CHAPTER 24

Portfolio Performance Evaluation

Investments, 8th edition

Bodie, Kane and Marcus

Slides by Susan Hine

McGraw-Hill/Irwin

Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved.

Introduction

- Complicated subject
- Theoretically correct measures are difficult to construct
- Different statistics or measures are appropriate for different types of investment decisions or portfolios
- Many industry and academic measures are different
- The nature of active management leads to measurement problems

Dollar- and Time-Weighted Returns

Dollar-weighted returns

- Internal rate of return considering the cash flow from or to investment
- Returns are weighted by the amount invested in each stock
- Time-weighted returns
- Not weighted by investment amount
- Equal weighting

Text Example of Multiperiod Returns

- Period <u>Action</u>
 - 0 Purchase 1 share at \$50
 - 1 **Purchase 1 share at \$53**

Stock pays a dividend of \$2 per share

- 2 Stock pays a dividend of \$2 per share
 - Stock is sold at \$108 per share

Dollar-Weighted Return

<u>Period</u>	Cash Flow
0	-50 share purchase
1	+2 dividend -53 share purchase
2	+4 dividend + 108 shares sold

Internal Rate of Return:

$$-50 = \frac{-51}{(1+r)^1} + \frac{112}{(1+r)^2}$$

r = 7.117%

Time-Weighted Return

$$r_1 = \frac{53 - 50 + 2}{50} = 10\%$$

$$r_2 = \frac{54 - 53 + 2}{53} = 5.66\%$$

Text Example Average:

 $r_G = [(1.1)(1.0566)]^{1/2} - 1$ = 7.81%

Adjusting Returns for Risk

- Benchmark portfolio
 - Comparison with other managers of similar investment style
 - May be misleading

Figure 24.1 Universe Comparison

Risk Adjusted Performance: Sharpe

1) Sharpe Index

BODIE KANE MARCUS

$$(r_P - r_f)$$

 σ_P

- $\overline{r_p}$ = Average return on the portfolio
- \overline{r}_f = Average risk free rate
 - **y**_p = Standard deviation of portfolio return

Risk Adjusted Performance: Treynor

2) <u>Treynor Measure</u>

BODIE · KANE · MARCUS

$$\frac{(\overline{r_P} - \overline{r_f})}{\beta_P}$$

 $\overline{r_p}$ = Average return on the portfolio

$$\overline{r}_f = Average \ risk \ free \ rate$$

 β_p = Weighted average β for portfolio

Risk Adjusted Performance: Jensen

3) Jensen's Measure

$$\alpha_{P} = \overline{r_{P}} - \left[\overline{r_{f}} + \beta_{P}(\overline{r_{M}} - \overline{r_{f}})\right]$$

- α_p = Alpha for the portfolio $\overline{r_p}$ = Average return on the portfolio
- β_p = Weighted average Beta
- $\overline{r_f}$ = Average risk free rate

BODIE KANE MARCUS

 $\overline{r_m}$ = Average return on market index portfolio

Information Ratio

Information Ratio = $\alpha_p / \sigma(e_p)$

Information Ratio divides the alpha of the portfolio by the nonsystematic risk

Nonsystematic risk could, in theory, be eliminated by diversification

M² Measure

- Developed by Modigliani and Modigliani
- Equates the volatility of the managed portfolio with the market by creating a hypothetical portfolio made up of T-bills and the managed portfolio
- If the risk is lower than the market, leverage is used and the hypothetical portfolio is compared to the market

$$M^2 = r_{P^*} - r_M$$

*M*² Measure: Example

Managed Portfolio: return = 35%

Market Portfolio: return = 28% T-bill return = 6% standard deviation = 42%

standard deviation = 30%

Hypothetical Portfolio:

30/42 = .714 in P (1-.714) or .286 in T-bills

(.714)(.35) + (.286)(.06) = 26.7%

Since this return is less than the market, the managed portfolio underperformed

Figure 24.2 *M*² of Portfolio *P*

24-15

Which Measure is Appropriate?

It depends on investment assumptions

- 1) If the portfolio represents the entire investment for an individual, Sharpe Index compared to the Sharpe Index for the market
- 2) If many alternatives are possible, use the Jensen α or the Treynor measure

The Treynor measure is more complete because it adjusts for risk

Table 24.1 Portfolio Performance

	Portfolio P	Portfolio Q	Market
Beta	.90	1.60	1.0
Excess return $(\overline{r} - \overline{r_f})$	11%	19%	10%
Alpha*	2%	3%	0

TABLE 24.1

Portfolio performance

*Alpha = Excess return – (Beta \times Market excess return)

 $= (\overline{r} - \overline{r}_f) - \beta(\overline{r}_M - \overline{r}_f) = \overline{r} - [\overline{r}_f + \beta(\overline{r}_M - \overline{r}_f)]$

Figure 24.3 Treynor's Measure

Table 24.2 Excess Returns for Portfolios *P* and *Q* and the Benchmark *M* over 12 Months

TABLE 24.2	Month	Jane's Portfolio P	Alternative O	Benchmark M
	Month	Salle ST OI CIOIO I	Alternative Q	Dencimark M
Excess returns for	1	3.58%	2.81%	2.20%
portfolios P and Q and	2	-4.91	-1.15	-8.41
12 months	3	6.51	2.53	3.27
2 months	4	11.13	37.09	14.41
	5	8.78	12.88	7.71
	6	9.38	39.08	14.36
	7	-3.66	-8.84	-6.15
	8	5.56	0.83	2.74
	9	-7.72	0.85	-15.27
	10	7.76	12.09	6.49
	11	-4.01	-5.68	-3.13
	12	0.78	-1.77	1.41
	Average	2.76	7.56	1.63
	Standard deviation	6.17	14.89	8.48

Table 24.3 Performance Statistics

TABLE 24.3				
		Portfolio P	Portfolio Q	Portfolio M
Performance statistics	Sharpe's measure	0.45	0.51	0.19
	M ²	2.19	2.69	0.00
	SCL regression statistics			
	Alpha	1.63	5.28	0.00
	Beta	0.69	1.40	1.00
	Treynor	4.00	5.40	1.63
	T ²	2.37	3.77	0.00
	σ(e)	1.95	8.98	0.00
	Information ratio	0.84	0.59	0.00
	<i>R</i> -SQR	0.91	0.64	1.00

Performance Measurement for Hedge Funds

 When the hedge fund is optimally combined with the baseline portfolio, the improvement in the Sharpe measure will be determined by its information ratio:

$$S_P^2 = S_M^2 + \left[\frac{\alpha_H}{\alpha(e_H)}\right]^2$$

Performance Measurement with Changing Portfolio Composition

 For actively managed portfolios, it is helpful to keep track of portfolio composition and changes in portfolio mean and risk

Figure 24.4 Portfolio Returns

Market Timing

- In its pure form, market timing involves shifting funds between a market-index portfolio and a safe asset
- Treynor and Mazuy: $r_P - r_f = a + b(r_M - r_f) + c(r_M - r_f)^2 + e_P$
- Henriksson and Merton:

$$r_{P} - r_{f} = a + b(r_{M} - r_{f}) + c(r_{M} - r_{f})D + e_{P}$$

Figure 24.5 Characteristic Lines: Panel A: No Market Timing. Panel B: Beta Increases with Expected Market Excess. Return Panel C: Market Timing with Only Two Values of Beta.

FIGURE 24.5 Characteristic lines. *Panel A:* No market timing, beta is constant. *Panel B:* Market timing, beta increases with expected market excess return. *Panel C:* Market timing with only two values of beta.

Table 24.4 Performance of Bills, Equities and (Annual) Timers – Perfect and Imperfect

Strategy	Bills	Equities	Perfect Timer	Imperfect Timer*
Terminal value	18.35	2,318.04	172,732.75	3,494.91
Arithmetic average (%)	3.75	12.15	17.04	54.81
Standard deviation (%)	3.15	20.26	13.82	15.77
Geometric average (%)	3.70	10.17	16.27	10.74
LPSD (relative to bills)	0	10.63	0	5.75
Minimum (%)	06**	-45.56	06	-25.90
Maximum (%)	14.86	54.56	54.56	54.56
Skew	1.03	36	.66	.53
Kurtosis	1.10	07	37	.31
One-period call value (\$)	0	0	.1605	.0642
Terminal value of call (\$)	0	0	225,330.92	174.19

TABLE 24.4

Performance of bills, equities, and (annual) timers—perfect and imperfect

*The imperfect timer has $P_1 = .7$ and $P_2 = .7$. $P_1 + P_2 - 1 = .4$.

**A negative rate on "bills" of –.06% was observed in 1940. The Treasury security used in the data series for this year actually was not a T-bill, but a T-bond with a short remaining maturity.

Figure 24.6 Rate of Return of a Perfect Market Timer as a Function of the Rate of Return on the Market Index

FIGURE 24.6 Rate of return of a perfect market timer as a function of the rate of return on the market index.

Figure 24.7 Scatter Diagram of Timer Performance

Style Analysis

- Introduced by William Sharpe
- 1992 study of mutual fund performance
 - 91.5% of variation in return could be explained by the funds' allocations to bills, bonds and stocks
- Later studies show that 97% of the variation in return could be explained by the funds' allocation to a broader range of asset classes

Table 24.5 Style Analysis for Fidelity's Magellan Fund

Style Portfolio	Regression Coefficient
T-Bill	0
Small Cap	0
Medium Cap	35
Large Cap	61
High P/E (growth)	5
Medium P/E	0
Low P/E (value)	0
Total	100
<i>R</i> -square	97.5

Source: Authors' calculations. Return data for Magellan obtained from finance.yahoo.com/funds and return data for style portfolios obtained from the Web page of Professor Kenneth French: mba. tuck.dartmouth.edu/pages/faculty/ken.french/ data_library.html.

TABLE 24.5

Style analysis for Fidelity's Magellan Fund

Figure 24.8 Fidelity Magellan Fund Cumulative Return Difference: Fund versus Style Benchmark and Fund versus SML Benchmark

Figure 24.9 Average Tracking Error for 636 Mutual Funds, 1985-1989

Morningstar

- Morningstar computes fund returns as well as a risk measure based primarily on fund performance in its worst years
- The risk-adjusted performance is ranked across funds in a style group and stars are awarded

Evaluating Performance Evaluation

- Performance Evaluation has two problems
 - Many observations are needed for significant results
 - Shifting parameters when portfolios are actively managed makes accurate performance evaluation all the more elusive

Figure 24.10 Rankings Based on Morningstar's Category RARs and Excess Return Sharpe Ratios

return Sharpe ratios

Source: William F. Sharpe, "Morningstar Performance Measures," www.wsharpe.com. Used by permission of William F. Sharpe.

BODIE · KANE · MARCUS

Performance Attribution

- Decomposing overall performance into components
- Components are related to specific elements of performance
- Example components
 - Broad Allocation
 - Industry
 - Security Choice
 - Up and Down Markets

Attributing Performance to Components

Set up a 'Benchmark' or 'Bogey' portfolio

- Use indexes for each component
- Use target weight structure

Attributing Performance to Components Continued

- Calculate the return on the 'Bogey' and on the managed portfolio
- Explain the difference in return based on component weights or selection
- Summarize the performance differences
 into appropriate categories

Formula for Attribution

Where B is the bogey portfolio and p is the managed portfolio

Figure 24.11 Performance Attribution of *i*th Asset Class

Table 24.6 Performance of the Managed Portfolio

TABLE 24.6		Bogey Perfo	formance and Excess Return		
Performance of the managed	Component	Benchmark Weight		Return of Index during Month (%)	
portfolio	Equity (S&P 500)	.60		5.81	
	Bonds (Lehman Brothers Index)	.30		1.45	
	Cash (money market)	.10		0.48	
	Bogey = $(.60 \times 5.81) + (.30 \times 1.45) + (.10 \times 0.48) = 3.97\%$				
	Return of managed portfoli	0	5.34%		
	– Return of bogey portfolio		3.97		
	Excess return of managed	oortfolio	1.37%		

Table 24.7 Performance Attribution

TABLE 24.7	A. Contribution of asset allocation to performance					
Performance attribution		(1)	(2)	(3)	(4)	(5) = (3) × (4)
	Market	Actual Weight in Market	Benchmark Weight in Market	Active or Excess Weight	Market Return (%)	Contribution to Performance (%)
	Equity	.70	.60	.10	5.81	.5810
	Fixed-income	.07	.30	23	1.45	3335
	Cash	.23	.10	.13	.48	.0624
	Contribution of asset allocation					.3099
	B. Contribution of Selection to Total Performance					
		(1)	(2)	(3)	(4)	(5) = (3) × (4)
	Market	Portfolio Performance (%)	Index Performance (%)	Excess Performance (%)	Portfolio Weight	Contribution (%)
	Equity	7.28	5.81	1.47	.70	1.03
	Fixed-income	1.89	1.45	0.44	.07	0.03
	Contributio	on of selection v	within markets			1.06

Table 24.8 Sector Selection within the Equity Market

	(1)	(2)	(3)	(4)	(5) = (3) × (4)
	Beginnin Weig	g of Month hts (%)	Active	Sector	Sector
Sector	Portfolio	S&P 500	(%)	(%)	Contribution
Basic materials	1.96	8.3	-6.34	6.9	-0.4375
Business services	7.84	4.1	3.74	7.0	0.2618
Capital goods	1.87	7.8	-5.93	4.1	-0.2431
Consumer cyclical	8.47	12.5	-4.03	8.8	0.3546
Consumer noncyclical	40.37	20.4	19.97	10.0	1.9970
Credit sensitive	24.01	21.8	2.21	5.0	0.1105
Energy	13.53	14.2	-0.67	2.6	-0.0174
Technology	1.95	10.9	-8.95	0.3	-0.0269
TOTAL					1.2898

Sector selection within the equity market

Table 24.9 Portfolio Attribution: Summary

TABLE 24.9 Portfolio attribution:			Contribution (basis points)
summary	1. Asset allocation		31
	2. Selection		
	a. Equity excess return (basis po	pints)	
	i. Sector allocation	129	
	ii. Security selection	18	
		$\overline{147}$ × .70 (portfolio weight) =	102.9
	b. Fixed-income excess return	44 $ imes$.07 (portfolio weight) =	3.1
	Total excess return of portfolio		137.0

