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Introduction

Credit Default Swaps (CDS) have been one of the most significant financial innova-

tions in the last 20 years. They have become very popular among investment and

commercial banks, insurance companies, pension fund managers and many other eco-

nomic agents. As a result, the market has experienced enormous growth. According

to the Bank of International Settlements (BIS), the notional amount of single-name

CDS contracts grew from $5.1 trillion in December 2004 to $33.4 trillion in June 2008,

and was still $18.4 trillion in June 2010 following a decline in the aftermath of the

credit crisis.

The recent crisis put CDS in the spotlight, with policymakers now assigning them

a central role in many reforms. The success of these reforms depends on the efficient

functioning of the CDS market and on a thorough understanding of how it operates.

Recognizing this, much research has been dedicated to the valuation of CDS contracts,

econometric analysis of CDS premia, violations of the law of one price in the context

of basis trades, search frictions, counterparty risk, private information, and moral

hazard problems associated with holding both bonds issued by a particular entity

and CDS protection on this entity.1

In this paper we focus on another aspect of CDS. We study how the payoff of a

CDS contract is determined when a credit event occurs. Our theoretical analysis of the

unusual auction-based procedure reveals that this mechanism may lead to deviations

from fundamental value. The mispricing is attributable, in large part, to strategic

bidding on the part of investors holding CDS. Empirically, we find that CDS auctions

undervalue the underlying securities, by 10% on average. Because the magnitude of

this mispricing is economically large, our findings may have implications for how CDS

are valued, used and analyzed.

In a nutshell, a CDS is a contract that protects a buyer against the loss of a bond’s

principal in the case of a credit event (e.g., default, liquidation, debt restructuring,

etc.). Initially, CDS were settled physically with the cheapest-to-deliver option. Un-

der such settlement, the protection buyer was required to deliver any bond issued

1This work includes, but is not limited to, Acharya and Johnson (2007), Arora, Gandhi, and
Longstaff (2009), Bolton and Oehmke (2011), Duffie (1999), Duffie and Zhu (2011), Garleanu and
Pedersen (2011), Longstaff, Mithal, and Neis (2005), Pan and Singleton (2008), and Parlour and
Winton (2010).



by the reference entity to the protection seller in exchange for the bond’s par value.

But as a result of the rapid development of the CDS market, the notional amount of

outstanding CDS contracts came to exceed the notional amount of deliverable bonds

many times over. This made physical settlement impractical and led the industry to

develop a cash settlement mechanism. This mechanism is the object of our study.

While many derivatives are settled in cash, the settlement of CDS in this way is

challenging for two reasons. First, the underlying bond market is opaque and illiquid,

which makes establishing a benchmark bond price difficult. Second, parties with

both CDS and bond positions face recovery basis risk if their positions are not closed

simultaneously.2 The presence of this risk renders it necessary that the settlement

procedure include an option to replicate an outcome of the physical settlement.

In response to these challenges, the industry has developed a novel two-stage

auction. In the first stage of the auction, parties that wish to replicate the outcome of

the physical settlement submit their requests for physical delivery via dealers. These

requests for physical delivery are aggregated into the net open interest (NOI). Dealers

also submit bid and offer prices with a commitment to transact in a predetermined

minimal amount at the quoted prices. These quotations are used to construct the

initial market midpoint price (IMM). The IMM is used to derive a limit on the

final auction price, which is imposed to avoid potential price manipulation. The

limit is referred to as the price cap. The NOI and the IMM are announced to all

participants.

In the second stage a uniform divisible good auction is implemented, in which

the net open interest is cleared. Each participant may submit limit bids that are

combined with the bids of the dealers from the first stage. The bid that clears the

net open interest is declared to be the final auction price, which is then used to settle

the CDS contracts in cash.

We analyze the auction outcomes from both theoretical and empirical perspectives.

2Recovery basis risk can be illustrated as follows. Imagine a party that wishes to hedge a long
position in a bond by buying a CDS with the same notional amount. The final physically-settled
position is known in advance: the protection buyer delivers a bond in exchange for a predetermined
cash payment equal to par value. However, the cash-settled position is uncertain before the auction:
the protection buyer keeps the bond, pays the auction-determined bond value (unknown at the
outset) to the protection seller, and receives par value in exchange. The difference between the
market value of the bond held by the protection buyer and the auction-determined value is the
recovery basis.
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To study price formation, we follow Wilson (1979) and Back and Zender (1993). We

formalize the auction using an idealized setup in which all auction participants are

risk-neutral and have identical expected valuations of the bond, v. This case is not

only tractable, but also provides a useful benchmark against which to test whether

CDS auctions lead to the fair-value price. While Wilson (1979) shows that a standard

uniform divisible good auction can result in underpricing specifically, we demonstrate

that the current auction design can yield a final price either above or below v.

Our conclusion differs because participants of CDS auctions can have prior posi-

tions in derivatives on the asset being auctioned. If a participant chooses to settle

her entire CDS position physically, her final payoff is not affected by the auction

outcome. However, in the case of cash settlement, buyers of protection benefit if the

auction price is set below fair value, while sellers benefit if it is set above. Therefore,

an auction outcome depends on the size of the net CDS positions; that is, positions

that remain after participants submit their physical settlement requests.

To be specific, consider the case of positive NOI: a second-stage auction in which

the agents buy bonds. When the net CDS positions of protection sellers are less than

the NOI, the Wilson (1979) argument still holds. Underpricing occurs if the auction

participants choose not to bid aggressively. The current auction rule is such that

bids above the final price are guaranteed to be fully filled, so participants are not

sufficiently rewarded for raising their bids. On the other hand, when the net CDS

positions of sellers are larger than the NOI, bidding above the fair value and realizing

a loss from buying NOI units of bonds is counterbalanced by a reduction in the net

payoff of the existing CDS contracts. In the absence of a cap, the auction price would

be at least v.

Our theory delivers a rich set of testable predictions. Full implementation of such

tests requires data on individual CDS positions and bids, which are not available.

Nonetheless, we are able to analyse some aspects of the auction data and find evidence

that is consistent with our theoretical predictions. We use TRACE bond data to

construct the reference bond price. Using the reference bond price on the day before

the auction as a proxy for v, we find that the auction price is set at the price cap

whenever there is overpricing. Furthermore, the extent of overpricing does not exceed

the spread between the price cap and IMM . When the final auction price is uncapped

and the NOI is positive (a typical situation), the bonds are undervalued and the
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degree of undervaluation increases with the NOI. In addition, underlying bond prices

follow a V pattern around the auction day. In the 10 days before the auction, prices

decrease by 30% on average. They reach their lowest level on the day of the auction

(average underpricing of 10%), before reverting to their pre-auction levels over the

next 10 days. This evidence suggests that our conclusions are robust to the choice of

the reference bond price.

Our findings prompt us to consider ways to mitigate the observed mispricing. In

a standard setting, in which agents have no prior positions in derivative contracts

written on the asset being auctioned, Kremer and Nyborg (2004) suggest a likely

source of underpricing equilibria. They show that a simple change of allocation rule

from pro-rata on the margin to pro-rata destroys all underpricing equilibria. We show

that the same change of allocation rule would be beneficial in our setting. In addition,

we suggest that imposing an auction price cap conditional on the outcome of the first

stage could further reduce mispricing in equilibrium outcomes.

To our knowledge there are four other papers that examine CDS auctions, two of

which were carried out independently and contemporaneously with our work. Three

of the papers analyse the auctions empirically. Helwege, Maurer, Sarkar, and Wang

(2009) find no evidence of mispricing in an early sample of 10 auctions, of which only

four used the current auction format. Coudert and Gex (2010) study a somewhat

different sample of auctions, using Bloomberg data for reference bond prices. They

document a large gap between a bond’s price on the auction date and the final auction

price. However, they do not link the gap to the net open interest, nor do they provide

any theoretical explanations for their findings. Gupta and Sundaram (2011) also

document a V pattern in bond prices around the auction day. Under a simplifying

assumption that bidders in the second stage of the auction have zero CDS positions,

they find that a discriminatory auction format could reduce the mispricing. Finally,

Du and Zhu (2011) examine the outcome types that are possible in CDS auctions.

Their paper considers a special case of our model, in which they implicitly assume that

all market participants can buy and short-sell bonds of distressed companies at the fair

value v without any restrictions. This setup implies that only overpricing equilibria

can exist. Further, they treat physical settlement requests as given. We show that

this setup results in fair pricing if agents choose physical settlement optimally. We

allow for a more realistic setup, where there are constraints on short selling, and
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where some participants cannot hold distressed debt. We show that there can be

substantial underpricing in this case.

The remainder of the paper is organized as follows. Section 1 describes the CDS

auction methodology as it is currently employed. Section 2 describes the auction

model. Section 3 provides the main theoretical analysis. Section 4 relates the pre-

dictions of the theoretical model to empirical data from CDS auctions. Section 5

discusses modifications that could potentially improve the efficiency of the auction.

Section 6 concludes. The appendix contains proofs that are not provided in the main

text.

1 The Auction Format

This discussion is based on a reading of the auction protocols available from the

ISDA website. Initially, CDS auctions were designed for cash settlement of contracts

on credit indexes. The first auction that allowed single-name CDS to be settled in

cash was the Dura auction, conducted on November 28, 2006. The auction design

used in this case, and for all subsequent credit events, consists of two stages.

In the first stage, participants in the auction submit their requests for physical

settlement. Each request for physical settlement is an order to buy or sell bonds at the

auction price. To the best of the relevant party’s knowledge, the order must be in the

same direction as – and not in excess of – the party’s market position, which allows

the participants to replicate traditional physical settlement of the contracts. For

example, if a party is long one unit of protection and submits a request to physically

deliver one bond, the resulting cash flow is 100 and is identical to that of physical

settlement.

In addition, a designated group of agents (dealers) makes a two-way market in the

defaulted assets by submitting bids and offers with a predefined maximum spread and

associated quotation size. The spread and quotation sizes are subject to specification

prior to each auction and may vary depending on the liquidity of the defaulted assets.3

The first stage inputs are then used to calculate the net open interest (NOI) and

an ‘initial market midpoint’ (IMM), which are carried through to the second part

3The most common value of the spread is 2% of par. Quotation sizes range from $2 to $10 million;
$2 million is the most common amount.
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of the auction. The NOI is computed as the difference of the physical-settlement

buy and sell requests. The IMM is set by discarding crossing/touching bids and

offers, taking the ‘best half’ of each, and calculating the average. The best halves

would be, respectively, the highest bids and the lowest offers. If a dealer’s quotation

is crossed and is on the wrong side of the IMM , she must make a payment, called an

adjustment amount, to the ISDA. That is, she pays the adjustment amount if her bid

is higher than the IMM and the NOI is to sell, or if an offer is lower than the IMM

and the NOI is to buy. The adjustment amount itself is a product of the quotation

amount and the difference between the quotation and the IMM.

As an example, consider the Nortel Limited auction of February 10, 2009. Table

1 lists the market quotes submitted by participating dealers. Once these quotes have

been received, the bids are sorted in descending order and the offers in ascending

order. The highest bid is then matched with the lowest offer, the second highest bid

with the second lowest offer, and so on. Figure 1 displays the quotes from Table

1 which are organized in this way. For example, the Citibank bid of 10.5 and the

Barclays offer of 6.0 create a tradeable market.

The IMM is computed from the non-tradeable quotes. First, the ‘best half’ of

the non-tradeable quotes is selected (i.e., the first five pairs). Second, the IMM

is computed as an average of bid and offer quotes in the best half, rounded to the

nearest one-eighth of a percentage point. In our example there are nine pairs of such

quotes. The relevant bids are: three times 7.0 and two times 6.5. The relevant offers

are: two times 8.0; two times 8.5; and 9. The average is 7.6 and the rounded average

is 7.625.

Given the established IMM and the direction of open interest, dealers whose

quotes have resulted in tradeable markets pay the adjustment amount to the ISDA. In

the case of Nortel, the open interest was to sell. Thus, dealers whose bids crossed the

markets were required to pay an amount equal to (Bid-IMM) times the quotation

amount, which was $2 MM. Citigroup had to pay (10.5 − 7.625)/100 × $2MM =

$57500 and Banc of America Securities had to pay (9.5 − 7.625)/100 × $2MM =

$37500.

Finally, the direction of open interest determines the cap on the final price, where

the price itself is set in the second part of the auction. In the Nortel example the

open interest was to sell, which meant the final price could exceed the IMM by a
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maximum of 1.0. Thus the price cap was 8.625, as depicted in Figure 1.

After the publication of the IMM , the NOI, and the adjustment amounts, the

second stage of the auction begins. If the NOI is zero, the final price is set equal

to the IMM. If the NOI is non-zero, dealers may submit corresponding limit orders

on behalf of their customers (including those without CDS positions) – and for their

own account – to offset the NOI. Agents submit ‘buy’ limit orders if the NOI is

greater than zero and ‘sell’ limit orders if it is less than zero. In practice, it is unlikely

that all agents involved in the first stage will participate in the second stage as well.

Participants in the CDS market are diverse in terms of their investment objectives

and institutional constraints. For example, many mutual and pension funds may not

be allowed to hold any of the defaulted bonds.

Upon submission of the limit orders, if the NOI is to buy, the auction adminis-

trators match the open interest against the market bids from the first stage of the

auction, and against the limit bids from the second stage of the auction. They start

with the highest bid, proceeding through the second highest bid, third highest bid,

and so on, until either the entire net open interest or all of the bids have been matched.

If the NOI is cleared, the final price is set equal to the lowest bid corresponding to

the last matched limit order. However, if this bid exceeds the IMM by more than

the cap amount (typically half of the bid-offer spread), the final price is simply set

equal to the IMM plus the cap amount. If all bids are matched before the NOI

clears, the final price will be zero and all bids will be filled on a pro-rata basis. The

procedure is similar if the NOI is to sell. If there are not enough offers to match the

net open interest, the final price is set to par.

2 The Auction Model

The main question we wish to address in this paper is whether the current auction

format may result in mispricing. Our approach is motivated by the classic work

of Wilson (1979) and Back and Zender (1993) who show how this can happen in

a standard divisible-good auction. As in Wilson (1979), we assume that all agents

are risk-neutral and have identical expectations about the value of the bonds. This

case is not only tractable, but also provides a useful benchmark from which to judge

whether the auction leads to the fair-value price. This approach is popular in the
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auction literature because if equilibria that result in mispricing can be found in this

admittedly basic setup, it is likely they will also be possible in more realistic scenarios.

The goal of this section is to formalize the auction process described in Section

1. There are two dates: t = 0 and t = 1. There is a set N of strategic players and

the total number of agents is |N | = N. A set of dealers Nd constitutes a subset of all

players, Nd ⊆ N , |Nd| = Nd. Each agent i ∈ N is endowed with ni ∈ R units of CDS

contracts and bi ∈ R units of bonds. Agents with positive (negative) ni are called

protection buyers (sellers). Because a CDS is a derivative contract, it is in zero net

supply,
∑

i ni = 0. One unit of bond pays ṽ ∈ [0, 100] at time t = 1. The auction

takes place at time t = 0 and consists of two stages.

2.1 First Stage

In the first stage, the auction initial market midpoint (IMM) and the net open

interest (NOI) are determined. Agent i may submit a request to sell yi (or buy if

yi < 0) units of bonds at par (100). Each protection buyer, ni > 0, is only allowed

to submit a request to sell yi ∈ [0, ni] units of bonds, while each protection seller,

ni < 0, may only submit a request to buy yi ∈ [ni, 0] units of bonds. Given these

requests, the NOI is determined as follows:

NOI =
N∑
i=1

yi. (1)

In addition, all dealers from the set Nd are asked to provide a price quote πi.

Given πi, dealer i must stand ready to sell or buy L units of bonds at bid and offer

prices πi + s and πi − s, s > 0. Quotes from dealers whose bids and offers cross

are discarded. The IMM , denoted by pM , is then set equal to the average of the

remaining mid-quotations.

2.2 Second Stage

At this stage, a uniform divisible good auction is held. If NOI = 0 then pA = pM . If

NOI > 0, participants bid to buy NOI units of bonds. In this case, each agent i may

submit a left-continuous non-increasing demand schedule xi(p) : [0, pM +s]→ R+∪0.
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Let X(p) =
∑

i∈N xi(p) be the total demand. The final auction price pA is the highest

price at which the entire NOI can be matched:

pA = max{p|X(p) ≥ NOI}.

If X(0) ≤ NOI, pA = 0. Given pA, the allocations qi(p
A) are determined according

to the ’pro-rata at the margin’ rule:

qi(p
A) = x+

i (pA) +
xi(p

A)− x+
i (pA)

X(pA)−X+(pA)
× (NOI −X+(pA)), (2)

where x+
i (pA) = limp↓pA xi(p) and X+(p) = limp↓pA X(p) are the individual and total

demands, respectively, above the auction clearing price.

If NOI < 0, participants offer to sell |NOI| units of bonds. Each agent i may

then submit a right-continuous non-decreasing supply schedule xi(p) : [100, pM−s]→
R− ∪ 0.

As before, the total supply is X(p) =
∑

i∈N xi(p). And the final auction price pA

is the lowest price at which the entire NOI can be matched:

pA = min{p|X(p) ≤ NOI}.

If X(100) ≥ NOI, pA = 100. Given pA, the allocations qi(p
A) are given by:

qi(p
A) = x−i (pA) +

xi(p
A)− x−i (pA)

X(pA)−X−(pA)
× (NOI −X−(pA)),

where x−i (pA) = limp↑pA xi(p) and X−(p) = limp↑pA X(p) are the individual and total

supplies, respectively, below the auction clearing price.

2.3 Preferences

Two types of agents participate in the auction: dealers and common participants. In

our setup, all agents are risk-neutral and have identical expected valuations of the

bond payoff, v. The agents’ objective is to maximize their wealth, Πi, at date 1,
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where

Πi = (v − pA)qi
auction-allocated bonds

+ (ni − yi)(100− pA)
net CDS position

+ 100yi
physical settlement

+ v(bi − yi)
remaining bonds

. (3)

and qi is the number of auction-allocated bonds.

Dealers differ from common participants in that they submit quotes (πi) in the

first stage, which are made public after the auction. Thus, due to regulatory and

reputational concerns, dealers may be reluctant to quote prices that are very different

from v unless the auction results in a large gain. To model these concerns we assume

that dealers’ utility has an extra term −γ
2
(πi − v)2, γ ≥ 0.

2.4 Trading Constraints

So far we have assumed a frictionless world in which every agent can buy and sell

bonds freely. This is a very strong assumption which is violated in practice. Therefore,

we extend our setup to allow market imperfections. Specifically, we place importance

on the following two frictions.

First, some auction participants, such as pension funds or insurance companies,

may not be allowed to hold bonds of defaulted companies. To model this, we introduce

Assumption 1.

Assumption 1 Only a subset N+ ⊆ N , N+ 6= ∅ of the set of agents can hold a

positive amount of bonds after the auction.

Second, because bonds are traded in OTC markets, short-selling a bond is generally

difficult. To model this, we introduce Assumption 2.

Assumption 2 Each agent i can sell only bi units of bonds.

In what follows, we solve for the auction outcomes both in the frictionless world and

under Assumptions 1 and 2.
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3 Analysis

We now turn to a formal analysis of the auction described in the preceding section.

We solve for the auction outcomes using backward induction. We start by solving

for the equilibrium outcome in the second stage of the auction, for a given IMM

and NOI. We then find optimal dealer quotations πi and optimal physical settlement

requests in the first stage given the equilibrium outcomes of the second stage.

3.1 Second Stage

As previously noted, stage two consists of a uniform divisible good auction with the

goal of clearing the net open interest generated in the first stage. A novel feature

of our analysis is that we study auctions where participants have prior positions in

derivative contracts written on the asset being auctioned. We show that equilibrium

outcomes in this case can be very different from those realized in ‘standard’ auctions

(that is, auctions in which ni = 0 for all i).

We first consider the case in which all CDS positions are common knowledge.

(This assumption is relaxed later.) If this is the case, each agent i takes the following

as given: the NOI, a set of all CDS positions ni, a set of physical settlement requests

yi, i ∈ N , and the demand of other agents x−i(p). Therefore, from equation (3), each

agent’s demand schedule xi(p) solves the following optimization problem:

max
xi(p)

(v − p(xi(p), x−i(p))) qi(xi(p), x−i(p)) + (ni − yi) (100− p(xi(p), x−i(p))) . (4)

The first term in this expression represents the payoff realized by participating in

the auction, while the second term accounts for the payoff from the remaining CDS

positions, ni − yi, which are settled in cash on the basis of the auction results.

To develop intuition about the forthcoming theoretical results, consider the bid-

ding incentives of the auction participants. The objective function (4) implies that,

holding the payoff from the auction constant, an agent who has a short (long) re-

maining CDS position wishes the final price to be as high (low) as possible. However,

agents with opposing CDS positions do not have the same capacity to affect the auc-

tion price. The auction design restricts participants to submit one-sided limit orders

depending on the sign of the NOI. If the NOI > 0, only buy limit orders are allowed,
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and therefore agents with short CDS positions are capable of bidding up the price. By

contrast, all that an agent with a long CDS positions can do to promote her desired

outcome is not to bid at all. The situation is reversed when the NOI < 0.

Continuing with the case of the NOI > 0, consider an example of one agent with

a short CDS position. She has an incentive to bid the price as high as possible if the

NOI is lower than the notional amount of her CDS contracts (provided she is allowed

to hold defaulted bonds). This is because the cost of purchasing the bonds at a high

auction price is offset by the benefit of cash-settling her CDSs at the same high price.

In contrast, if the NOI is larger than the notional amount of her CDS position, she

would not want to bid more than the fair value of the bond, v. This is because the

cost of purchasing bonds at a price above v is not offset by the benefit of cash-settling

CDSs. In what follows, we show that this intuition can be generalized to multiple

agents, as a long as we consider the size of their aggregate net CDS positions relative

to the NOI.

Proposition 1 Suppose that NOI > 0 and Assumption 1 holds.

1. If ∑
i∈N+:ni<0

|ni − yi| ≥ NOI, (5)

and pM +s > v, then in any equilibrium the final auction price pA ∈ [v, pM +s].

Furthermore, there always exists an equilibrium in which the final price is equal

to the cap: pA = pM + s. If pM + s < v then the final price is always equal to

the cap: pA = pM + s.

2. If ∑
i∈N+:ni<0

|ni − yi| < NOI, (6)

then only equilibria with pA ≤ min{pM + s, v} exist.

Proof. Part 1. Intuitively, if condition (5) holds, there is a subset of agents for whom

a joint loss incurred by acquiring a number of bonds equal to the NOI, at a price

above v, is dominated by a joint gain from paying less on a larger number of short

CDS contracts that remain after the physical settlement. As a result, these agents
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bid aggressively and can push the auction price above v unless it is constrained by

the IMM. In the latter case, pA = pM + s.

Formally, suppose that pM + s > v, pA < v and condition (5) holds. We show

that this cannot be true in equilibrium. Let the equilibrium allocation of bonds to

agent i be qi. Consider a change in the demand schedule of player i from xi to x′i that

leads to the auction price p ∈ [pA, v]. Denote the new bond allocation of agent i by

q′i. Since demand schedules are non-decreasing, q′i ≥ qi. Agent i’s change in profit is

thus

δi =
[
(v − pA)qi − pA(ni − yi)

]
− [(v − p)q′i − p(ni − yi)] =

= (p− pA)(ni − yi + qi)− (v − p)(q′i − qi) ≤ (p− pA)(ni − yi + qi). (7)

Equilibrium conditions require that δi ≥ 0 for all i. Summing over all i such that

ni < 0, it must be that

0 ≤
∑
i:ni<0

δi ≤ (v − pA)
∑
i:ni<0

(ni − yi + qi) .

Because all qi ≥ 0,∑
i:ni<0

(ni − yi + qi) ≤
∑
i:ni<0

(ni − yi) +NOI ≤ 0, (8)

where we use (5). Thus in any equilibrium with pA < v, it must be that δi = 0 for

all i with ni < 0. (7) and (8) then imply that for any deviation x′i that leads to

p ∈ [pA, v], it must be that q′i = qi. Since this is true for any p ∈ [pA, v] the initial

total demand X(p) must be constant over [pA, v], and therefore pA = v. Thus we

arrive at a contradiction.

Next, consider the following set of equilibrium strategies:

xi(p) :

{
xi = NOI × (ni − yi)/(

∑
j:nj<0(nj − yj)) if v < p ≤ pM + s,

xi = NOI if p ≤ v,

for agents with net negative CDS positions after physical settlement request submis-

sion, and xi(p) ≡ 0 for agents with positive CDS positions. It is not difficult to see
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that it supports pA = pM + s.

Part 2. Finally, suppose that condition (5) does not hold and there exists an

equilibrium with pA > v. Then there also exists an i such that agent i’s equilibrium

second stage allocation qi > |ni − yi|. Consider a variation of this agent’s demand

schedule, in which she submits zero demand at pA > v and demand equal to the NOI

at pA = v. Given this variation, the new auction price will be higher than or equal to

v. Thus her profit increases by at least (pA − v)(qi + ni − yi) > 0, so pA > v cannot

be an equilibrium outcome. QED.

The next lemma shows that when all agents are allowed to hold bonds after the

auction (that is, Assumption 1 does not hold), condition (5) always holds. As a result,

the final price is always at least v unless it is capped.

Lemma 1 If N+ = N then condition (5) holds.

Proof.∑
i:ni<0

(ni−yi)+NOI =
∑
i:ni<0

(ni−yi)+
∑
i

yi =
∑
i:ni<0

ni+
∑
i:ni>0

yi ≤
∑
i:ni<0

ni+
∑
i:ni>0

ni = 0.

QED.

Proceeding to the case where NOI < 0, we obtain the following result.

Proposition 2 Suppose that NOI < 0 and there are no short-selling constraints. If

pM−s < v, then in any equilibrium, pA ∈ [pM−s, v]. If pM−s > v then pA = pM−s.

This result is a natural counterpart of Part 1 of Proposition 1, and the proof

follows the same logic. Without Assumption 2, we do not have a counterpart to

Part 2 because all agents can participate in the second stage. With short-selling

constraints, equilibria in which the bond is overpriced and the price is not capped

can also exist. The conditions allowing for these equilibria are more stringent than

those in Part 2 of Proposition 1 because the short-selling constraints are assumed to

hold at the individual level. Proposition 3 characterizes these conditions.

Proposition 3 Suppose that NOI < 0 and Assumption 2 is imposed.

1. If for all i such that ni > 0,

bi ≥ −NOI ×
ni − yi∑

j:nj>0(nj − yj)
(9)
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then there exists an equilibrium in which pA = pM − s.

2. If ∑
i:ni>0

bi < −NOI, (10)

then only equilibria with pA ≥ max{pM − s, v} exist.

Proof. Part 2 is straightforward: under the assumption of short-sale constraints and

(10), NOI units of bonds cannot be sold solely by agents with long CDS positions.

Agents with non-positive CDS positions, however, will not sell bonds at a price below

v. Thus we only need to prove Part 1. To do this, consider the following set of

strategies (assuming that pM − s < v):

xi(p) :

{
xi = NOI × (ni − yi)/(

∑
j:nj<0(nj − yj)) if pM + s ≤ p < v,

xi = −bi if p ≥ v,

for agents with net positive CDS positions after physical request submission, and

xi(p) :

{
xi = 0 if pM + s ≤ p < v,

xi = −bi if p ≥ v.

for agents with positive CDS positions. It is not difficult to see that this set of

strategies constitutes an equilibrium and supports pA = pM − s. QED.

3.2 First Stage

To solve for a full game equilibrium, the last step is to determine physical settlement

requests yi, the NOI and the IMM , given the outcomes in the second stage of the

auction. The IMM does not contain any information in our setup, which precludes

uncertainty. Nevertheless, it can still play an important role because it provides a cap

on the final price. We start our analysis by assuming that the second-stage auction

does not have a cap. After we solve for (and develop intuition about) the optimal

physical settlement requests and the NOI, we discuss the effect of the cap.
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3.2.1 Second-Stage Auction Without a Cap

First, we show that in a frictionless world, only equilibria with the auction price

different from v exist. Furthermore, in all of these equilibria agents obtain the same

utility.

Proposition 4 Suppose that there are no trading frictions, i.e. Assumptions 1 and

2 are not imposed. Then any equilibrium will be one of three types: (i) pA ∈ (v, 100]

and NOI ≥ 0, where agents with initial long CDS positions choose physical delivery

and receive zero bond allocation in the auction; (ii) pA ∈ [0, v) and NOI ≤ 0, where

agents with initial short CDS positions choose physical delivery and do not sell bonds

in the auction; and (iii) p = v. In each of the three cases, all agents attain the same

utility.

Proof. Suppose that pA ∈ (v, 100]. Lemma 1, Part 2 of Proposition 1, and Propo-

sition 2 imply that this can be the case only if NOI ≥ 0. Clearly, only agents with

negative remaining CDS positions after the first stage of the auction will be willing

to buy bonds at a price above v. Agents with initial long CDS positions receive zero

bond allocation. From (3) each of their utility functions will be

Πi = ni(100− v) + (yi − ni)(pA − v) + biv. (11)

If pA > v, utility (11) is maximized if yi is as large as possible. Therefore, yi = ni

and Πi = ni(100 − v) for ni > 0. Thus in any such equilibrium agents with initial

long CDS positions choose physical delivery, receive zero bond allocation, and attain

the same utility. The NOI is

NOI =
∑
i

yi =
∑
i:ni>0

ni +
∑
i:ni<0

yi = −
∑
i:ni<0

(ni − yi) ≥ 0. (12)

In other words, the NOI is equal to the sum of outstanding CDS positions (after

the first stage) held by agents with initial short CDS positions. As a result, any gain

from buying at a price above v (due to the existing CDS positions) is exactly offset

by the loss incurred by buying bonds at this price. From (3), the utility of agents
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with initial short CDS positions is given by

Πi = ni(100− v) + (yi − ni − qi)(pA − v) + biv. (13)

Because every agent can always guarantee utility Πi = ni(100−v) by choosing physical

delivery, qi cannot be higher than −(ni− yi). In addition, (12) implies that qi cannot

be lower than −(ni − yi). Therefore, qi = −(ni − yi) and Πi = ni(100 − v) for each

i : ni < 0. The proof when pA ∈ [0, v) is similar. QED.

Proposition 4 shows that in a frictionless world, all mispricing equilibria are unidi-

rectional – that is, there is no under- (over-) pricing if the NOI is positive (negative).

Furthermore, agents can undo any loss of utility resulting from auction mispricing by

optimally choosing between cash and physical settlement of their positions.

We now turn to more realistic setups that include trading frictions. Our analysis

in section 3.1 shows that there can be a continuum of equilibria in the second stage,

which makes solving for every equilibrium in a two-stage auction a daunting problem.

Instead of characterizing all of the equilibria, we show that in the presence of trading

frictions, as outlined in Section 2.4, there exists a subset of equilibria of the two-

stage game that results in bond mispricing. This result answers, in the affirmative,

our main question as to whether mispricing is possible in the auction. Proposition 5

characterizes sufficient conditions for underpricing to occur.

Proposition 5 Suppose that Assumption 1 holds,

(i)
∑
i:ni>0

ni +
∑

i∈N+:ni<0

ni > 0, (14)

and for any ni > 0,

(ii) ni >

∑
j:nj>0 nj +

∑
j∈N+:nj<0 nj

K + 1
, (15)

where K is a total number of agents with initial long CDS positions. Then there exist

a multitude of subgame perfect underpricing equilibria for the two-stage auction, in

which (i) NOI > 0,

(ii)
∂pA(NOI)

∂NOI
< 0, and (iii) 0 ≤ v− pA(NOI) ≤ NOI ×

∣∣∣∣∂pA(NOI)

∂NOI

∣∣∣∣ . (16)
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In particular, there exists a subset of full-game equilibria where for any NOI that can

be realized in the first stage, the second stage leads to a final price pA which is a linear

function of the NOI:

pA = v − δ ×NOI ≥ 0, δ > 0. (17)

Proof. See Appendix.

We give a formal proof by construction in the Appendix and merely describe the

intuition here. In the proof, we show that if optimal physical settlement requests

satisfy condition (6) instead then there exist second-stage equilibria with pA ≤ v,

where agents play the following strategies:

xi(p) = max{c(v − p)λ − ni + yi, 0}, (18)

c and λ are specified in the Appendix. A similar set of strategies is used in Back and

Zender (1993) to construct equilibria in a standard auction without CDS positions.

There could also be other classes of equilibrium second-stage strategies. We use

strategies (18) mainly because they lead to a closed form solution. The main challenge

in the rest of the proof is to solve jointly for equilibrium physical settlement requests

and the second-stage equilibrium price.

A closer inspection of (3) reveals that if the final auction price is lower than v

and is not affected by agents’ physical requests (i.e., participants always choose to

play same-price equilibria as long as the NOI is high enough to ensure second-stage

underpricing), agents with long (short) CDS positions only have an incentive to choose

full cash (physical) settlement in the first stage. This first-stage play implies that the

NOI must be negative. As a result, second-stage underpricing equilibria in which

∂pA/∂NOI = 0 cannot be equilibria of the full game. However, if the strategies

played in the second stage are such that the final auction price is a negative function

of the NOI, then the incentives of agents with long CDS positions become non-trivial.

Submission by such agents of a partial physical settlement request could lead to a

larger NOI and in turn to a lower final auction price, increasing the payoff they

receive from their partial cash settlement. The larger the initial positions of agents

with long CDS positions, the stronger the incentives to lower the price via partial

physical settlement. Condition (15) guarantees that the long positions of agents are
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sufficiently large to ensure that they choose physical settlement of enough positions

to render the resulting NOI positive.

The subset of equilibria characterized in Proposition 5 is the simplest and serves as

an example of underpricing. There may be other equilibria resulting in underpricing

that we have not found. While Lemma 1 implies that condition (14) is necessary for

an underpricing equilibrium to exist, condition (15) can be relaxed at the expense of

a more complicated proof.

Finally, notice that if there are short-sale constraints (that is, Assumption 2 is

imposed), the logic of Proposition 4 may also break down. In this case, agents with

initial long CDS positions are able to choose only bi units of bonds for physical

settlement. If for at least one such agent ni > bi, and sufficiently many agents

with remaining short CDS positions participate, the agents as a group could become

strictly better off by pushing the price above v. Proposition 6 characterizes the effect

of short-sale constraints on auction outcomes.

Proposition 6 Suppose that only Assumption 2 is imposed and there exists an i such

that

ni > bi > 0, (19)

and ∑
j:nj<0

|nj| >
∑
j:nj>0

max{bj, 0}. (20)

Then for the two-stage auction there exists a subgame perfect overpricing equilibrium

in which NOI =
∑

j:nj>0 max{bj, 0} > 0, pA = 100, and agents with initial short

CDS positions attain strictly greater utility than when pA = v.

Proof. The proof is by construction. As in Proposition 4, if pA = 100, agents who

are initially long CDS contracts will choose physical delivery, and only agents with

negative remaining CDS positions after the first stage will be willing to buy bonds in

the auction. Proposition 1 Part 1 shows that for any NOI > 0, if condition (5) holds

(which turns out to be the case in the constructed equilibrium), then pA = 100 is an

equilibrium of the second stage if agents play the following strategies:

xi(p) :

{
xi = NOI × (ni − yi)/(

∑
j:nj<0(nj − yj)) if v < p ≤ 100,

xi = NOI if p ≤ v.
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for agents with net negative CDS positions after physical request submission, and

xi(p) ≡ 0 for other agents. The profit earned by agent i with ni < 0 is therefore

Πi =

(
yi −NOI

ni − yi∑
j:nj<0(nj − yj)

)
(100− v) + biv. (21)

Taking the F.O.C. at yi = 0, one can verify that it is optimal for agents with initial

short CDS positions to choose cash settlement. Thus NOI =
∑

j:nj>0 max{bj, 0} and

the profit accruing to any agent i with an initial short CDS position ni < 0 is

Πi = −(100− v)ni ×
∑

j:nj>0 max{bj, 0}∑
j:nj<0 nj

+ biv > (100− v)ni + biv,

where the expression on the right hand side is the agent’s utility if pA is equal to v.

QED.

Propositions 5 and 6 show that there can be either underpricing or overpricing

equilibria in the two-stage game with NOI > 0, if there are trading frictions. A

similar set of results can be obtained for NOI < 0.

3.2.2 Second-Stage Auction with a Cap

We now discuss the implications of the second-stage price cap, which imposes an

upper bound of pM + s on the final price. In the presence of the cap, mispricing in

the auction depends on the bidding behavior of dealers in the first stage. The next

proposition shows that the IMM is equal to v when there are no trading frictions.

Proposition 7 Suppose that there are no trading frictions (Assumptions 1 and 2 are

not imposed) and γ > 0. Then IMM = v. Therefore, of the overpricing equilibria

described in Proposition 4 there can exist only equilibria with |pA − v| ≤ s.

Proof. Proposition 4 shows that in all possible equilibria, common participants

attain the same utility. Because dealers have regulatory and reputational concerns,

captured by the extra term −γ(πi − v)2, their optimal quotes, πi, are equal to v.

Thus, IMM = v. QED.
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This result further restricts the set of possible full-game equilibria. When there

are no frictions, the final auction price cannot differ from the fair value of the bond

by more than the size of the spread, s.

In the presence of frictions, there can be either underpricing or overpricing equi-

libria in the auction without a cap (Propositions 5 and 6). The cap cannot eliminate

underpricing equilibria.4 Additionally, if the cap is set too low it rules out equilibria

with pA = v.

The cap can, however, be effective at eliminating overpricing equilibria. As an

illustration, consider a simple example in which all dealers have zero CDS positions.5

Proposition 6 shows that when there are short-sale constraints, the final auction

price can be as high as 100 in the absence of a cap. Following the same logic as

in Proposition 6, one can show that if the cap is greater than v, then there exists

an equilibrium with the final price equal to the cap. Since in any such equilibrium

dealers do not realize any profit but have regulatory and reputational concerns, their

optimal quotes are equal to v. Thus, IMM = v and pA = v + s.

4 Empirical Evidence

Our theoretical analysis shows that CDS auctions may result in both overpricing and

underpricing of the underlying bonds. In this section, we seek to provide empirical

evidence indicating which outcomes occur in practice. Unfortunately, the true value

of deliverable bonds is never observed. Because of this, we use available bond prices

from the day before the auction to construct a proxy for the bond value v. Admittedly

this measure is not a perfect substitute for the true value of the bond, and so we also

consider a number of alternatives to show the robustness of our results. We first

describe our data before presenting the empirical analysis.

4For example, consider an extreme case in which all dealers have large positive CDS positions
and the conditions of Proposition 5 hold. Following the logic of Proposition 5, one can show that
there exists a subgame perfect equilibrium in which pA = 0 and IMM = v.

5While this is a simplification it is arguably also realistic, as dealers try to maintain zero CDS
positions in their capacity as market makers.
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4.1 Data

Our data come from two primary sources. The details of the auction settlement

process are publicly available from the Creditfixings website (www.creditfixings.com).

As of December 2010, there have been 86 CDS and Loan CDS auctions, settling

contracts on both US and international legal entities. To study the relationship

between auction outcomes and the underlying bond values, we merge these data with

bond price data from the TRACE database. TRACE reports corporate bond trades

for US companies only. Thus, our merged dataset contains 23 auctions.

Table 2 summarizes the results of the auctions for these firms. It reports the

settlement date, the type of credit event and the auction outcomes. Most of the

auctions took place in 2009 and were triggered by the Chapter 11 event. In only two

of the 23 auctions (Six Flags and General Motors) was the net open interest to buy

(NOI < 0). The full universe of CDS auctions contains 61 auctions in which the net

open interest was to sell, 19 auctions where the net open interest was to buy, and 6

auctions with zero net open interest.

Table 3 provides summary statistics of the deliverable bonds for each auction for

which we have bond data.6 Deliverable bonds are specified in the auction protocols,

available from the Creditfixings website. The table also reports the ratio of net

open interest to the notional amount of deliverable bonds (NOI/NAB). This shows

how many units of bonds changed hands during an auction, as a percentage of the

total amount of bonds. There is strong heterogeneity in NOI/NAB across different

auctions, with absolute values ranging from 0.38% to 56.81%. In practice, NOI has

never exceeded NAB.

We construct daily bond prices by weighing the price for each trade against the

trade size reported in TRACE, as in Bessembinder, Kahle, Maxwell, and Xuet (2009).

These authors advocate eliminating all trades under $100,000 as they are likely to be

non-institutional. The larger trades have lower execution costs; hence they should

reflect the underlying bond value with greater precision. For each company, we build

6A clarification regarding the auctions of Abitibi and Bowater is in order. AbitibiBowater is
a corporation, formed by Abitibi and Bowater for the sole purpose of effecting their combination.
Upon completion of the combination, Abitibi and Bowater became subsidiaries of AbitibiBowater
and the businesses that were formerly conducted by Abitibi and Bowater became the single business
of AbitibiBowater. The CDS contracts were linked to the entities separately, and, as a result, there
were two separate auctions.
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a time-series of bond prices in the auction event window of -30 to +30 trading days.

Because all credit events occur no more than one calendar month before the CDS

auction, our choice of the event window ensures that our sample contains all relevant

data for the post-credit-event prices. The last column of Table 3 reports a weighted

average bond price on the day before the auction, p−1. We use this as our proxy for

the bond value v.

4.2 The Impact of the First Stage

The theoretical results of Section 3 imply that the first and the second stages of the

auction are not independent. The first stage yields the mid-point price, pM , which

determines a cap on the final settlement price. Our model shows that when the final

price, pA, is capped, it can be either above or below the true value of the bond, v,

depending on the initial CDS and bond positions of different agents.

Our analysis suggests a way of differentiating between the two cases. To be more

specific, consider outcomes in which NOI > 0 (outcomes in which NOI < 0 follow

similar logic). According to Proposition 1 Part 1, the price can be higher than v if,

after the first stage, the aggregate short net CDS position of agents participating in

the second stage is larger than the net open interest. In this case, protection sellers

have an incentive to bid above the true value of the bond to minimize the amount

paid to their CDS counterparties. Notice that while bidding at a price above v, they

would like to minimize the amount of bonds acquired at the auction for a given final

auction price. Thus, if the price is above v they will never bid to buy more than NOI

units of bonds.

The case in which pA is capped and lies below the true value of the bond is brought

about when dealers set pM so that pM + s is below v. This prevents the agents from

playing second-stage equilibrium strategies with the final price above the cap. In this

case, submitting a large demand at the cap price leads to greater profit. Thus, in the

presence of competition and sharing rules, agents have an incentive to buy as many

bonds as possible and would bid for substantially more than NOI units.

The final price is capped in 19 of the 86 credit-event auctions.7 Figure 2 shows the

entities and the individual bids at the cap price. The individual bids are represented

7Of these 19 auctions, only one (Ecuador) has a negative NOI. So the above discussion for the
case of positive NOI should be adjusted appropriately for Ecuador.
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by different colors, and bid sizes are scaled by NOI to streamline their interpretation.

For example, there are seven bids at the cap price in the case of General Growth

Properties. Six of these are equal to NOI and the seventh one is approximately

one-fourth of NOI.

We can see that in all but two auctions (Kaupthing Bank and Glitnir), the bids

at the price cap do not exceed NOI. The results suggest that in these cases the

final auction price is above the true bond value. Of the 19 auctions with a capped

price, we have bond data for only five companies: Smurfit-Stone, Rouse, Charter

Communications, Capmark and Bowater. Comparing the final auction price from

Table 2 with the bond price from Table 3, we can see that that the bond price (our

proxy for the true bond value) is below the final auction price for these five companies,

as expected.

We can compare the bond and auction prices for the rest of the companies for

which TRACE data are available. Figure 3 shows the ratio of final auction prices to

bond prices, pA/p−1. We see that in all but seven auctions, the final auction price, pA,

is below the bond price, p−1. It seems likely that underpricing equilibria were played

out in these auctions. The exceptions include the aforementioned five companies with

capped auction prices, as well as the General Motors and Six Flags auctions, where

the price was not capped but NOI < 0. In these last two cases, the auction prices

are expected to exhibit a reverse pattern.

4.3 Price Impact at the Second Stage

In the preceding section, our evidence showed that in the absence of a cap, the auction

yields a price below the bond value. According to Proposition 1, if NOI > 0 such

an outcome can occur only if the aggregate net short CDS position of the agents

who participate in the second stage,
∑

i∈N+:ni<0 |ni − yi|, is smaller than or equal to

the net open interest. But as we do not have data on individual bids and positions

we cannot test this proposition directly. Instead, we provide empirical evidence that

complements our theoretical analysis. Specifically, we study the effect of the NOI

on the degree of price discrepancy resulting from the auction. We scale the net open

interest by the notional amount of deliverable bonds, giving the quantity NOI/NAB,

to allow for a meaningful cross-sectional examination.
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Tables 2 and 3 reveal that NOI/NAB is greatest in the auctions with the largest

discrepancy in prices. At the same time, NOI/NAB is lowest in the auctions

where the final price is capped, which is again consistent with Propositions 1 and

5. We quantify this relationship using a simple cross-sectional regression of p−1/p
A

on NOI/NAB :

pA/p−1 = α + β ×NOI/NAB + ε. (22)

Figure 4 shows the results. The normalized NOI explains 55% of the variation in

the ratio of the lag of the market price of bonds to the final price. The β is signifi-

cantly negative. For every one-percentage-point increase in the normalized NOI, the

underpricing increases by 1.2%.

This evidence is consistent with Proposition 5, which shows that there exist

second-stage equilibria in which the final price, pA, depends linearly on the NOI

(equation (17)). Since the only theoretical restriction on the slope (δ) is its sign, the

linear relationship (17) can be written as

pA/v = 1 + β ×NOI/NAB, β < 0.

If agents play equilibrium strategies with the same β across auctions, the estimated

cross-sectional regression β will also be an estimate of the within-auction relationship.

While the assumption of the same linear dependence across auctions is admittedly

strong, it can be accommodated by the following argument. If all agents in an auc-

tion take historical information about previous types of equilibria into account when

forming their perceptions, then β is unlikely to vary much across auctions. Finally,

the estimated α is insignificantly different from one, which is again consistent with

the theory.

4.4 Robustness Checks

4.4.1 Fair Value Proxy

Our conclusions so far rest on the assumption that p−1 is a good proxy for the actual

fair value v. One could argue that auctions exist precisely because it is difficult to

establish a bond’s fair value by observing bond markets. Moreover, even if p−1 were

to reflect the bond value accurately, it would still be the value on the day before the
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auction. It is conceivable that the auction process establishes a v that differs from

p−1 simply due to the arrival of new information between time −1 and 0, and/or as

a result of the centralized clearing mechanism of the auction.

We expand the auction event window to check the robustness of our results to

these caveats. In our sample, the shortest time between a credit event and an auction

is 8 days. This prompts us to select an event window of -8 to +12 days. The choice

of boundary is dictated by liquidity considerations: liquidity generally declines after

the auction. Figure 5 (a) displays daily bond prices normalized by the auction final

price, pt/p
A, equally weighted across the 22 auctions for which we have reliable bond

data.8 We see that the price generally declines, reaches its minimum on the auction

day, then reverts to its initial level. The figure shows that no matter which day we

look at, the auction final price is, on average, at least 10% lower.

We have a sample of 22 auctions with reliable data. This small sample size may

raise concerns that our results are sensitive to outliers. In what follows, we discuss

the effects of two types of such outliers.

First, the Tribune auction stands out because of the large magnitude of the un-

derpricing it generated. This can be seen in Figure 4: the point in the lower right

corner of the plot. The normalized NOI was also the largest, so the magnitude of the

underpricing on its own is consistent with our theory. Nonetheless, to be sure that

the pattern of average prices is not driven by this one company, we remove Tribune

from our sample and recompute the pattern. Figure 5 (b) shows the results. We

see that the magnitude of the average smallest underpricing declines to 5%, but all

qualitative features remain intact.

Second, there are six auctions that resulted in overpricing. Four auctions (Smurfit-

Stone, Rouse, Capmark and Bowater) had positive NOI and final price equal to the

cap (see Section 4.2 for details). The two remaining auctions (GM and Six Flags)

had negative NOI. Therefore, the presence of these names in our average may only

bias our results against finding underpricing.

The documented V shape of the discrepancy alleviates the concern that the correct

value v differs from p−1 simply because the latter does not reflect the bond value

8We exclude the auction for Charter, which has only 10 trades in the [-10,0] window during
which our proxy for v is constructed. Of these 10 trades, only 6 are in sizes greater than $1M.
The second-worst company in terms of data reliability, Chemtura, has 35 trades and all of them are
above $1M.
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correctly. If this were the case, one would expect bond prices to remain in the region

of the auction price after the auction, whereas in practice they increase.

4.4.2 The Cheapest-to-Deliver Option

Another potential concern about using weighted daily bond prices as a proxy for the

underlying value of auctioned bonds is that agents will likely use only cheapest-to-

deliver bonds for physical delivery. As a result, our methodology may overestimate

the fair value. This argument is not applicable when the credit event is Chapter 11,

and all the deliverable bonds are issued by the holding company and cross-guaranteed

by all subsidiaries. In Chapter 11, bonds with no legal subordination are treated as

identical, see for example Guha (2002).9 The reasons for this are that all the bonds

stop paying coupons and mature (cease to exist) at the same time, with identical

terminal payouts to all bondholders. Hence there is no concern that some bonds are

cheaper to deliver due to the difference in their fundamental value.

As an example, Figure 6 shows weighted daily prices of each individual WaMu

bond issue, identified by its CUSIP. We see that there are large difference between

the prices of different bonds in the period leading to the credit event (trading day

-19). After this day the prices of all bonds are very similar. The prices cannot be

literally identical because trades may occur at different times of the day, and because

trades may be either buyer- or seller-initiated which means prices will be closer to

bid or ask prices, respectively.

In our sample, 13 out of 23 credit events are triggered by Chapter 11 bankruptcy

and have one issuer. These companies should not have bonds that diverge in value.

Nonetheless, we manually confirm that this is indeed the case. There are three com-

panies that filed for Chapter 11 and have multiple subsidiaries issuing bonds, but for

which TRACE contains trade data for only one subsidiary in the event window (CIT,

Lyondell, and Quebecor). We treat these three names the same way as the 13 firms

without subsidiaries.

There are four companies that filed for Chapter 11 and have multiple subsidiaries,

and where we have data for the bonds of these subsidiaries (Bowater, Charter, Nortel

and Smurfit-Stone). In all of these cases the bonds of the different subsidiaries are

9CDS contracts on bonds with different seniorities are settled in different auctions. Examples of
this in our data are the Dura/Dura Sub auctions.
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legally pari-passu with each other, but some of them may be structurally subordinated

to others and, therefore, could be cheaper. For this reason, we select the cheapest

bonds in the case of these four companies (however, the differences are not large

in practice). There are three companies with a credit event other than Chapter 11

(Abitibi, Capmark and Rouse) in which we also select the cheapest bonds.

Finally, to account for other potential deliverables selection issues that could work

against our findings, we treat the aforementioned differences in bond prices (due to

bid-ask spread and timing differences) as real differences, and select the lowest-priced

bonds. Specifically, we take representative daily prices of a company’s deliverable

bonds to be equal to the weighted daily prices of their bond issues with the lowest

pre-auction price, provided that these bond issues are relatively actively traded.10 The

results are displayed in Figure 5. It can be seen that even with these conservative

bond selection criteria, the average underpricing on the day of the auction is still

10%, and follows a V pattern as before.11

5 Extensions

Section 4 documents our finding that when NOI/NAB is large, the auction generally

results in a price considerably below fair value. We now suggest several modifications

to the auction design that can reduce mispricing, and discuss some of the assumptions

of the model.

5.1 Allocation Rule at the Second Stage

As usual, we focus on the case of NOI > 0. Proposition 1 shows that if condition (6)

holds, the CDS auction is similar to a ‘standard’ auction, so the price can be below v.

Kremer and Nyborg (2004) show that in a setting without CDS positions, a simple

change of the allocation rule from pro-rata on the margin (2) to ’pro-rata’ destroys

all underpricing equilibria, so that only pA = v remains. Under the pro-rata rule, the

10The requirement is that the trading volume over the five trading days before the auction con-
stitutes at least 5% of total trading volume for the company.

11Gupta and Sundaram (2011) address the cheapest-to-deliver issue using an alternative procedure
based on econometric modelling of issue-specific pricing biases, and arrive at similar conclusions.
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equilibrium allocations qi are given by

qi(p
A) =

xi(p
A)

X(pA)
×NOI.

That is, the total rather than marginal demand at pA is rationed among agents. The

next proposition extends the result of Kremer and Nyborg (2004) to our setting. We

demonstrate that if pM + s ≥ v, then the second-stage equilibrium price pA cannot

be less than v. This is true even if the agents are allowed to hold non-zero quantities

of CDS contracts.

Proposition 8 Suppose that the auction sharing rule is pro-rata. In this case, if

NOI > 0 then pA ≥ min{pM + s, v}. If NOI < 0 then pA ≤ max{pM − s, v}.

Proof. See Appendix.

To develop intuition for this result, consider the case of positive NOI. According

to Proposition 1 Part 2, if condition (6) holds, the pro-rata on the margin allocation

rule may inhibit competition and lead to underpricing equilibria. The presence of

agents who are short CDS contracts does not help in this case. The pro-rata allocation

rule (i) does not guarantee the agents their inframarginal demand above the clearing

price, and (ii) closely ties the proportion of allocated bonds to the ratio of individual

to total demand at the clearing price. Therefore, a switch to such a rule would increase

competition for bonds among agents. As a result, even agents with long positions

would bid aggressively. If pA < v, demanding the NOI at a price only slightly higher

than pA allows an agent to capture at least half of the surplus. As a result, only

fair-price equilibria survive.

5.2 The Price Cap

Our theoretical analysis in Section 4.2 shows that the presence of a price cap can

result in auction outcomes with either lower or higher mispricing. The cap is likely

to help when |NOI| is small and the temptation to manipulate the auction results is

highest. At the same time, the cap allows dealers to limit the final price to below v

in the second stage.
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These results suggest that making the cap conditional on the outcome of the first

stage of a CDS auction can lead to better outcomes. In our base model without

uncertainty, the optimal conditional cap is trivial. Again, we consider the case of

NOI > 0. If pM < v, setting s∗ = v − pM ensures that the set of second-stage

equilibria includes v. If pM ≥ v, it is best to set s∗ = 0. While the conditional

cap cannot eliminate the worst underpricing equilibria, it can ensure that agents who

want to bid aggressively will be able to do so.

In practice, v and ni are unobservable. Thus, making the cap conditional on NOI

and on the ratio pM/p−1 could lead to the final auction price being closer to the fair

bond value. For example, if pM/p−1 ≤ α, NOI is large and α < 1 is reasonably small,

the auctioneer can set a higher cap; if pM/p−1 > α and NOI is small, a lower cap

can be set.

5.3 Risk-averse agents

So far we have considered only risk-neutral agents. This allowed us to abstract from

risk considerations. If agents are risk-averse, the reference entity’s risk is generally

priced. Even though a CDS is in zero net supply, its settlement leads to a realloca-

tion of risk among the participants in the auction; hence it can lead to a different

equilibrium bond price. In particular, when NOI/NAB is large and positive, and

there are only a few risk-averse agents willing to hold defaulted bonds, the auction

results in highly-concentrated ownership of the company’s risk and can thus lead to

a lower equilibrium bond price.

Notice, however, that risk-aversion does not automatically imply a lower auction

price. For example, if marginal buyers of bonds in the auction are agents who pre-

viously had large negative CDS positions (as in Proposition 5), their risk exposure

after the auction may actually decrease. As a result they could require a lower risk

premium.

Due to the fact that we do not have data on individual agents’ bids and positions,

we cannot determine whether the observed price discrepancy is due to mispricing

equilibria or risk-aversion. It is likely that both factors work together in the same

direction. Data on individual agents’ bids and positions could help to quantify the

effect of the two factors on the observed relationship between the auction price and
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the size of net open interest.

5.4 Private information

Up to this point we have restricted our attention to the simplest case in which agents’

CDS positions are common knowledge. This may seem like a very strong assumption

given that CDS contracts are traded in the OTC market. Notice, however, that in the

type of equilibria constructed in Propositions 5 (linear case) and 6, conditions (14),

(15) and (19), (20) completely define the two equilibria. Therefore, Propositions 5

and 6 continue to hold with private CDS positions as long as (14), (15) and (19), (20)

are public knowledge.12 One can argue that this is likely to be the case. For example,

(20) assumes that total short CDS positions are larger than total bond holdings of

agents with long CDS positions. The aggregate net CDS positions are known to

market participants.13 Therefore, whether condition (20) holds can be easily verified

in every auction. Similarly, (19) assumes that there is an agent whose long position in

CDSs is larger than her bond holdings. Given the much larger size of CDS contracts

compared to the value of bonds outstanding, (19) holds as long aggregate long CDS

positions are larger than the value of the outstanding bonds. The latter is true for

most (if not all) of the auctions.

We also assume that agents value bonds identically, and that this value is common

knowledge. This assumption provides a stark benchmark: we are able to show that

the auction results in mispricing even in such a basic case. We conjecture that it

would be even harder for the current auction mechanism to arrive at the fair value

when agents have private or heterogeneous valuations.

6 Conclusion

We present a theoretical and empirical analysis of the settlement of CDS contracts

when a credit event takes place. A two-stage, auction-based procedure aims to es-

tablish a reference bond price for cash settlement and to provide market participants

12The formal proofs follow closely the original proofs for the full information case and are available
upon request.

13For example, they are available from Markit reports.
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with the option to replicate a physical settlement outcome. The first stage deter-

mines the net open interest (NOI) in the physical settlement and the auction price

cap (minimum or maximum price, depending on whether the NOI is to sell or to

buy). The second stage is a uniform divisible good auction with a marginal pro-rata

allocation rule that establishes the final price by clearing the NOI.

In our theoretical analysis, we show that the auction may result in either over-

pricing or underpricing of the underlying bonds. Our empirical analysis establishes

that the former case is more prevalent in practice. Bonds are underpriced by 10% on

average, and the amount of underpricing increases with the NOI (normalized by the

notional amount of deliverable bonds). We propose introducing a pro-rata allocation

rule and a conditional price cap to mitigate this mispricing.
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Appendix

Proof of Proposition 5

The proof is by construction. We construct a subgame perfect two-stage equilibrium

in which the final auction price is a decreasing function of the NOI. In a similar

fashion to Kremer and Nyborg (2004), it can be shown that one’s attention can be

restricted w.l.o.g. to equilibria in differentiable strategies. For simplicity, we provide

the proof for the case in which agents have large long CDS positions. Specifically, we

assume that for all i : ni > 0 :

ni ≥ NOI. (A1)

Under this additional assumption, we can solve for the equilibrium in closed form.

The general case follows similar logic, except that the number of the agents who

submit nonzero demand for bonds at the second stage depends on the configuration

of CDS positions. When A1 holds, only agents with non-positive CDS positions

receive nonzero allocations in the equilibrium.

The proof consists of several steps. In step 1, we derive the F.O.C. for the optimal

strategies at the second stage, given the remaining CDS positions of the agents after

the first stage. In step 2, we derive the F.O.C. for the optimal physical settlement

requests. In step 3, we show that the second-stage equilibrium with price pA can be

supported if agents play the following second-stage strategies:

xi(p) = max{c(v − p)λ − ni + yi, 0}

(c and λ are specified later). In step 4, we solve for optimal physical requests of

agents, given the above second-stage strategies. Finally, we solve for the NOI.

Step 1. Recall that at the second stage, player i solves problem (4):

max
xi(p)

(v − p(xi(p), x−i(p))) qi(xi(p), x−i(p)) + (ni − yi)× (100− p(xi(p), x−i(p))) .

In any equilibrium of the second stage, the sum of the demand of agent i, xi(p
A), and

the residual demand of the other players, x−i(p
A), must equal the NOI. Therefore,

solving for the optimal xi(p) is equivalent to solving for the optimal price, pA, given the

residual demand of the other players. Thus, the F.O.C. for agent i at the equilibrium
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price, pA, can be written as

(v − pA)
∂x−i(p

A)

∂p
+ xi(p

A) + ni − yi = 0 if xi(p
A) > 0, (A2)

(v − pA)
∂x−i(p

A)

∂p
+ xi(p

A) + ni − yi ≥ 0 if xi(p
A) = 0. (A3)

Step 2. Recall that agent i’s profit is given by equation (3):

Πi = (v − pA)qi
auction-allocated bonds

+ (ni − yi)× (100− pA)
remaining CDS

+ 100yi
physical settlement

+ v(bi − yi)
remaining bonds

.

Using the fact that ∂NOI/∂yi = 1, we have that the F.O.C. for the optimal settlement

amount, yi, for agent i, satisfies

∂Πi

∂yi
= 0 if yi 6= 0 and yi 6= ni, (A4)

∂Πi

∂yi
≤ 0 if yi = 0 and ni > 0, or yi = ni if ni < 0, (A5)

∂Πi

∂yi
≥ 0 if yi = 0 and ni < 0, or yi = ni if ni > 0, (A6)

where

∂Πi

∂yi
= −∂p

A(NOI)

∂NOI
(ni − yi + qi)− (v − pA(NOI))

(
1− ∂qi

∂yi

)
. (A7)

Step 3. Let M be the number of agents with nonpositive CDS positions who are

allowed to hold bonds, and let λ = 1/(M − 1). Then consider the following set of

strategies at the second stage:

xi(p) = max

{
NOI +

∑
j∈N+:nj<0 (nj − yj)
M

(v − p)λ

(v − pA(NOI))λ
− ni + yi, 0

}
. (A8)

Demand schedules (A8) imply that agents with non-positive CDS positions who
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are allowed to hold bonds receive, at p = pA, the following bond allocations:

qi =
NOI +

∑
j∈N+:nj<0 (nj − yj)
M

− (ni − yi). (A9)

Equation (A3) implies that agents with initial long CDS positions receive zero equi-

librium bond allocations at the second stage, as long as

ni − yi ≥
NOI +

∑
j∈N+:nj<0 (nj − yj)
M − 1

. (A10)

If this is the case, equation (A2) implies that strategies (A8) form an equilibrium at

the second stage, with the equilibrium price equal to pA.14

Step 4. Consider now the optimal physical settlement requests of agents with initial

short CDS positions. We need consider only those agents who are allowed to hold

bonds after the auction. As part of the equilibrium constructed in step 3, these agents

receive qi units of bonds, as given in (A9). So we can write condition (A7) as

∂Πi

∂yi
= −∂p

A(NOI)

∂NOI

NOI +
∑

j∈N+:nj<0 (nj − yj)
M

− v − pA(NOI)

M
. (A11)

For simplicity, we solve for the interior solution so that ∂Πi

∂yi
= 0. Direct computations

show that in such an equilibrium it must be the case that

NOI +
∑

j∈N+:nj<0

(nj − yj) =
(
v − pA(NOI)

)
/

∣∣∣∣∂pA(NOI)

∂NOI

∣∣∣∣ . (A12)

Now consider the optimal physical settlement requests of agents with initial long

CDS positions. If these agents receive a zero equilibrium bond allocation, conditions

14Technically, one extra condition is needed to ensure the existence of the constructed equilibrium.
Inequality (A10) must continue to hold for every possible deviation ŷj > yj by each participant
j ∈ N . If for some such ŷj this condition breaks down for agent i with a long CDS position, then
this agent will participate in the second stage of the auction, which could increase the profit earned
by agent j. (Of course, agent i could increase yi itself, in which case j = i). This extra condition does
not hold for ŷi > yi when M = 2, which leads to existence of pA = 0 underpricing equilibria only.
When M > 2 there exist underpricing equilibria with pA > 0, in which out-of-equilibrium submission
of physical settlement requests does not lead agents with long CDS positions to participate in the
second stage of the auction. The details are available upon request.
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(A4) and (A7) imply that their optimal physical requests satisfy

yi = max

{
ni −

(
v − pA(NOI)

)
/

∣∣∣∣∂pA(NOI)

∂NOI

∣∣∣∣ , 0} . (A13)

Using equilibrium condition (A12) together with condition (A10), we can see that

agents with initial long CDS positions will receive a zero equilibrium bond allocation

at the second stage if

ni ≥
(
v − pA(NOI)

)
/|∂p

A(NOI)
∂NOI

|
M − 1

. (A14)

Assumption (A1), along with condition (16), guarantee an interior solution for the

optimal physical requests of agents with initial long CDS positions.

Step 5. Finally, the optimal physical requests of the agents must sum to the NOI:

∑
i:ni>0

ni − v − pA(NOI)∣∣∣∂pA(NOI)
∂NOI

∣∣∣
+

∑
i∈N+:ni<0

yi = NOI. (A15)

Using (A12), we can write (A15) as

∑
i:ni>0

ni +
∑

i∈N+:ni<0

ni −
v − pA(NOI)∣∣∣∂pA(NOI)

∂NOI

∣∣∣ (K + 1) = 0, (A16)

where K is the number of agents with initial long CDS positions. Consider the case

where pA(NOI) = v − δ ×NOI. Under this specification,

v − pA(NOI)∣∣∣∂pA(NOI)
∂NOI

∣∣∣ = NOI.

Condition (A15) gives a simple formula for the NOI:

NOI =

∑
i:ni>0 ni +

∑
i∈N+:ni<0 ni

K + 1
> 0. (A17)

QED.
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Proof of Proposition 8

As usual we focus on the case where NOI > 0. Note that the pro-rata allocation rule

satisfies the majority property (Kremer and Nyborg, 2004): an agent whose demand

at the clearing price is above 50% of the total demand is guaranteed to be allocated

at least (50% + η)×NOI, where η > 0.

First, suppose that v ≤ pM + s. The proof that pA cannot be above v is the same

as in Proposition 1. We now prove that pA cannot be below v. Suppose instead that

pA < v. The part of agent i’s utility that depends on her equilibrium allocation and

the final price is:

(v − pA)× qi − pA × (ni − yi).

Suppose first that there is at least one agent for which qi < 0.5. Suppose that this

agent changes her demand schedule to:

x′i(p) =

{
NOI, p ≤ pA + ε

0, otherwise,
(A18)

where 0 < ε < v − pA. After this deviation, the new clearing price is pA + ε. Since

X−i(p
A + ε) < NOI (otherwise pA + ε would have been the clearing price), agent i

demands more than 50% at pA + ε, and under the pro-rata allocation rule receives

q′i > 0.5×NOI. The lower bound on the relevant part of agent i’s utility is now:

(v − pA − ε)× 0.5×NOI − (pA + ε)× (ni − yi).

We can write the difference between agent i’s utility under deviation and her utility

under the assumed equilibrium as follows:

(0.5×NOI − qi)× (v − pA)− ε(ni − yi + 0.5×NOI). (A19)

For small enough ε and under the assumption that pA < v, (A19) is greater than zero

and hence equilibria with pA < v cannot exist.

If there are no agents with qi < 0.5×NOI we are in an auction with two bidders

only. In this case, each of them gets exactly 0.5 × NOI. At price pA + ε (0 < ε <

pM + s− v), there is at least one player (player i), for which xi(p
A + ε) < 0.5×NOI.
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Then, if the opposite agent uses demand schedule (A18), the new clearing price will

be pA + ε and this agent will receive at least (0.5 + η) × NOI. For small enough ε

the difference between agent i’s utility under the deviation and her utility under the

assumed equilibrium is:

η × (v − pA)− ε(ni − yi + (0.5 + η)×NOI) > 0. (A20)

Therefore, equilibria with pA < v cannot exist. We conclude that if v ≤ pM + s, then

pA = v is the only clearing price in any equilibrium under the pro-rata allocation rule.

Finally, suppose that pM + s < v. The proof for this case is the same, except that

there is no feasible deviation to a higher price if pA = pM +s. Hence, pA = pM +s < v

is the only clearing price in any equilibrium under the pro-rata allocation rule. QED.
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Tables and Figures

Table 1: Nortel Limited Market Quotes

Dealer Bid Offer

Banc of America Securities LLC 9.5 11.5

Barclays Bank PLC 4.0 6.0

BNP Paribas 7.0 9.0

Citigroup Global Markets Inc. 10.5 12.5

Credit Suisse International 6.5 8.5

Deutsche Bank AG 6.0 8.0

Goldman Sachs & Co. 6.0 8.0

J.P. Morgan Securities Inc. 7.0 9.0

Morgan Stanley & Co. Incorporated 5.0 7.0

The Royal Bank of Scotland PLC 6.5 8.5

UBS Securities LLC 7.0 9.0

Table 1 shows the two-way quotes submitted by dealers at the first stage of the Nortel

Ltd. auction.
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Table 2: Auction Summaries

Name Date Credit Event Inside Market Net Open Final

Quote Interest Price

Dura 28 Nov 2006 Chapter 11 24.875 20.000 24.125

Dura Subordinated 28 Nov 2006 Chapter 11 4.250 77.000 3.500

Quebecor 19 Feb 2008 Chapter 11 42.125 66.000 41.250

Lehman Brothers 10 Oct 2008 Chapter 11 9.750 4920.000 8.625

Washington Mutual 23 Oct 2008 Chapter 11 63.625 988.000 57.000

Tribune 6 Jan 2009 Chapter 11 3.500 765.000 1.500

Lyondell 3 Feb 2009 Chapter 11 23.250 143.238 15.500

Nortel Corp. 10 Feb 2009 Chapter 11 12.125 290.470 12.000

Smurfit-Stone 19 Feb 2009 Chapter 11 7.875 128.675 8.875

Chemtura 14 Apr 2009 Chapter 11 20.875 98.738 15.000

Great Lakes 14 Apr 2009 Ch 11 of Chemtura 22.875 130.672 18.250

Rouse 15 Apr 2009 Failure to pay 28.250 8.585 29.250

Abitibi 17 Apr 2009 Failure to pay 3.750 234.247 3.250

Charter 21 Apr 2009 Chapter 11 1.375 49.2 2.375

Communications

Capmark 22 Apr 2009 Failure to pay 22.375 115.050 23.375

Idearc 23 Apr 2009 Chapter 11 1.375 889.557 1.750

Bowater 12 May 2009 Chapter 11 14.000 117.583 15.000

R.H.Donnelly Corp. 11 Jun 2009 Chapter 11 4.875 143.900 4.875

General Motors 12 Jun 2009 Chapter 11 11.000 -529.098 12.500

Visteon 23 Jun 2009 Chapter 11 4.750 179.677 3.000

Six Flags 9 Jul 2009 Chapter 11 13.000 -62.000 14.000

Lear 21 Jul 2009 Chapter 11 40.125 172.528 38.500

CIT 1 Nov 2009 Chapter 11 70.250 728.980 68.125

Table 2 summarizes the auction results for 23 US firms for which TRACE data are available.

It reports the settlement date, type of credit event, inside market quote (per 100 of par),

net open interest (in millions of USD), and final auction settlement price (per 100 of par).
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Table 3: Tradable Deliverable Bond Summary Statistics

Name Number of Notional amount of NOI/NAB Average price

deliverable bonds outstanding (%) on the day before

bonds (NAB) the auction

Dura 1 350,000 5.71 25.16

Dura Subordinated 1 458,500 16.79 5.34

Quebecor 2 600,000 11.00 42.00

Lehman Brothers 157 42,873,290 11.47 12.98

Washington Mutual 9 4,750,000 20.80 64.79

Tribune 6 1,346,515 56.81 4.31

Lyondell 3 475,000 30.15 26.57

Nortel Corp. 5 3,149,800 9.22 14.19

Smurfit-Stone 5 2,275,000 5.65 7.77

Chemtura 3 1,050,000 9.40 26.5

Great Lakes 1 400,000 32.65 26.71

Rouse 4 1,350,000 0.63 29.00

Abitibi 10 3,000,000 7.81 4.61

Charter Communications 17 12,769,495 0.38 2.00

Capmark 2 1,700,000 6.79 22.75

Idearc 1 2,849,875 31.21 2.15

Bowater 6 1,875,000 6.27 14.12

R.H.Donnelly Corp. 7 3,770,255 3.81 5.12

General Motors 16 18,180,552 -2.91 11.17

Visteon 2 1,150,000 15.62 74.87

Six Flags 4 1,495,000 -4.14 13.26

Lear 3 1,298,750 13.28 39.27

CIT 281 22,584,893 3.29 69.35

Table 3 provides summary statistics of deliverable bonds for 23 US firms for which TRACE

data are available. Column three reports the ratio of Table 2’s net open interest (NOI) to

the notional amount outstanding of deliverable bonds. The last column shows a weighted

average bond price on the day before the auction, constructed as described in Section 4.1.
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Figure 1: IMM Determination: The Case of Nortel
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Figure 1 displays all bids (sorted in descending order) and all offers (sorted in ascending order).

Tradeable quotes (bid greater than offer) are discarded for the purposes of computing IMM. Dealers

quoting tradeable markets must pay a penalty (adjustment amount) to ISDA. The cap price is higher

than the IMM by 1% of par and is used in determining the final price. (If the open interest is to

buy, the cap price is set below the IMM.)
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Figure 2: Bids at the Cap Price
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Figure 2 shows individual bids scaled by the NOI at the cap price (in auctions where the price is

capped). Each bid within an auction is represented by a different color.
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Figure 3: Bond and Auction Prices

Figure 3 shows the final auction price, scaled by the weighted-average market price of the bonds a

day before the auction.
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Figure 4: Price Discount
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y = 1.01−1.19x
t−stat      (5.32)
R2=55.4%

Figure 4 shows the result of an OLS regression where the dependent variable is the ratio of the
final auction price to the weighted-average market price of bonds a day before the auction, and the
explanatory variable is the scaled NOI:

yi = α+ β ×NOIi/NABi + εi.
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Figure 5: Price Impact
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(a) (b)

Figure 5 Panel (a) displays daily bond prices, normalized by the auction final price, pt/p
A, and

equally weighted across the 22 auctions reported in Table 2 (the Charter auction is excluded due to

a lack of reliable bond data). Panel (b) shows the same prices but excluding the Tribune auction,

which has the largest degree of underpricing. The blue line shows the prices based all available bond

issues. The green line shows prices based only on bond issues with the lowest price.
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Figure 6: Washington Mutual Bond Prices
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Figure 6 shows daily prices of Washington Mutual outstanding bond issues around the day of

bankruptcy (indicated by a vertical black line). The legend shows the maturity date of each is-

sue. The daily price at a given date is a volume-weighted average for all trades at this date. Further

details on the construction of this graph are given in Section 4.1.
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