Statistics for Business and Economics 7th Edition

Chapter 7

Estimation: Single Population

Chapter Goals

After completing this chapter, you should be able to:

- Distinguish between a point estimate and a confidence interval estimate
- Construct and interpret a confidence interval estimate for a single population mean using both the Z and t distributions
- Form and interpret a confidence interval estimate for a single population proportion
- Create confidence interval estimates for the variance of a normal population

Confidence Intervals

Contents of this chapter:

- Confidence Intervals for the Population Mean, µ
 - when Population Variance σ² is Known
 - when Population Variance σ² is Unknown
- Confidence Intervals for the Population Proportion, p̂ (large samples)
- Confidence interval estimates for the variance of a normal population

Definitions

- An estimator of a population parameter is
 - a random variable that depends on sample information . . .
 - whose value provides an approximation to this unknown parameter
- A specific value of that random variable is called an estimate

Point and Interval Estimates

- A point estimate is a single number,
- a confidence interval provides additional information about variability

Width of confidence interval

Point Estimates

We can estimate a Population Parameter		with a Sample Statistic (a Point Estimate)	
Mean	μ	X	
Proportion	Р	ĝ	

Unbiasedness

• A point estimator $\hat{\theta}$ is said to be an unbiased estimator of the parameter θ if the expected value, or mean, of the sampling distribution of $\hat{\theta}$ is θ ,

$$E(\hat{\theta}) = \theta$$

- Examples:
 - The sample mean \overline{x} is an unbiased estimator of μ
 - The sample variance s² is an unbiased estimator of σ²
 - The sample proportion p is an unbiased estimator of P

Unbiasedness

(continued)

• $\hat{\theta}_1$ is an unbiased estimator, $\hat{\theta}_2$ is biased:

Bias

- Let $\hat{\Theta}$ be an estimator of θ
- The bias in $\hat{\theta}$ is defined as the difference between its mean and θ

$$\mathsf{Bias}(\hat{\theta}) = \mathsf{E}(\hat{\theta}) - \theta$$

The bias of an unbiased estimator is 0

Most Efficient Estimator

- Suppose there are several unbiased estimators of θ
- The most efficient estimator or the minimum variance unbiased estimator of θ is the unbiased estimator with the smallest variance
- Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators of θ , based on the same number of sample observations. Then,
 - $\hat{\theta}_1$ is said to be more efficient than $\hat{\theta}_2$ if $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$
 - The relative efficiency of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ is the ratio of their variances:

Relative Efficiency =
$$\frac{\text{Var}(\hat{\theta}_2)}{\text{Var}(\hat{\theta}_1)}$$

Confidence Intervals

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals

Confidence Interval Estimate

- An interval gives a range of values:
 - Takes into consideration variation in sample statistics from sample to sample
 - Based on observation from 1 sample
 - Gives information about closeness to unknown population parameters
 - Stated in terms of level of confidence
 - Can never be 100% confident

Confidence Interval and Confidence Level

- If $P(a < \theta < b) = 1 \alpha$ then the interval from a to b is called a $100(1 \alpha)\%$ confidence interval of θ .
- The quantity (1α) is called the confidence level of the interval (α) between 0 and 1)
 - In repeated samples of the population, the true value of the parameter θ would be contained in 100(1 - α)% of intervals calculated this way.
 - The confidence interval calculated in this manner is written as a < θ < b with 100(1 α)% confidence

Estimation Process

Confidence Level, $(1-\alpha)$

(continued)

- Suppose confidence level = 95%
- Also written $(1 \alpha) = 0.95$
- A relative frequency interpretation:
 - From repeated samples, 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter
 - No probability involved in a specific interval

General Formula

The general formula for all confidence intervals is:

Point Estimate ± (Reliability Factor)(Standard Error)

 The value of the reliability factor depends on the desired level of confidence

Confidence Intervals

Confidence Interval for μ (σ² Known)

- Assumptions
 - Population variance σ² is known
 - Population is normally distributed
 - If population is not normal, use large sample
- Confidence interval estimate:

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

(where $z_{\alpha/2}$ is the normal distribution value for a probability of $\alpha/2$ in each tail)

Margin of Error

The confidence interval,

$$\overline{x} - z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}} \; < \; \mu \; < \; \overline{x} + z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}}$$

Can also be written as x ± ME
 where ME is called the margin of error

$$ME = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 The interval width, w, is equal to twice the margin of error

Reducing the Margin of Error

$$ME = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

The margin of error can be reduced if

- the population standard deviation can be reduced $(\sigma\downarrow)$
- The sample size is increased (n↑)
- The confidence level is decreased, $(1 \alpha) \downarrow$

Finding the Reliability Factor, $z_{\alpha/2}$

Consider a 95% confidence interval:

• Find $z_{.025} = \pm 1.96$ from the standard normal distribution table

Common Levels of Confidence

 Commonly used confidence levels are 90%, 95%, and 99%

Confidence Level	Confidence Coefficient, $1-\alpha$	Z _{α/2} value	
80%	.80	1.28	
90%	.90	1.645	
95%	.95	1.96	
98%	.98	2.33	
99%	.99	2.58	
99.8%	.998	3.08	
99.9%	.999	3.27	

Intervals and Level of Confidence

Sampling Distribution of the Mean

 $100(1-\alpha)\%$ of intervals constructed contain μ ;

 $100(\alpha)\%$ do not.

Example

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

Example

(continued)

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is .35 ohms.
- Solution:

$$\overline{X} \pm Z \frac{\sigma}{\sqrt{n}}$$

$$= 2.20 \pm 1.96 (.35/\sqrt{11})$$

$$= 2.20 \pm .2068$$

$$1.9932 < \mu < 2.4068$$

Interpretation

- We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

7.3

Confidence Intervals

Student's t Distribution

- Consider a random sample of n observations
 - with mean \bar{x} and standard deviation s
 - from a normally distributed population with mean μ
- Then the variable

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

follows the Student's t distribution with (n - 1) degrees of freedom

Confidence Interval for μ (σ² Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t distribution instead of the normal distribution

Confidence Interval for μ (σ Unknown)

(continued)

- Assumptions
 - Population standard deviation is unknown
 - Population is normally distributed
 - If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

$$\overline{x} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}} < \mu < \overline{x} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}$$

where $t_{n-1,\alpha/2}$ is the critical value of the t distribution with n-1 d.f. and an area of $\alpha/2$ in each tail: $P(t_{n-1} > t_{n-1,\alpha/2}) = \alpha/2$

Margin of Error

The confidence interval,

$$\overline{x} - t_{n-1,\alpha/2} \, \frac{S}{\sqrt{n}} \; < \; \mu \; < \; \overline{x} + t_{n-1,\alpha/2} \, \frac{S}{\sqrt{n}}$$

Can also be written as

$$\overline{X} \pm ME$$

where ME is called the margin of error:

$$ME = t_{n\text{--}1,\alpha/2} \, \frac{\sigma}{\sqrt{n}}$$

Student's t Distribution

- The t is a family of distributions
- The t value depends on degrees of freedom (d.f.)
 - Number of observations that are free to vary after sample mean has been calculated

$$d.f. = n - 1$$

Student's t Distribution

Note: $t \rightarrow Z$ as n increases

Student's t Table

	Upper Tail Area				
df	.10	.05	.025		
1	3.078	6.314	12.706		
2	1.886	2.920	4.303		
3	1.638	2.353	3.182		

The body of the table contains t values, not probabilities

Let: n = 3 df = n - 1 = 2 α = .10 $\alpha/2$ = .05

t distribution values

With comparison to the Z value

Confidence Level	t (10 d.f.)	t (20 d.f.)	t (30 d.f.)	Z
.80	1.372	1.325	1.310	1.282
.90	1.812	1.725	1.697	1.645
.95	2.228	2.086	2.042	1.960
.99	3.169	2.845	2.750	2.576

Note: $t \rightarrow Z$ as n increases

Example

A random sample of n = 25 has $\bar{x} = 50$ and s = 8. Form a 95% confidence interval for μ

• d.f. =
$$n - 1 = 24$$
, so $t_{n-1,\alpha/2} = t_{24,.025} = 2.0639$

The confidence interval is

$$\begin{split} \overline{x} - t_{n\text{-}1,\alpha/2} \, \frac{S}{\sqrt{n}} \, < \, \mu \, < \, \overline{x} + t_{n\text{-}1,\alpha/2} \, \frac{S}{\sqrt{n}} \\ 50 - (2.0639) \, \frac{8}{\sqrt{25}} \, < \, \mu \, < \, 50 + (2.0639) \, \frac{8}{\sqrt{25}} \\ 46.698 \, < \, \mu \, < \, 53.302 \end{split}$$

7.4

Confidence Intervals

Confidence Intervals for the Population Proportion

 An interval estimate for the population proportion (P) can be calculated by adding an allowance for uncertainty to the sample proportion (p̂)

Confidence Intervals for the Population Proportion, p

(continued)

 Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation

$$\sigma_{P} = \sqrt{\frac{P(1-P)}{n}}$$

We will estimate this with sample data:

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Confidence Interval Endpoints

 Upper and lower confidence limits for the population proportion are calculated with the formula

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} < P < \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where

- z_{α/2} is the standard normal value for the level of confidence desired
- \hat{p} is the sample proportion
- n is the sample size
- nP(1-P) > 5

Example

- A random sample of 100 people shows that 25 are left-handed.
- Form a 95% confidence interval for the true proportion of left-handers

Example

(continued)

A random sample of 100 people shows that 25 are left-handed. Form a 95% confidence interval for the true proportion of left-handers.

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} < P < \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$\frac{25}{100} - 1.96\sqrt{\frac{.25(.75)}{100}} < P < \frac{25}{100} + 1.96\sqrt{\frac{.25(.75)}{100}}$$

Interpretation

 We are 95% confident that the true percentage of left-handers in the population is between

16.51% and 33.49%.

Although the interval from 0.1651 to 0.3349 may or may not contain the true proportion, 95% of intervals formed from samples of size 100 in this manner will contain the true proportion.

7.5

Confidence Intervals

Confidence Intervals for the Population Variance

- Goal: Form a confidence interval for the population variance, σ^2
 - The confidence interval is based on the sample variance, s²
 - Assumed: the population is normally distributed

Confidence Intervals for the Population Variance

(continued)

The random variable

$$\chi_{n-1}^2 = \frac{(n-1)s^2}{\sigma^2}$$

follows a chi-square distribution with (n – 1) degrees of freedom

Where the chi-square value $\chi^2_{n-1,\alpha}$ denotes the number for which

$$P(\chi_{n-1}^2 > \chi_{n-1,\alpha}^2) = \alpha$$

Confidence Intervals for the Population Variance

(continued)

The $(1 - \alpha)$ % confidence interval for the population variance is

$$\frac{(n-1)s^2}{\chi^2_{n-1, \alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{n-1, 1-\alpha/2}}$$

Example

You are testing the speed of a batch of computer processors. You collect the following data (in Mhz):

Sample size
Sample mean
Sample std dev

17 3004 74

Assume the population is normal. Determine the 95% confidence interval for σ_x^2

Finding the Chi-square Values

- n = 17 so the chi-square distribution has (n − 1) = 16 degrees of freedom
- α = 0.05, so use the the chi-square values with area 0.025 in each tail:

$$\chi_{n-1, \alpha/2}^2 = \chi_{16, 0.025}^2 = 28.85$$

$$\chi_{n-1, 1-\alpha/2}^2 = \chi_{16, 0.975}^2 = 6.91$$

Calculating the Confidence Limits

The 95% confidence interval is

$$\frac{(n-1)s^2}{\chi^2_{n-1, \alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{n-1, 1-\alpha/2}}$$

$$\frac{(17-1)(74)^2}{28.85} < \sigma^2 < \frac{(17-1)(74)^2}{6.91}$$

$$3037 < \sigma^2 < 12683$$

Converting to standard deviation, we are 95% confident that the population standard deviation of CPU speed is between 55.1 and 112.6 Mhz

Finite Populations

 If the sample size is more than 5% of the population size (and sampling is without replacement) then a finite population correction factor must be used when calculating the standard error

Finite Population Correction Factor

- Suppose sampling is without replacement and the sample size is large relative to the population size
- Assume the population size is large enough to apply the central limit theorem
- Apply the finite population correction factor when estimating the population variance

finite population correction factor =
$$\frac{N-n}{N-1}$$

Estimating the Population Mean

- Let a simple random sample of size n be taken from a population of N members with mean µ
- The sample mean is an unbiased estimator of the population mean µ
- The point estimate is:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

Finite Populations: Mean

 If the sample size is more than 5% of the population size, an unbiased estimator for the variance of the sample mean is

$$\hat{\sigma}_{\bar{x}}^2 = \frac{s^2}{n} \left(\frac{N-n}{N-1} \right)$$

 So the 100(1-α)% confidence interval for the population mean is

$$\left| \overline{x} - t_{n-1,\alpha/2} \hat{\sigma}_{\overline{x}} < \mu \right| < \overline{x} + t_{n-1,\alpha/2} \hat{\sigma}_{\overline{x}}$$

Estimating the Population Total

- Consider a simple random sample of size n from a population of size N
- The quantity to be estimated is the population total Nµ
- An unbiased estimation procedure for the population total Nµ yields the point estimate Nx̄

Estimating the Population Total

An unbiased estimator of the variance of the population total is

$$N^2 \hat{\sigma}_{\bar{x}}^2 = N^2 \frac{s^2}{n} \frac{(N-n)}{N-1}$$

 A 100(1 - α)% confidence interval for the population total is

$$N\overline{x} - t_{n\text{-}1,\alpha/2} N\hat{\sigma}_{\overline{x}} \ < \ N\mu \ < \ N\overline{x} + t_{n\text{-}1,\alpha/2} N\hat{\sigma}_{\overline{x}}$$

Confidence Interval for Population Total: Example

A firm has a population of 1000 accounts and wishes to estimate the total population value

A sample of 80 accounts is selected with average balance of \$87.6 and standard deviation of \$22.3

Find the 95% confidence interval estimate of the total balance

Example Solution

$$N = 1000$$
, $n = 80$, $\bar{x} = 87.6$, $s = 22.3$

$$\begin{aligned} N^2 \hat{\sigma}_{\bar{x}}^2 &= N^2 \frac{s^2}{n} \frac{(N-n)}{N-1} = (1000)^2 \frac{(22.3)^2}{80} \frac{920}{999} = 5724559.6 \\ N\hat{\sigma}_{\bar{x}} &= \sqrt{5724559.6} = 2392.6 \end{aligned}$$

$$N\bar{x} \pm t_{79,0.025}N\hat{\sigma}_{\bar{x}} = (1000)(87.6) \pm (1.9905)(2392.6)$$

$$82837.53 < N\mu < 92362.47$$

The 95% confidence interval for the population total balance is \$82,837.53 to \$92,362.47

Estimating the Population Proportion

- Let the true population proportion be P
- Let p̂ be the sample proportion from n observations from a simple random sample
- The sample proportion, p̂, is an unbiased estimator of the population proportion, P

Finite Populations: Proportion

 If the sample size is more than 5% of the population size, an unbiased estimator for the variance of the population proportion is

$$\hat{\sigma}_{\hat{p}}^{2} = \frac{\hat{p}(1-\hat{p})}{n} \left(\frac{N-n}{N-1}\right)$$

 So the 100(1-α)% confidence interval for the population proportion is

$$\hat{p} - z_{\alpha/2} \hat{\sigma}_{\hat{p}} < P < \hat{p} + z_{\alpha/2} \hat{\sigma}_{\hat{p}}$$

Chapter Summary

- Introduced the concept of confidence intervals
- Discussed point estimates
- Developed confidence interval estimates
- Created confidence interval estimates for the mean (σ² known)
- Introduced the Student's t distribution
- Determined confidence interval estimates for the mean (σ² unknown)

Chapter Summary

(continued)

- Created confidence interval estimates for the proportion
- Created confidence interval estimates for the variance of a normal population
- Applied the finite population correction factor to form confidence intervals when the sample size is not small relative to the population size