Corporate Investment Appraisal
 Masters in Finance

2012-2013
Fall Semester
Clara C Raposo

Problem Set N° 1: Guideline to Solutions

Problem 1: What are the Nash equilibria of the following game, after elimination of dominated strategies? Explain the steps followed in order to reach your results.

This is a possible sequence to determine a DS equilibrium:

- From player A's perspective, since $4 \geq 4,1 \geq 0$, and $0 \geq 0$, strategy T dominates M regardless of the other player's action). Thus, we eliminate row "Middle".
- Since $2 \geq 0$ and $0 \geq 0$, for player B strategy Center dominates Left. We can eliminate "Left".
- Because $1 \geq 1$ and $2 \geq 0$, for Player A strategy Bottom dominates Top. So, we eliminate "Top".
- Finally, as $1 \geq 0$, for Player B strategy Right dominates Center. We can eliminate "Center".
- We are left with (Bottom,Right), which is the only equilibrium in dominated strategies (DSE).

Problem 2: Two Californian teenagers, Bill and Ted, are playing a game with the following pay-offs matrix:

Left | Ted |
| :---: |
| Right |

Top $\quad-2,-2 \quad 2,0$

Bill
Bottom 0,2 1,1
(a) Determine all equilibria in pure strategies. Explain.
(b) Determine all equilibria in mixed strategies. Explain.
(c) What's the probability of both players having positive pay-offs? Explain.
(a) NE in Pure strategies: (B, L) and (T, R). Explain...
(b) NE in mixed strategies: Bill chooses Top with probability $1 / 3$ and Ted chooses Left with probability $1 / 3$.
(c) When the solution is (B, R) both players have strictly positive payoffs.

If they play the mixed strategy equilibrium, the probability of (B, R) happening is $2 / 3 * 2 / 3=4 / 9$.
In the case of pure strategies, the outcome (B, R) would not take place.
If we meant non-strictly positive payoffs, then the probability $4 / 9$ would be revised to
1-Probability $(T, L)=1-1 / 3 * 1 / 3=8 / 9$.

Problem 3: Consider the following coordination game:

(a) NE in pure strategies: (T,L), (B,R). Explain...
(b) No strategy dominates any other. Explain...
(c) and (d)

The sub-game perfect equilibrium of this game is (T,L). Why?
A plays first.
If A plays B, player B will choose R (1>0). Hence, Player A would get 1 .
If A plays T, then player B will choose L (because $3>0$). Hence A would get 3 .
Therefore, player A chooses T, then player B chooses L, and the SPE is (T, L), with payoffs $(3,3)$.

Problem 4: Consider the previous question's game, in which the players choose
their strategies simultaneously.
(a) Represent the game in extensive form.
(b) Describe the perfect Bayesian equilibria (PBE) of this game.
(a) Extensive Form (assuming that player A plays first):

(b) Analysis of the perfect Bayesian equilibria (PBE):
(i) If player A believes that player B plays L with probability q and plays R with probability (1-q), player A knows that:

- If she plays T her expected payoff is $3 q+0(1-q)=3 q$
- If she plays B her expected payoff is $0 q+(1-q)=1-q$
(ii) In equilibrium player A should choose (let's say p is the probability of player A choosing T):
- $p=1$ if $3 q>1-q$
- $\quad p$ in $[0,1]$ if $q=1 / 4$
- $p=0$ if $q<1 / 4$
(iii) If player B believes that player A chooses T with probability p, then he knows that:
- If he plays L his expected payoff is: $3 p+0(1-p)=3 p$
- If he plays R his expected is $0 p+1(1-p)=1-p$
(iv) Hence, Player B should choose according to (where q is the probability with which he plays L):
- $q=1$ if $p>1 / 4$
- q in $[0,1]$ if $p=1 / 4$
- $q=0$ if $p<1 / 4$
(v) Finally what will characterize an equilibrium, taking into account that a condition for equilibrium is that the beliefs of each player about its oponent's behavior must coincide with the equilibrium strategies:
- Start with the case in which A chooses $p>1 / 4$. If B guesses this right, B chooses $q=1$. But if $q=1$, and A guesses this right, then A would choose $p=1$, which is compatible with the initial conjecture of $p>1 / 4$. We found a PBE equilibrium in which ($p=1, q=1$).
- If Player A chooses $p=1 / 4$, and B guesses this right, B is indifferent between L and R. He may choose any q in the interval $[0,1]$. In case B chooses $q=1 / 4$, that would be compatible with A "replying" $p=1 / 4$, since A would be indifferent. We found another PBE with ($p=1 / 4, q=1 / 4$).
- Finally, if A chooses $p<1 / 4$, and player B guesses this correctly, player B chooses $q=0$. But if B chooses $q=0$, and player A guesses this correctly, then player A should respond with $p=0$ (which is compatible with the conjecture that $p<1 / 4$). We found the third PBE of this game, with ($p=0, q=0$).

