Statistics for Business and Economics 7th Edition

Chapter 2

Describing Data: Numerical

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Chapter Goals

After completing this chapter, you should be able to:

- Compute and interpret the mean, median, and mode for a set of data
- Find the range, variance, standard deviation, and coefficient of variation and know what these values mean
- Apply the empirical rule to describe the variation of population values around the mean
- Explain the weighted mean and when to use it
- Explain how a least squares regression line estimates a linear relationship between two variables

Chapter Topics

- Measures of central tendency, variation, and shape
 - Mean, median, mode, geometric mean
 - Quartiles
 - Range, interquartile range, variance and standard deviation, coefficient of variation
 - Symmetric and skewed distributions
- Population summary measures
 - Mean, variance, and standard deviation
 - The empirical rule and Bienaymé-Chebyshev rule

Chapter Topics

(continued)

- Five number summary and box-and-whisker plots
- Covariance and coefficient of correlation
- Pitfalls in numerical descriptive measures and ethical considerations

Arithmetic Mean

- The arithmetic mean (mean) is the most common measure of central tendency
 - For a population of N values:

Arithmetic Mean

(continued)

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

Not affected by extreme values

• The location of the median:

Median position =
$$\frac{n+1}{2}$$
 position in the ordered data

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers

Mode

- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may may be no mode
- There may be several modes

100,000 100,000

Review Example: Summary Statistics

Mode: most frequent value = \$100,000

Which measure of location is the "best"?

- Mean is generally used, unless extreme values (outliers) exist . . .
- Then median is often used, since the median is not sensitive to extreme values.
 - Example: Median home prices may be reported for a region – less sensitive to outliers

Shape of a Distribution

- Describes how data are distributed
- Measures of shape
 - Symmetric or skewed

Used to measure the rate of change of a variable over time

$$\overline{\mathbf{X}}_{g} = \sqrt[n]{(\mathbf{X}_{1} \times \mathbf{X}_{2} \times \cdots \times \mathbf{X}_{n})} = (\mathbf{X}_{1} \times \mathbf{X}_{2} \times \cdots \times \mathbf{X}_{n})^{1/n}$$

- Geometric mean rate of return
 - Measures the status of an investment over time

$$\bar{\mathbf{r}}_{g} = (\mathbf{X}_{1} \times \mathbf{X}_{2} \times \ldots \times \mathbf{X}_{n})^{1/n} - \mathbf{1}$$

Where x_i is the rate of return in time period i

An investment of \$100,000 rose to \$150,000 at the end of year one and increased to \$180,000 at end of year two:

- Simplest measure of variation
- Difference between the largest and the smallest observations:

Disadvantages of the Range

Ignores the way in which data are distributed

Sensitive to outliers

- Can eliminate some outlier problems by using the interquartile range
- Eliminate high- and low-valued observations and calculate the range of the middle 50% of the data

Interquartile range = 3^{rd} quartile – 1^{st} quartile
IQR = Q₃ – Q₁

Example: Median Х Х **Q**3 **Q1** maximum minimum (Q2)25% 25% 25% 25% 12 30 45 57 70 Interquartile range = 57 - 30 = 27

an equal number of values per segment

- The first quartile, Q₁, is the value for which 25% of the observations are smaller and 75% are larger
- Q₂ is the same as the median (50% are smaller, 50% are larger)
- Only 25% of the observations are greater than the third quartile

Quartile Formulas

Find a quartile by determining the value in the appropriate position in the ranked data, where

First quartile position: $Q_1 = 0.25(n+1)$

Second quartile position: $Q_2 = 0.50(n+1)$ (the median position)

Third quartile position: $Q_3 = 0.75(n+1)$

where \mathbf{n} is the number of observed values

Example: Find the first quartile

Population Variance

- Average of squared deviations of values from the mean
 - Population variance:

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N}$$

Where μ = population mean N = population size $x_i = i^{th}$ value of the variable x

Sample Variance

- Average (approximately) of squared deviations of values from the mean
 - Sample variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Х

Where
$$\overline{X}$$
 = arithmetic mean
n = sample size
 X_i = ith value of the variable

Population Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Population standard deviation:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

Sample Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Sample standard deviation:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Measuring variation

Comparing Standard Deviations

- Each value in the data set is used in the calculation
- Values far from the mean are given extra weight

(because deviations from the mean are squared)

Coefficient of Variation

- Measures relative variation
- Always in percentage (%)
- Shows variation relative to mean
- Can be used to compare two or more sets of data measured in different units

$$CV = \left(\frac{s}{\overline{x}}\right) \cdot 100\%$$

Comparing Coefficient of Variation

- Stock A:
 - Average price last year = \$50
 - Standard deviation = \$5

$$CV_{A} = \left(\frac{s}{\overline{x}}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% = 10\%$$

- Stock B:
 - Average price last year = \$100
 - Standard deviation = \$5

$$CV_{B} = \left(\frac{s}{\overline{x}}\right) \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% \neq 5\%$$

Both stocks have the same standard deviation, but stock B is less variable relative to its price

Using Microsoft Excel

 Descriptive Statistics can be obtained from Microsoft[®] Excel

Select:

data / data analysis / descriptive statistics

Enter details in dialog box

Select data / data analysis / descriptive statistics

Ca	□ 🔄 🔜 🤊 - (* - 🖨) = Book1 - Mi										
	Home	Insert Page	Layout Fo	rmula: Data	leview	View	Add-Ins				
From	n From Fro ss Web Te	m From Other	Existing Connections	Refresh All + Set	nections perties t Links	$ \begin{array}{c c} $	Filter Advanced				
	47 Get		£	Connecti	ons	201					
	A7	• (Jx								
	A	В	С	D	E	F	G				
1	House Pri	ces	Data Analysis				2 1				
2	2000000)	Analysis Tool	s							
3	500000)	Anova: Sing	le Factor		-					
4	300000)	Anova: Two Anova: Two	-Factor With Replic		Cancel					
5	100000)	Covariance			Help					
6	100000)	Exponential	Smoothing							
7			Fourier Anal	sample for varianc ysis	-						
8		3	Instogram	1							
9											

Excel output

Microsoft Excel descriptive statistics output, using the house price data:

House Prices:
\$2,000,000
500,000
300,000
100,000
100,000

		A	В
1		House Pr	ices
2			
3	Mean		600000
4	Standard E	rror	357770.8764
5	Median		300000
6	Mode		100000
7	Standard [Deviation	800000
8	Sample Va	riance	6.4E+11
9	Kurtosis		4.130126953
10	Skewness		2.006835938
11	Range		1900000
12	Minimum		100000
13	Maximum		2000000
14	Sum		3000000
15	Count		5
16			

 For any population with mean μ and standard deviation σ, and k > 1, the percentage of observations that fall within the interval

Is at least

$$100[1-(1/k^2)]\%$$

Chebychev's Theorem

(continued)

- Regardless of how the data are distributed, at least (1 - 1/k²) of the values will fall within k standard deviations of the mean (for k > 1)
 - Examples:

At least	within
$(1 - 1/1.5^2) = 55.6\% \dots$	k = 1.5 (μ ± 1.5σ)
(1 - 1/2 ²) = 75%	$k = 2$ ($\mu \pm 2\sigma$)
$(1 - 1/3^2) = 89\%$	$k = 3$ ($\mu \pm 3\sigma$)

- If the data distribution is bell-shaped, then the interval:
- $\mu \pm 1\sigma$ contains about 68% of the values in the population or the sample

The weighted mean of a set of data is

• Where w_i is the weight of the ith observation and $n = \sum w_i$

 Use when data is already grouped into n classes, with w_i values in the ith class

Approximations for Grouped Data

Suppose data are grouped into K classes, with frequencies f_1, f_2, \ldots, f_K , and the midpoints of the classes are m_1, m_2, \ldots, m_K

• For a sample of n observations, the mean is

where
$$n = \sum_{i=1}^{K} f_i$$

Approximations for Grouped Data

Suppose data are grouped into K classes, with frequencies f_1, f_2, \ldots, f_K , and the midpoints of the classes are m_1, m_2, \ldots, m_K

• For a sample of n observations, the variance is

$$s^{2} = \frac{\sum_{i=1}^{K} f_{i}(m_{i} - \overline{x})^{2}}{n-1}$$

The Sample Covariance

- The covariance measures the strength of the linear relationship between two variables
- The population covariance:

2.4

$$\operatorname{Cov}(\mathbf{x},\mathbf{y}) = \sigma_{xy} = \frac{\sum_{i=1}^{N} (\mathbf{x}_{i} - \mu_{x})(\mathbf{y}_{i} - \mu_{y})}{N}$$

• The sample covariance:

$$Cov(x,y) = s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

- Only concerned with the strength of the relationship
- No causal effect is implied

Covariance between two variables:

 $Cov(x,y) > 0 \longrightarrow x$ and y tend to move in the same direction $Cov(x,y) < 0 \longrightarrow x$ and y tend to move in opposite directions $Cov(x,y) = 0 \longrightarrow x$ and y are independent

- Measures the relative strength of the linear relationship between two variables
- Population correlation coefficient:

$$\rho = \frac{Cov(x,y)}{\sigma_X \sigma_Y}$$

Sample correlation coefficient:

$$r = \frac{Cov(x, y)}{s_X s_Y}$$

Features of Correlation Coefficient, r

- Unit free
- Ranges between –1 and 1
- The closer to –1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any positive linear relationship

Scatter Plots of Data with Various Correlation Coefficients

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Using Excel to Find the Correlation Coefficient

Select Data / Data Analysis

\frown					Book1 - I	Microsoft E	ixcel								
Data	Review	N	View	Add-I	ns										Q
Prop	perties Links	A Z↓ Z↓	A Z A Sort	Filter	K Clear Reapply Advanced	Text to Columns	Remove Duplicates	Data Validation *	Consolidate	What-If Analysis *	Group	Ungroup	Subtotal	- Inter	Data Analysis
Connectio	ns		5	Sort & Fil	ter			Data Tools	1			Outline		5	Analysis

- Choose Correlation from the selection menu
- Click OK . . .

Using Excel to Find the Correlation Coefficient

(continued)

	А	В	С	D	E	F	G	
	Test #1 Score	Test #2 Score						
2	78	82	C	Lating.	1			
	92	88	Corre	elation				
	86	91	Inp	ut Panger		t A t 1 t P t	🖅	
	83	90	Ŧ. ib	ut Kange.		15A51;5D5.		
	95	92	Gro	ouped By:		Column:	S	
	85	85	_			C <u>R</u> ows		
	91	89		Labels in Fir	st Row			
	76	81	Out	put options-	_//_			i
	88	96	C	Output Ran	ge:		1	
	79	77		New Worksh	neet <u>P</u> ly:			
			С	New Work	bok			

- Input data range and select appropriate options
- Click OK to get output

	А	В	С
1		Test #1 Score	Test #2 Score
2	Test #1 Score	1	
3	Test #2 Score	0.733243705	1
4			

Interpreting the Result

• r = .733

 There is a relatively strong positive linear relationship between test score #1 and test score #2

 Students who scored high on the first test tended to score high on second test

Chapter Summary

- Described measures of central tendency
 - Mean, median, mode
- Illustrated the shape of the distribution
 - Symmetric, skewed
- Described measures of variation
 - Range, interquartile range, variance and standard deviation, coefficient of variation
- Discussed measures of grouped data
- Calculated measures of relationships between variables
 - covariance and correlation coefficient