures of grouped data
- Calculated measures of relationships between variables
- covariance and correlation coefficient

