# Statistics for Business and Economics $7^{\text {th }}$ Edition 

## Chapter 10

## Hypothesis Testing: Additional Topics

## Chapter Goals

After completing this chapter, you should be able to:

- Test hypotheses for the difference between two population means
- Two means, matched pairs
- Independent populations, population variances known
- Independent populations, population variances unknown but equal
- Complete a hypothesis test for the difference between two proportions (large samples)
- Use the chi-square distribution for tests of the variance of a normal distribution
- Use the F table to find critical $F$ values
- Complete an F test for the equality of two variances


## Two Sample Tests

## Two Sample Tests

Population Means, Dependent Samples

## Examples:

Same group before vs. after treatment

Group 1 vs. independent Group 2

Population Proportions

Population Variances

## Dependent Samples

Tests Means of 2 Related Populations

## Dependent Samples

- Paired or matched samples
- Repeated measures (before/after)
- Use difference between paired values:

$$
d_{i}=x_{i}-y_{i}
$$

- Assumptions:
- Both Populations Are Normally Distributed


## Test Statistic: Dependent Samples

The test statistic for the mean difference is a t value, with $\mathrm{n}-1$ degrees of freedom:

## Dependent Samples

$$
t=\frac{\overline{\mathrm{d}}-\mathrm{D}_{0}}{\frac{\mathrm{~S}_{\mathrm{d}}}{\sqrt{n}}} \text { where } \overline{\mathrm{d}}=\frac{\sum_{\mathrm{d}} \mathrm{~d}_{\mathrm{i}}}{\mathrm{n}}=\overline{\mathrm{x}}-\overline{\mathrm{y}}
$$

$\mathrm{D}_{0}=$ hypothesized mean difference
$\mathrm{s}_{\mathrm{d}}=$ sample standard dev. of differences
$\mathrm{n}=$ the sample size (number of pairs)

## Decision Rules: Matched Pairs

## Matched or Paired Samples



Reject $\mathrm{H}_{0}$ if $\mathrm{t}<-\mathrm{t}_{\mathrm{n}-1, \alpha}$

Upper-tail test:
$H_{0}: \mu_{x}-\mu_{y} \leq 0$
$\mathrm{H}_{1}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}}>0$


Reject $\mathrm{H}_{0}$ if $\mathrm{t}>\mathrm{t}_{\mathrm{n}-1, \alpha}$

$$
\text { Where } \quad \mathrm{t}=\frac{\overline{\mathrm{d}}-\mathrm{D}_{0}}{\frac{\mathrm{~s}_{\mathrm{d}}}{\sqrt{n}}} \text { has } \mathrm{n}-1 \text { d.f. }
$$

Two-tail test:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{\mathrm{x}}-\mu_{y}=0 \\
& \mathrm{H}_{1}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}} \neq 0
\end{aligned}
$$



Reject $\mathrm{H}_{0}$ if $\mathrm{t}<-\mathrm{t}_{\mathrm{n}-1, \alpha / 2}$ or $t>t_{n-1, \alpha / 2}$

## Matched Pairs Example

- Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of complaints? You collect the following data:

|  | Number of Complaints: |  | (2) - (1) | $\overline{\mathrm{d}}=\frac{\sum \mathrm{n}}{\mathrm{n}}$ |
| :---: | :---: | :---: | :---: | :---: |
| Salesperson | Before (1) | After (2) | Difference, $\mathbf{d}_{i}$ |  |
| C.B. | 6 | 4 | - 2 |  |
| T.F. | 20 | 6 | -14 |  |
| M.H. | 3 | 2 | - 1 | $S_{\text {d }}=\sum^{\left(d_{i}-d\right)^{2}}$ |
| R.K. | 0 | 0 | 0 | $S_{d}=\sqrt{ } \frac{}{n-1}$ |
| M.O. | 4 | 0 | - 4 |  |
|  |  |  | -21 | $=5.67$ |

## Matched Pairs: Solution

■ Has the training made a difference in the number of complaints (at the $\alpha=0.05$ level)?

$$
\begin{aligned}
& H_{0}: \mu_{x}-\mu_{y}=0 \\
& H_{1}: \mu_{x}-\mu_{y} \neq 0
\end{aligned}
$$

$$
\alpha=.05 \quad \bar{d}=-4.2
$$

Critical Value $= \pm 2.776$

$$
\text { d.f. }=n-1=4
$$

Test Statistic:

$$
t=\frac{\bar{d}-D_{0}}{s_{d} / \sqrt{n}}=\frac{-4.2-0}{5.67 / \sqrt{5}}=-1.66
$$



Decision: Do not reject $H_{0}$ (t stat is not in the reject region)

Conclusion: There is not a significant change in the number of complaints.

### 10.2 Difference Between Two Means

Population means, independent samples

Goal: Form a confidence interval for the difference between two population means, $\mu_{x}-\mu_{y}$

- Different populations
- Unrelated
- Independent
- Sample selected from one population has no effect on the sample selected from the other population
- Normally distributed


## Difference Between Two Means

Population means, independent samples
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ known
Test statistic is a z value
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown

| $\begin{array}{c}\sigma_{x}{ }^{2} \text { and } \sigma_{y}{ }^{2} \\ \text { assumed equal }\end{array}$ |
| :---: |
| $\begin{array}{c}\sigma_{x}{ }^{2} \text { and } \sigma_{y}{ }^{2} \\ \text { assumed unequal }\end{array}$ |

Test statistic is a a value from the Student's t distribution

## $\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ Known

## Population means, independent samples

## $\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ known

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown

## Assumptions:

- Samples are randomly and independently drawn
- both population distributions are normal
- Population variances are known


## $\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ Known

Population means, independent samples
$\sigma_{x}^{2}$ and $\sigma_{y}{ }^{2}$ known
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown

When $\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ are known and both populations are normal, the variance of $\bar{X}-\bar{Y}$ is

$$
\sigma_{\bar{x}-\bar{y}}^{2}=\frac{\sigma_{x}^{2}}{n_{x}}+\frac{\sigma_{y}^{2}}{n_{y}}
$$

...and the random variable

$$
Z=\frac{(\bar{x}-\bar{y})-\left(\mu_{x}-\mu_{Y}\right)}{\sqrt{\frac{\sigma_{x}^{2}}{n_{x}}+\frac{\sigma_{y}^{2}}{n_{y}}}}
$$

has a standard normal distribution

## Test Statistic, $\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ Known

Population means, independent samples
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ known
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown

$$
H_{0}: \mu_{x}-\mu_{y}=D_{0}
$$

The test statistic for

$$
\mu_{x}-\mu_{y} \text { is: }
$$

$$
z=\frac{(\bar{x}-\bar{y})-D_{0}}{\sqrt{\frac{\sigma_{x}^{2}}{n_{x}}+\frac{\sigma_{y}^{2}}{n_{y}}}}
$$

## Hypothesis Tests for Two Population Means

## Two Population Means, Independent Samples

$$
\begin{gathered}
\text { Lower-tail test: } \\
\qquad \begin{array}{c}
H_{0}: \mu_{\mathrm{x}} \geq \mu_{\mathrm{y}} \\
\mathrm{H}_{1}: \mu_{\mathrm{x}}<\mu_{\mathrm{y}} \\
\text { i.e., } \\
\mathrm{H}_{0}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}} \geq 0 \\
\mathrm{H}_{1}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}}<0
\end{array}
\end{gathered}
$$

Upper-tail test:
$\mathrm{H}_{0}: \mu_{\mathrm{x}} \leq \mu_{\mathrm{y}}$
$\mathrm{H}_{1}: \mu_{\mathrm{x}}>\mu_{\mathrm{y}}$
i.e.,
$\mathrm{H}_{0}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}} \leq 0$
$\mathrm{H}_{1}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}}>0$

Two-tail test:
$\mathrm{H}_{0}: \mu_{\mathrm{x}}=\mu_{\mathrm{y}}$
$\mathrm{H}_{1}: \mu_{\mathrm{x}} \neq \mu_{\mathrm{y}}$
i.e.,
$\mathrm{H}_{0}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}}=0$
$\mathrm{H}_{1}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}} \neq 0$

## Decision Rules

## Two Population Means, Independent Samples, Variances Known

Lower-tail test:
$\mathrm{H}_{0}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}} \geq 0$
$\mathrm{H}_{1}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}}<0$


Reject $\mathrm{H}_{0}$ if $\mathrm{z}<-\mathrm{z}_{\alpha}$

Upper-tail test:
$H_{0}: \mu_{x}-\mu_{y} \leq 0$
$H_{1}: \mu_{x}-\mu_{y}>0$


Reject $\mathrm{H}_{0}$ if $\mathrm{z}>\mathrm{z}_{\alpha}$

Two-tail test:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}}=0 \\
& \mathrm{H}_{1}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}} \neq 0
\end{aligned}
$$



Reject $H_{0}$ if $z<-z_{\alpha / 2}$ or $Z>Z_{\alpha / 2}$

## $\sigma_{x}^{2}$ and $\sigma_{y}^{2}$ Unknown, Assumed Equal

Population means, independent samples
$\sigma_{x}^{2}$ and $\sigma_{y}{ }^{2}$ known
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown

| $\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ |
| :---: |
| assumed equal |

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ assumed unequal

## Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown but assumed equal


## $\sigma_{x}^{2}$ and $\sigma_{y}^{2}$ Unknown, Assumed Equal

## Population means, independent samples

$$
\sigma_{x}^{2} \text { and } \sigma_{y}^{2} \text { known }
$$

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown


- The population variances are assumed equal, so use the two sample standard deviations and pool them to estimate $\sigma$
- use a t value with $\left(n_{x}+n_{y}-2\right)$ degrees of freedom


## Test Statistic, $\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ Unknown, Equal

## $\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown

## $\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ assumed equal

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ assumed unequal

The test statistic for

$$
\mu_{x}-\mu_{y} \text { is: }
$$

$$
t=\frac{(\bar{x}-\bar{y})-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{s_{p}^{2}}{n_{x}}+\frac{s_{p}^{2}}{n_{y}}}}
$$

Where $t$ has $\left(n_{1}+n_{2}-2\right)$ d.f.,
and

$$
\mathrm{s}_{\mathrm{p}}^{2}=\frac{\left(\mathrm{n}_{\mathrm{x}}-1\right) \mathrm{s}_{\mathrm{x}}^{2}+\left(\mathrm{n}_{\mathrm{y}}-1\right) \mathrm{s}_{\mathrm{y}}^{2}}{\mathrm{n}_{\mathrm{x}}+\mathrm{n}_{\mathrm{y}}-2}
$$

## Decision Rules

## Two Population Means, Independent Samples, Variances Unknown

Lower-tail test:
$\mathrm{H}_{0}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}} \geq 0$
$\mathrm{H}_{1}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}}<0$

$-t_{\alpha}$
Reject $\mathrm{H}_{0}$ if
$t<-t(n 1+n 2-2), \alpha$

Upper-tail test:
$\mathrm{H}_{0}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}} \leq 0$
$\mathrm{H}_{1}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}}>0$


Reject $\mathrm{H}_{0}$ if
$t>t_{(n 1+n 2-2), \alpha}$

Two-tail test:
$\mathrm{H}_{0}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}}=0$
$\mathrm{H}_{1}: \mu_{\mathrm{x}}-\mu_{\mathrm{y}} \neq 0$


Reject $\mathrm{H}_{0}$ if

$$
\begin{aligned}
& \mathrm{t}<-\mathrm{t}_{(\mathrm{n} 1+\mathrm{n} 2-2), \mathrm{\alpha} / 2} \text { or } \\
& \mathrm{t}>\mathrm{t}_{(\mathrm{n} 1+\mathrm{n} 2-2), \mathrm{a} / 2}
\end{aligned}
$$

## Pooled Variance t Test: Example

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE \& NASDAQ? You collect the following data:

## Number <br> Sample mean Sample std dev

| NYSE |  | NASDAQ |
| :---: | :---: | :---: |
|  | 21 | 25 |
| 3.27 | 2.53 |  |
| 1.30 | 1.16 |  |

Assuming both populations are approximately normal with
 equal variances, is there a difference in average yield ( $\alpha=0.05$ )?

## Calculating the Test Statistic

The test statistic is:

$$
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{(3.27-2.53)-0}{\sqrt{1.5021\left(\frac{1}{21}+\frac{1}{25}\right)}}=2.040
$$

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}=\frac{(21-1) 1.30^{2}+(25-1) 1.16^{2}}{(21-1)+(25-1)}=1.5021
$$

## Solution

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \text { i.e. }\left(\mu_{1}=\mu_{2}\right) \\
& H_{1}: \mu_{1}-\mu_{2} \neq 0 \text { i.e. }\left(\mu_{1} \neq \mu_{2}\right) \\
& \hline \alpha=0.05 \\
& \text { df }=21+25-2=44
\end{aligned}
$$

Critical Values: $\mathrm{t}= \pm 2.0154$

Test Statistic:

$$
t=\frac{3.27-2.53}{\sqrt{1.5021\left(\frac{1}{21}+\frac{1}{25}\right)}}=2.040
$$



## Decision:

Reject $\mathrm{H}_{0}$ at $\alpha=0.05$ Conclusion:
There is evidence of a difference in means.

## $\sigma_{x}^{2}$ and $\sigma_{y}^{2}$ Unknown, Assumed Unequal

## Population means, independent samples

$$
\sigma_{x}^{2} \text { and } \sigma_{y}^{2} \text { known }
$$

$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ assumed equal
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$
assumed unequal

## Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown and assumed unequal


## $\sigma_{x}^{2}$ and $\sigma_{y}^{2}$ Unknown, Assumed Unequal

Population means, independent samples
$\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ known
$\sigma_{x}^{2}$ and $\sigma_{y}^{2}$ unknown
$\begin{gathered}\sigma_{x}{ }^{2} \text { and } \sigma_{y}{ }^{2} \\ \text { assumed equal }\end{gathered}$
$\begin{gathered}\sigma_{x}{ }^{2} \text { and } \sigma_{y}{ }^{2} \\ \text { assumed unequal }\end{gathered}$ *

- The population variances are assumed unequal, so a pooled variance is not appropriate
- use a t value with $v$ degrees of freedom, where

$$
v=\frac{\left[\left(\frac{s_{x}^{2}}{n_{x}}\right)+\left(\frac{s_{y}^{2}}{n_{y}}\right)\right]^{2}}{\left(\frac{s_{x}^{2}}{n_{x}}\right)^{2} /\left(n_{x}-1\right)+\left(\frac{s_{y}^{2}}{n_{y}}\right)^{2} /\left(n_{y}-1\right)}
$$

Ch. 10-24

## Test Statistic, $\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ Unknown, Unequal

## $\sigma_{x}{ }^{2}$ and $\sigma_{y}{ }^{2}$ unknown



The test statistic for

$$
\mu_{x}-\mu_{y} \text { is: }
$$

$$
t=\frac{(\bar{x}-\bar{y})-D_{0}}{\sqrt{\frac{s_{x}^{2}}{n_{x}}+\frac{s_{y}^{2}}{n_{Y}}}}
$$

Where $t$ has $v$ degrees of freedom:
$v=\frac{\left[\left(\frac{\mathrm{s}_{\mathrm{x}}^{2}}{\mathrm{n}_{\mathrm{x}}}\right)+\left(\frac{\mathrm{s}_{\mathrm{y}}^{2}}{\mathrm{n}_{\mathrm{y}}}\right)\right]^{2}}{\left(\frac{\mathrm{~s}_{\mathrm{x}}^{2}}{\mathrm{n}_{\mathrm{x}}}\right)^{2} /\left(\mathrm{n}_{\mathrm{x}}-1\right)+\left(\frac{\mathrm{s}_{\mathrm{y}}^{2}}{\mathrm{n}_{\mathrm{y}}}\right)^{2} /\left(\mathrm{n}_{\mathrm{y}}-1\right)}$

## Two Population Proportions

Population proportions

Goal: Test hypotheses for the difference between two population proportions, $P_{x}-P_{y}$

## Assumptions:

Both sample sizes are large,

$$
n P(1-P)>5
$$

## Two Population Proportions

## Population proportions

- The random variable

$$
Z=\frac{\left(\hat{p}_{x}-\hat{p}_{y}\right)-\left(p_{x}-p_{y}\right)}{\sqrt{\frac{\hat{p}_{x}\left(1-\hat{p}_{x}\right)}{n_{x}}+\frac{\hat{p}_{y}\left(1-\hat{p}_{y}\right)}{n_{y}}}}
$$

is approximately normally distributed

## Test Statistic for Two Population Proportions

The test statistic for

Population proportions
$\mathrm{H}_{0}$ : $\mathrm{P}_{\mathrm{x}}-\mathrm{P}_{\mathrm{y}}=0$
is a $z$ value:

$$
z=\frac{\left(\hat{p}_{x}-\hat{p}_{y}\right)}{\sqrt{\frac{\hat{p}_{0}\left(1-\hat{p}_{0}\right)}{n_{x}}+\frac{\hat{p}_{0}\left(1-\hat{p}_{0}\right)}{n_{y}}}}
$$

Where $\hat{p}_{0}=\frac{n_{x} \hat{p}_{x}+n_{y} \hat{p}_{\mathrm{p}}}{n_{x}+n_{y}}$

## Decision Rules: Proportions

## Population proportions



Reject $\mathrm{H}_{0}$ if $\mathrm{z}<-\mathrm{z}_{\alpha}$

| Upper-tail test: |
| :--- |
| $H_{0}: P_{x}-P_{y} \leq 0$ |
| $H_{1}: P_{x}-P_{y}>0$ |



Reject $\mathrm{H}_{0}$ if $\mathrm{z}>\mathrm{z}_{\alpha}$

Two-tail test:

$$
\begin{aligned}
& H_{0}: P_{x}-P_{y}=0 \\
& H_{1}: P_{x}-P_{y} \neq 0
\end{aligned}
$$



Reject $H_{0}$ if $z<-z_{\alpha / 2}$ or $z>z_{\alpha / 2}$

## Example: Two Population Proportions

Is there a significant difference between the proportion of men and the proportion of women who will vote Yes on Proposition A?

- In a random sample, 36 of 72 men and 31 of 50 women indicated they would vote Yes

- Test at the .05 level of significance


## Example: Two Population Proportions

- The hypothesis test is:
$\mathrm{H}_{0}: \mathrm{P}_{\mathrm{M}}-\mathrm{P}_{\mathrm{W}}=0$ (the two proportions are equal)
$\mathrm{H}_{1}: \mathrm{P}_{\mathrm{M}}-\mathrm{P}_{\mathrm{W}} \neq 0$ (there is a significant difference between proportions)
- The sample proportions are:

$$
\begin{array}{|ll}
\hline \text { Men: } & \hat{p}_{M}=36 / 72=.50 \\
\text { - Women: } & \hat{p}_{\mathrm{W}}=31 / 50=.62
\end{array}
$$

- The estimate for the common overall proportion is:

$$
\hat{p}_{0}=\frac{\mathrm{n}_{\mathrm{M}} \hat{\mathrm{p}}_{\mathrm{M}}+\mathrm{n}_{\mathrm{W}} \hat{\mathrm{p}}_{\mathrm{W}}}{\mathrm{n}_{\mathrm{M}}+\mathrm{n}_{\mathrm{W}}}=\frac{72(36 / 72)+50(31 / 50)}{72+50}=\frac{67}{122}=.549
$$

# Example: Two Population Proportions 

(continued)

The test statistic for $P_{M}-P_{W}=0$ is:

$$
\begin{aligned}
z & =\frac{\left(\hat{p}_{M}-\hat{p}_{W}\right)}{\sqrt{\frac{\hat{p}_{0}\left(1-\hat{p}_{0}\right)}{n_{1}}+\frac{\hat{p}_{0}\left(1-\hat{p}_{0}\right)}{n_{2}}}} \\
& =\frac{(.50-.62)}{\sqrt{\left(\frac{.549(1-.549)}{72}+\frac{.549(1-.549)}{50}\right)}} \\
& =-1.31
\end{aligned}
$$

Critical Values $= \pm 1.96$
For $\alpha=.05$

Conclusion: There is not significant evidence of a difference between men and women in proportions who will vote yes.

Tests for Two
Population Variances

F test statistic

- Goal: Test hypotheses about two population variances

$$
\begin{array}{ll}
H_{0}: \sigma_{x}^{2} \geq \sigma_{y}^{2} & \text { Lower-tail test } \\
H_{1}: \sigma_{x}^{2}<\sigma_{y}^{2} & \\
& \\
H_{0}: \sigma_{x}^{2} \leq \sigma_{y}^{2} & \text { Upper-tail test } \\
H_{1}: \sigma_{x}^{2}>\sigma_{y}^{2} & \\
H_{0}: \sigma_{x}^{2}=\sigma_{y}^{2} & \\
H_{1}: \sigma_{x}^{2} \neq \sigma_{y}^{2} & \text { Two-tail test }
\end{array}
$$

The two populations are assumed to be independent and normally distributed

## Hypothesis Tests for Two Variances

## Tests for Two Population Variances

F test statistic

The random variable

$$
F=\frac{s_{x}^{2} / \sigma_{x}^{2}}{s_{y}^{2} / \sigma_{y}^{2}}
$$

Has an $F$ distribution with $\left(n_{x}-1\right)$ numerator degrees of freedom and ( $n_{y}-1$ ) denominator degrees of freedom

Denote an $F$ value with $v_{1}$ numerator and $v_{2}$ denominator degrees of freedom by $F_{v_{1}, v_{2}}$

## Test Statistic



The critical value for a hypothesis test about two population variances is

$$
\mathrm{F}=\frac{\mathrm{S}_{\mathrm{x}}^{2}}{\mathrm{~s}_{\mathrm{y}}^{2}}
$$

where $F$ has $\left(n_{x}-1\right)$ numerator degrees of freedom and ( $\mathrm{n}_{\mathrm{y}}-1$ ) denominator degrees of freedom

## Decision Rules: Two Variances

Use $\mathrm{s}_{\mathrm{x}}{ }^{2}$ to denote the larger variance.


Reject $\mathrm{H}_{0}$ if $\mathrm{F}>\mathrm{F}_{\mathrm{n}_{\mathrm{x}}-1, \mathrm{n}_{\mathrm{y}}-1, \alpha}$


- rejection region for a twotail test is:


## Reject $\mathrm{H}_{0}$ if $\mathrm{F}>\mathrm{F}_{\mathrm{n}_{\mathrm{x}}-1, \mathrm{n}_{\mathrm{y}}-1, \alpha / 2}$

where $s_{x}{ }^{2}$ is the larger of the two sample variances

## Example: F Test

You are a financial analyst for a brokerage firm. You want to compare dividend yields between stocks listed on the NYSE \& NASDAQ. You collect the following data:

Number Mean Std dev

## NYSE

21
3.27
1.30

NASDAQ 25
2.53
1.16

Is there a difference in the variances between the NYSE \& NASDAQ at the $\alpha=0.10$ level?

## F Test: Example Solution

- Form the hypothesis test:

$$
\begin{array}{ll}
H_{0}: \sigma_{x}^{2}=\sigma_{y}^{2} \\
H_{1}: \sigma_{x}^{2} \neq \sigma_{y}^{2} & \text { (there is no difference between variances) } \\
\text { (there is a difference between variances) }
\end{array}
$$

- Find the F critical values for $\alpha=$.10/2:


## Degrees of Freedom:

- Numerator
(NYSE has the larger standard deviation):

$$
\begin{aligned}
& F_{n_{x}-1, n_{y}-1, \alpha / 2} \\
& =F_{20,24,0.10 / 2}=2.03
\end{aligned}
$$

$$
=n_{x}-1=21-1=20 \text { d.f. }
$$

- Denominator:

$$
=n_{y}-1=25-1=24 \text { d.f. }
$$

## F Test: Example Solution

- The test statistic is:

$$
F=\frac{s_{x}^{2}}{s_{y}^{2}}=\frac{1.30^{2}}{1.16^{2}}=1.256
$$

- $\mathrm{F}=1.256$ is not in the rejection region, so we do not reject $\mathrm{H}_{0}$

$$
\begin{aligned}
& \mathrm{H}_{0}: \sigma_{x}{ }^{2}=\sigma_{y}^{2} \\
& \mathrm{H}_{1}: \sigma_{x}^{2} \neq \sigma_{y}{ }^{2}
\end{aligned}
$$

$$
\alpha / 2=.05
$$

- Conclusion: There is not sufficient evidence of a difference in variances at $\alpha=.10$


## Two-Sample Tests in EXCEL 2007

For paired samples ( t test):

- Data | data analysis... | t-test: paired two sample for means

For independent samples:

- Independent sample Z test with variances known:
- Data | data analysis | z-test: two sample for means

For variances...

- F test for two variances:
- Data | data analysis | F-test: two sample for variances


## Chapter Summary

- Compared two dependent samples (paired samples)
- Performed paired sample t test for the mean difference
- Compared two independent samples
- Performed z test for the differences in two means
- Performed pooled variance $t$ test for the differences in two means
- Compared two population proportions
- Performed z-test for two population proportions


## Chapter Summary

- Performed $F$ tests for the difference between two population variances
- Used the F table to find F critical values

