Statistics for Business and Economics 7th Edition

Chapter 10

Hypothesis Testing: Additional Topics

Chapter Goals

After completing this chapter, you should be able to:

- Test hypotheses for the difference between two population means
 - Two means, matched pairs
 - Independent populations, population variances known
 - Independent populations, population variances unknown but equal
- Complete a hypothesis test for the difference between two proportions (large samples)
- Use the chi-square distribution for tests of the variance of a normal distribution
- Use the F table to find critical F values
- Complete an F test for the equality of two variances

- Repeated measures (before/after)
- Use difference between paired values:

$$\mathbf{d}_{i} = \mathbf{x}_{i} - \mathbf{y}_{i}$$

- Assumptions:
 - Both Populations Are Normally Distributed

Samples

Test Statistic: Dependent Samples

The test statistic for the mean difference is a t value, with n - 1 degrees of freedom:

 D_0 = hypothesized mean difference s_d = sample standard dev. of differences n = the sample size (number of pairs)

Matched Pairs Example

Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of complaints? You collect the following data:

<u>Salesperson</u>	Number of Before (1)	<u>Complaints</u> : <u>After (2)</u>	(2) - (1) <u>Difference, d_i</u>	$\frac{\overline{d}}{d} = \frac{2 u_i}{n}$
C.B.	6	4	- 2	4.2
п.н. М.Н.	20	2	-14 - 1	$\sum_{\mathbf{q}} \left(\mathbf{d}_{i} - \overline{\mathbf{d}} \right)^{2}$
R.K.	0	0	0	$S_d = \sqrt{\frac{n}{n-1}}$
IVI.O.	7	0	<u>- 4</u> -21	= 5.67

Matched Pairs: Solution

■ Has the training made a difference in the number of complaints (at the α = 0.05 level)?

$$\begin{array}{l} \mathsf{H}_0\colon \mu_{\mathsf{x}} - \mu_{\mathsf{y}} = \mathbf{0} \\ \mathsf{H}_1\colon \mu_{\mathsf{x}} - \mu_{\mathsf{y}} \neq \mathbf{0} \end{array}$$

$$\alpha = .05 \qquad \overline{d} = -4.2$$

Critical Value =
$$\pm 2.776$$

d f = n - 1 = 4

Test Statistic:

(t stat is not in the reject region) Conclusion: There is not a

- 2.776

- 1.66

Decision: Do not reject *H*₀

Reject

α/2

significant change in the number of complaints.

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Reject

α/2

2.776

Population means, independent samples Goal: Form a confidence interval for the difference between two population means, $\mu_x - \mu_y$

- Different populations
 - Unrelated
 - Independent
 - Sample selected from one population has no effect on the sample selected from the other population
 - Normally distributed

has a standard normal distribution

Hypothesis Tests for Two Population Means

Two Population Means, Independent Samples

Lower-tail test:

$$H_{0}: \mu_{x} \ge \mu_{y}$$

$$H_{1}: \mu_{x} < \mu_{y}$$
i.e.,

$$H_{0}: \mu_{x} - \mu_{y} \ge 0$$

$$H_{1}: \mu_{x} - \mu_{y} < 0$$

Upper-tail test: $H_0: \mu_x \le \mu_y$ $H_1: \mu_x > \mu_y$ i.e., $H_0: \mu_x - \mu_y \le 0$ $H_1: \mu_x - \mu_y \ge 0$ Two-tail test: $H_0: \mu_x = \mu_y$ $H_1: \mu_x \neq \mu_y$ i.e., $H_0: \mu_x - \mu_y = 0$ $H_1: \mu_x - \mu_y \neq 0$

$\sigma_x{}^2$ and $\sigma_y{}^2$ Unknown, Assumed Equal

Population means, independent samples

$$\sigma_{x}^{\ 2}$$
 and $\sigma_{y}^{\ 2}$ known

$$\sigma_x{}^2$$
 and $\sigma_y{}^2$ unknowr

$$\sigma_{x}^{2} \text{ and } \sigma_{y}^{2}$$
assumed equal
$$\sigma_{x}^{2} \text{ and } \sigma_{y}^{2}$$
assumed unequal

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown but assumed equal

$\sigma_x{}^2$ and $\sigma_y{}^2$ Unknown, Assumed Equal

(continued)

Population means, independent samples

$$\sigma_{x}^{\ 2}$$
 and $\sigma_{y}^{\ 2}$ known

 $\sigma_{x}{}^{2}$ and $\sigma_{y}{}^{2}$ unknown

$$\sigma_{x}^{2} \text{ and } \sigma_{y}^{2}$$
assumed equal
$$\sigma_{x}^{2} \text{ and } \sigma_{y}^{2}$$
assumed unequal

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

The population variances are assumed equal, so use the two sample standard deviations and pool them to estimate σ

 use a t value with (n_x + n_y – 2) degrees of freedom

Test Statistic, σ_x^2 and σ_y^2 Unknown, Equal

$$\sigma_x^2$$
 and σ_y^2 unknown
 σ_x^2 and σ_y^2
assumed equal
 σ_x^2 and σ_y^2
assumed unequal

The test statistic for $\mu_x - \mu_y$ is:

Where t has $(n_1 + n_2 - 2) d.f.$,

and

$$s_p^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}$$

Pooled Variance t Test: Example

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

	NYSE	NASDAQ
Number	21	25
Sample mean	3.27	2.53
Sample std dev	1.30	1.16

Assuming both populations are
approximately normal with
equal variances, is
there a difference in average
yield (
$$\alpha = 0.05$$
)?

$\sigma_x{}^2$ and $\sigma_y{}^2$ Unknown, Assumed Unequal

Population means, independent samples

 $\sigma_{x}^{\ 2}$ and $\sigma_{y}^{\ 2}$ known

 $\sigma_{x}{}^{2}$ and $\sigma_{y}{}^{2}$ unknown

$$\sigma_{x}^{2} \text{ and } \sigma_{y}^{2}$$
assumed equal
$$\sigma_{x}^{2} \text{ and } \sigma_{y}^{2}$$
assumed unequal

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown and assumed unequal

$\sigma_x{}^2$ and $\sigma_y{}^2$ Unknown, Assumed Unequal

(continued)

Population means, independent samples

$$\sigma_{x}^{\ 2}$$
 and $\sigma_{y}^{\ 2}$ known

 $\sigma_{x}{}^{2}$ and $\sigma_{y}{}^{2}$ unknown

$$\sigma_{x}^{2} \text{ and } \sigma_{y}^{2}$$
assumed equal
$$\sigma_{x}^{2} \text{ and } \sigma_{y}^{2}$$
assumed unequal

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Forming interval estimates:

- The population variances are assumed unequal, so a pooled variance is not appropriate
- use a t value with v degrees of freedom, where

Ch. 10-24

Test Statistic, σ_x^2 and σ_y^2 Unknown, Unequal

$$\sigma_x^2$$
 and σ_y^2 unknown
 σ_x^2 and σ_y^2
assumed equal
 σ_x^2 and σ_y^2
assumed unequal

The test statistic for $\mu_{x} - \mu_{y} \quad \text{is:}$ $t = \frac{(\overline{x} - \overline{y}) - D_{0}}{\sqrt{\frac{s_{x}^{2} + S_{y}^{2}}{n_{x}} + \frac{n_{y}^{2}}{n_{y}}}}$

Where t has ν degrees of freedom:

Two Population Proportions

Population proportions

Goal: Test hypotheses for the difference between two population proportions, $P_x - P_y$

Assumptions:

Both sample sizes are large,

nP(1 - P) > 5

is approximately normally distributed

Test Statistic for Two Population Proportions

Population proportions

The test statistic for $H_0: P_x - P_y = 0$ is a z value:

Where
$$\hat{p}_0 = \frac{n_x \hat{p}_x + n_y \hat{p}_y}{n_x + n_y}$$

Example: Two Population Proportions

Is there a significant difference between the proportion of men and the proportion of women who will vote Yes on Proposition A?

- In a random sample, 36 of 72 men and 31 of 50 women indicated they would vote Yes
- Test at the .05 level of significance

Example: Two Population Proportions

(continued)

The hypothesis test is:

 $\begin{array}{l} H_0: \ P_M - P_W = 0 \quad (\text{the two proportions are equal}) \\ H_1: \ P_M - P_W \neq 0 \quad (\text{there is a significant difference between} \\ \quad \text{proportions}) \end{array}$

The sample proportions are:

•	Men:	$\hat{p}_{M} = 36/72 = .50$
•	Women:	$\hat{p}_{W} = 31/50 = .62$

The estimate for the common overall proportion is:

$$\hat{p}_{0} = \frac{n_{M}\hat{p}_{M} + n_{W}\hat{p}_{W}}{n_{M} + n_{W}} = \frac{72(36/72) + 50(31/50)}{72 + 50} = \frac{67}{122} = .549$$

10.4 Hypothesis Tests for Two Variances Goal: Test hypotheses about two **Tests for Two** population variances Population Variances $H_0: \sigma_x^2 \ge \sigma_v^2$ Lower-tail test $H_1: \sigma_x^2 < \sigma_v^2$ test statistic $H_0: \sigma_x^2 \le \sigma_v^2$ Upper-tail test $H_1: \sigma_x^2 > \sigma_y^2$

The two populations are assumed to be independent and normally distributed

 $H_0: \sigma_x^2 = \sigma_v^2$

 $H_1: \sigma_x^2 \neq \sigma_y^2$

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall

Two-tail test

Hypothesis Tests for Two Variances

(continued)

The random variable

$$F = \frac{s_x^2 / \sigma_x^2}{s_y^2 / \sigma_y^2}$$

Has an F distribution with $(n_x - 1)$ numerator degrees of freedom and $(n_y - 1)$ denominator degrees of freedom

Denote an F value with v_1 numerator and v_2

denominator degrees of freedom by F_{v_1,v_2}

where F has $(n_x - 1)$ numerator degrees of freedom and $(n_y - 1)$ denominator degrees of freedom

Decision Rules: Two Variances

Use s_x^2 to denote the larger variance.

Reject
$$H_0$$
 if $F > F_{n_x-1,n_y-1,\alpha}$

rejection region for a twotail test is:

**Reject H₀ if F > F<sub>n_x-1,n_y-1,
$$\alpha/2$$</sub>**

where s_x² is the larger of the two sample variances

Example: F Test

You are a financial analyst for a brokerage firm. You want to compare dividend yields between stocks listed on the NYSE & NASDAQ. You collect the following data:

	<u>NYSE</u>	NASDAQ
Number	21	25
Mean	3.27	2.53
Std dev	1.30	1.16

Is there a difference in the variances between the NYSE & NASDAQ at the α = 0.10 level?

F Test: Example Solution

Form the hypothesis test:

 $H_0: \sigma_x^2 = \sigma_v^2$

(there is no difference between variances) $H_1: \sigma_x^2 \neq \sigma_y^2$ (there is a difference between variances)

Find the F critical values for $\alpha = .10/2$:

Degrees of Freedom:

Numerator

(NYSE has the larger standard deviation):

•
$$n_x - 1 = 21 - 1 = 20$$
 d.f.

Denominator:

•
$$n_y - 1 = 25 - 1 = 24$$
 d.f.

$$F_{n_x-1,n_y-1,\alpha/2}$$

$$= F_{20,24,0.10/2} = 2.03$$

• Conclusion: There is not sufficient evidence of a difference in variances at $\alpha = .10$

Two-Sample Tests in EXCEL 2007

For paired samples (t test):

Data | data analysis... | t-test: paired two sample for means

For independent samples:

- Independent sample Z test with variances known:
 - Data | data analysis | z-test: two sample for means

For variances...

- F test for two variances:
 - Data | data analysis | F-test: two sample for variances

Chapter Summary

- Compared two dependent samples (paired samples)
 - Performed paired sample t test for the mean difference
- Compared two independent samples
 - Performed z test for the differences in two means
 - Performed pooled variance t test for the differences in two means
- Compared two population proportions
 - Performed z-test for two population proportions

(continued)

- Performed F tests for the difference between two population variances
- Used the F table to find F critical values