
CONTENTS 1

YaRI - Yet another R Introduction
A self-help guide

Written by Andreas Handel (ahandel@uga.edu) with the help of other sources
See the acknowledgment section for more details

Last updated on August 6, 2012
Permanently under construction

Contents

1 Preface 3

1.1 Acknowledgments . 3

1.2 Purpose of this guide . 3

1.3 A note for non-Windows users . 3

2 Getting started with R 4

2.1 What is R? . 4

2.2 Installing and starting R . 4

2.3 Installing R packages . 4

2.4 Stopping R code and ending an R session . 5

2.5 Exercises . 5

3 Getting help and learning R 6

3.1 R help files . 6

3.2 R manuals and tutorials . 6

4 Using R 7

4.1 Interactive sessions and why you should avoid them 7

4.2 Using a text editor to write and run scripts in R 8

4.3 A comment on comments . 9

4.4 Exercises . 10

5 A quick overview of specific topics 10

CONTENTS 2

5.1 Naming variables . 10

5.2 Arithmetic operations . 11

5.3 Logical operators . 12

5.4 Exercises . 14

5.5 Vectors . 14

5.5.1 Constructing vectors . 14

5.5.2 Addressing vectors . 15

5.5.3 Manipulating vectors . 16

5.5.4 Exercises . 17

5.6 Matrices . 18

5.6.1 Constructing matrices . 18

5.6.2 Addressing matrices . 19

5.6.3 Matrix operations and matrix-vector multiplication 20

5.6.4 Exercises . 20

5.7 Other variable types . 21

5.7.1 Strings . 21

5.7.2 Lists . 21

5.7.3 Data frames . 21

5.8 Reading and writing data . 22

5.9 Special values . 22

5.10 Exercises . 22

5.11 Plotting and saving figures . 23

5.12 Exercises . 24

5.13 Flow control in R . 24

5.13.1 For-loops . 25

5.13.2 While-loops . 26

5.13.3 Branching . 27

5.13.4 Exercises . 28

5.14 Functions in R . 29

5.14.1 Functions for solving systems of differential equations 31

1 PREFACE 3

5.15 Other stuff that might be useful . 32

6 A small project 32

7 Next steps 34

1 Preface

1.1 Acknowledgments

A lot of this document is based on “An introduction to R for ecological modeling” by Benjamin
Bolker, which in turn is based on “An introduction to R for dynamic models in biology” by
Stephen Ellner and John Guckenheimer. Ben Bolker’s notes are a supplement to his textbook
Ecological models and data in R. Stephen Ellner and John Guckenheimer wrote their notes as
a supplement to their textbook Dynamic Models in Biology. You can find the original notes,
links to these very good textbooks, and additional information and resources on the respective
webpages for Ben Bolker (http://www.math.mcmaster.ca/~bolker/) and Steve Ellner (http:
//www.eeb.cornell.edu/Ellner/). Thanks to those authors for generously providing the
source code for their notes on their webpages. In turn, this document, with its source code,
lives at http://ahandel.myweb.uga.edu/resources.htm. Feel free to use it to create your
own remix.

If you use this tutorial and find any mistakes, confusing parts, suggestions for improvements,
etc., let me know. I very much appreciate feedback. Email me at ahandel@uga.edu.

1.2 Purpose of this guide

The goal of this document is to give you a very rapid start with R. This guide is very short,
shorter than most other similar tutorials, including the two documents on which it is based. The
hope is that you can work through it reasonably quickly. If you have no previous R experience,
you should work through the tutorial from beginning to end – even if you have programmed
before. The focus is on getting you started, showing you how to take the first steps with R
and providing you with the tools to embark on a self-learning journey – that’s why I call it a
self-help guide. As you continue to use and learn R, you will need to consult other sources; this
document is only the start. Also, to keep it short, I often only show one way of doing things. A
nice feature of R is that it is highly flexible and there are many ways of doing certain tasks. You
will soon develop your own style of programming, and you might start to do things differently
than explained here – which is absolutely fine.

1.3 A note for non-Windows users

This document is written with Windows users in mind. Sometimes, differences for OS X are
mentioned – but this is not consistent. I ignored issues specific to Linux/Unix. I assume if

2 GETTING STARTED WITH R 4

you know how to use Linux, you are computer literate enough to figure out how to get things
working if the Windows way is not applicable.

2 Getting started with R

2.1 What is R?

R is a “high-level” programming language that includes many built-in and user-contributed
functions. It has very powerful statistical capabilities and is also great for producing high-
quality graphics. Thanks to the many available add-on packages, almost anything goes. R is an
open source project, available for free. R runs on many different operating systems. Originally
a research project in statistical computing, it is now managed by a development team that
includes a number of well-regarded statisticians, and it is widely used by statistical researchers
(plus a growing number of modelers in all kinds of disciplines) as a platform for making new
methods available to users. More about R, it’s history, the people behind it, and lots of other
useful information can be found on the R webpage at http://www.r-project.org.

2.2 Installing and starting R

The main source for R is the CRAN home page http://cran.r-project.org. You can get
the source code, but most users will prefer a precompiled version. To get one of these from
CRAN, click on the link for your OS. For Windows, click on base and then download R. It
won’t hurt to read some of the installation instructions and FAQs. Install R by launching the
downloaded file and following the on-screen instructions. You should have administrator rights
on the computer you are trying to install R to. If you don’t, ask your administrator to install R
for you. Alternatively, you can try to install R as user. It might work, but I’m not sure about
it. If you have enough space on your computer, choose “full install” to install the complete R
with all the manuals and extras. It’s not strictly necessary but good to have them. Other than
that, accept the default settings suggested by the installer. At the end you’ll have an R icon on
your desktop that can be used to launch the program. Just click on the icon on your desktop,
or in the Start menu (You should have allowed the Setup program to make either or both of
these). When you start R it opens the console window. The console has a few basic menus
at the top; check them out on your own. The console is also where you enter commands for R
to execute interactively, meaning that the command is executed and the result is displayed as
soon as you hit the Enter key. We will do that in the next section.

2.3 Installing R packages

The standard distribution of R includes several packages, user-contributed suites of add-on
functions. As you start using R more, you will likely want to install more packages. You can
find all the available R packages at http://cran.r-project.org/web/packages/. To install a
package, either type install.packages(’packagename’) at the console, or use the Packages

menu. You need to be connected to the internet for this to work. You should also have

2 GETTING STARTED WITH R 5

administrator privileges on the computer. If you don’t have those, you can still try to install
the package, it might work best using the Packages menu. Let’s try this. At the command
prompt, type install.packages(’deSolve’) - it should look like this:

> install.packages(’deSolve’)

and hit Enter (You always execute a statement by pressing Enter, I will from now on not
state that every time). Make sure you spell it exactly deSolve, with a capital S, since R
distinguishes between upper and lower case letters. If you misspell, R will tell you that it can’t
find the package. You will be asked to select a mirror, choose one close to you. This will then
install the package deSolve which can solve differential equations for you and which we will
use a lot.

Once you have installed a package, it is available to R. But before you use it, you need to load
it, which is done with the commands library(’packagename’) or require(’packagename’).
We will come back to that shortly. You can see which packages are already installed by typing
library() at the R prompt.

2.4 Stopping R code and ending an R session

If you want to quit R, you can do so from the File menu, by closing the R window or you
can type q() at the command prompt. When you quit, R will ask you if you want to save
the workspace (that is, all of the variables you have defined in this session); for now (and in
general), say “no” in order to avoid clutter.

Should an R command seem to be stuck or take longer than you’re willing to wait, click on the
stop sign on the menu bar or hit the Escape key.

2.5 Exercises

Exercise 2.1 Go to http://cran.r-project.org/web/packages/ and take a look at the
available packages. If you click on a package, you get more information. Notice the Depends

entry. Sometimes one package uses the contents of another package to work. Then you need to
install all of the dependencies. Often, there is also link to manual in pdf form. Take a look at
a few of those. Now install a package of your choice.

Exercise 2.2 Install the package lattice. This package provides more graphical abili-
ties in addition to the built-in R commands. Load the package into R. Run the command
>demo(lattice). This will show you some of the graphs you can do with functions contained
in this package. You need to click on the graphs or press Enter to go from one to the next.

Exercise 2.3 Close R. Now re-start it. Right-click somewhere inside the R Console window
and de-select Buffered output (only applies to R on Windows). This will make sure that the
output produced by the commands below will be printed on the screen while the program runs.
If you leave Buffered output selected, R will only print the output once the whole program
has finished – which would be a problem here... Now, type

> n=1; while (1<2) {cat(n,"\n"); n=n+1;}

3 GETTING HELP AND LEARNING R 6

What is going on here? How long will the program run? Once you saw enough, use what you
learned in the previous section and move on.

3 Getting help and learning R

The following section will contain arguably the most important information, namely
how to teach yourself R beyond this tutorial.

3.1 R help files

R comes with rather complete documentation and a good built-in help system. You can get to it
through the Help entry in the menu bar. If you installed the complete R, you will have both the
usual help file that explains specific functions and several tutorials/manuals in pdf form. Try
it out. Alternatively, you can type at the console help(functionname) or ?functionname to
open the help entry for a specific function. Try by typing help(mean) at the command prompt.
This will give you information about the function mean, which – you guessed it – computes the
mean of several numbers. If some of the explanation seems too technical/incomprehensible,
don’t worry. You will understand it soon enough. Often, the examples at the end of the
documentation are very useful in understanding how things work.

Some more tips on the help system:

• help.start() fires up a web browser pointing at all of the help files

• help() only searches through functions in the currently loaded packages

• apropos(’somestring’) looks through all accessible R objects, which means it will match
names of functions containing a given string

• if you’re connected to the Web, you can use the RSiteSearch(’somestring’) command
(from the command line or the Help menu) to do a full-text search of all R documentation
and the mailing list archives

• example(function) will run all of the examples in the help page, if any, for function
function

• demo(topic) runs demonstration code on topic topic. Type demo() by itself to list all
available demos

3.2 R manuals and tutorials

There are plenty of R resources on the web. Some of them are available through the Help

menu. Also check out the links under Documentation at http://cran.r-project.org/. You
will find small and large manuals, lots that are introductory, some that focus on certain topics
(e.g. statistics or graphics). There are also more and more R-books published as a quick search
on Amazon will confirm. Further tutorials and manuals exist that are not listed on the R

4 USING R 7

webpage. Do an online search for R tutorial or R + topic and you will likely find something
useful. Here’s a list of free resources I found rather useful:

• An Introduction to R - the “official” beginner guide. Available online on the R webpage,
and you should also have it as part of your installation. Go to Help → Manuals and it
should be the first entry. If you read and work through that guide, you will have a pretty
good understanding of most of the basic R functionality.

• The notes by Ben Bolker and Steve Ellner mentioned above. They contain additional
information that I ommited here, it’s definitely worth checking them out.

• Matlab/R Reference by David Hiebeler: http://germain.its.maine.edu/~hiebeler/

comp/matlabR.html. Especially useful if you know Matlab well. But even if not, it’s a
great collection of tables, sorted by topics. The first column describes what you might
want to do, and the last one shows you how to do it in R.

• Producing Simple Graphs with R by Frank McCown: http://www.harding.edu/fmccown/
R/. Nice quick intro to basic plotting.

• R Graph Gallery: http://addictedtor.free.fr/graphiques/. A large collection of
mostly fancy R graphs. Shows you some of the graphics capabilities of R and R packages.
You can also see the source code that lead to these figures.

• R bloggers (http://www.r-bloggers.com/) collection of blog posts on all kinds of R topics

• R-seek (http://www.rseek.org) is a Google-type search engine that searches through online
R materials

4 Using R

4.1 Interactive sessions and why you should avoid them

We already used R interactively when we installed the package deSolve above. As another
example, at the command prompt, type in 2+2 and hit Enter; you will see

> 2+2

[1] 4

Now try something more complicated. Type a=runif(10), hit Enter, type mean(a). You
should see the following (the number you get will be different):

> a=runif(10)

> mean(a)

[1] 0.517583

Here, is what you did: the first command called the function runif(n), which produces n
random numbers between 0 and 1. These numbers were stored (all 10 at once!) in the variable
a. You can guess what the function mean(a) did. Another way of doing exactly the same thing
is to type

4 USING R 8

> a=runif(10); mean(a)

or

> mean(runif(10))

Try it - but notice that the answers might be different, since every time you get different random
numbers. If you don’t like this, replace the command runif(10) by seq(1,10) and try all three
versions again. Try to guess what seq(1,10) does, check by for instance typing help(seq) at
the command line. You might also want to learn more about runif and mean, do so by typing
?runif and ?mean.

Built-in functions like runif or mean are one of the great advantages of R. Instead of writing
your own function, quite often R has one that does it for you. These functions sometimes
do relatively simple things like calculating the mean or more complicated tasks like robustly
integrating differential equations. This saves you a lot of time because you don’t have to write
your own algorithms. Note that while in principle you don’t need to know how certain routines
work, it is useful to understand the basic concepts, otherwise you might get results that are
nonsensical and you don’t know it. (“The computer told me so” is not a valid excuse for wrong
results).

Now that you have seen how to use the R command line to do calculations, here’s the next
useful thing to learn: Don’t use it! This comes with qualifiers of course, it is often immensely
helpful to type a few quick commands and see what happens – as you will be doing throughout
the rest of this tutorial – or quickly install a new package like we did above. R remembers the
results from what you typed in before (try by typing in a, R should return the values stored
in the variable a). So in principle, you could type one command after the other until you did
everything you wanted. However, things quickly get messy. Even for relatively simple projects,
you usually want to execute a number of commands. Typing each one on the console is tedious
and you might forget what you already did and what you did not. It is way more efficient if
you write all of your commands into a file (a script) and then execute the script. Always work
with script files, even on small projects. You will quickly learn to appreciate them. The next
section tells you how this works.

4.2 Using a text editor to write and run scripts in R

To write and edit scripts, you need a text editor. The Windows and MacOS versions of R
both have basic script editors but they are not too great. A good editor - and in fact a whole
integrated development environment (IDE) - is R Studio. It runs on Windows, OS X and Linux
and is freely available at http://rstudio.org/. Another good option for Windows users is
Tinn-R, freely available at http://sourceforge.net/projects/tinn-r/.

There are other editors out there for all the different operating systems, you can find additional
information at http://www.sciviews.org/_rgui/projects/Editors.html

A note: It’s important that scripts are preserved as plain text files. If you try to edit a script
file with a text editor like MS-Word, OpenOffice Writer or similar, you might end up saving
the file in a format that R can’t read. So don’t use these programs as editors.

4 USING R 9

If you haven’t already done so, now is a good time to install a text editor. Next, get the files
yari-example1.r and yari-example2.r from http://ahandel.myweb.uga.edu/resources.

htm, and open either one with the text editor. Now, open R. (Note: If you use R-Studio, it
automatically opens Rin a window, so no need to start Rseparately). In R, change your working
directory to wherever the file you just opened is located using Change dir in the File menu
(On Mac it’s Misc/Change Working Directory). Now you are ready to run say the first file
by typing

> source(’yari-example1.r’)

A graph should appear on the screen. Note that if you used R-studio, you will have the text
editor and R in one window, both open. To run the script, simply hit the Source button and
the script will be executed.

If you go back to the text editor and look at the file, you will see the collection of commands
that are executed to run a simulation and produce the graph. The R script yari-example1.r

simulates a single outbreak of an infectious disease (e.g. influenza) in a population, the script
yari-example2.r simulates a simple acute viral infection (e.g. influenza) within an infected
host. In both cases, we run an ordinary differential equation model to simulate the dynamics
and then plots the result. These are already a somewhat advanced programs, since they use
functions, the deSolve package, and some other things that you might not fully understand
right away. The many comments should nevertheless allow you to roughly follow what’s going
on. By the end of this tutorial, you should be able to fully understand these programs – and
write similar ones yourself.

In general, you want your scripts to be somewhat structured for easier understanding. Most
programs for working with models or analyzing data follow a simple pattern of program parts:

1. “Setup” statements: Clear old variables from workspace, load needed packages, etc.

2. Load data from an external file and/or define data/model parameters.

3. Carry out the calculations that you want. This is often split into a main program and
several functions that are called by the main program. They can all live inside the same
script, or you can save functions as their own files. The latter is an especially good idea
if you have a function that you use often with different projects. If you place functions
inside the main script, it is a good idea to put them all at the beginning.

4. Print or graph the results, save the graph to a file for inclusion in a publication/report,
save results into a file for further processing with another program.

4.3 A comment on comments

As you can see, the two example scripts you played with in the last section include a lot of
comments. These comments don’t do anything, other than help you understand what is going
on. It is a very good idea to always put lots of comments into your code. In my opinion, for a
code that is very well documented, at least 50% of your program should be comments. As you
start writing programs, you might find this to be overkill. That might be true initially. But

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 10

your programs will quickly become more complicated. And you might use specific functions for
one program, and then forget how exactly that function worked. What looked obvious to you
back when you wrote it might be completely puzzling to you when you revisit your code several
weeks or months later. And it gets even worse if you want to share code with colleagues. So
it’s good practice to document your program thoroughly by adding lots of comments. As you
can see from the example, comments start with the # symbol. R ignores everything on the line
that follows such a symbol.

4.4 Exercises

Exercise 4.1 Copy the file yari-example1.r and save it under a different name. If you save
it in a different folder than the original file, go to that folder. Then run your newly created file
using the source command.

Exercise 4.2 Open your newly created file with your editor. Change some of the parameter
values and re-run the program. Often, when playing around with changing values, it is a good
idea to keep the old ones in the program, otherwise you might forget them. Copy the line for
the parameter b and duplicate it under the original line. Then turn one of the lines into a
comment using the # symbol. Now you can change the other value around and won’t forget
what your initial value was. Don’t forget to save the script after you made changes, otherwise
R won’t run the new version. Watch what happens to the simulation/graph.

5 A quick overview of specific topics

The previous sections were meant to get you quickly started with R and have your first success
by running and modifying a program. The following sections briefly discuss important building
blocks that are part of most programs. As soon as you start working on your own problems, or
even doing the exercises in this guide, you will find that you need to get additional information
to learn how to do things - that’s the time when you revisit Section 3.

5.1 Naming variables

To do anything complicated, the results from calculations have to be stored in (assigned to)
variables. For example above we stored 10 data values in the variable a by typing

>a=runif(10)

Variable names in R must begin with a letter, followed by alphanumeric characters. You can
break up long names with a period, as in very.long.variable.number.3, but you can’t use
blank spaces in variable names. R is case sensitive: Abc and abc are different variables. Make
variable names long enough to remember, short enough to type. N.per.ha or pop.density are
better than x and y (too short) or available.nitrogen.per.hectare (too long). Avoid c, l,
q, t, C, D, F, I, and T, which are either built-in R functions or hard to tell apart.

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 11

5.2 Arithmetic operations

R does calculations with variables as if they were numbers. It uses +, -, *, /, and ^ for addition,
subtraction, multiplication, division and exponentiation, respectively. For example type the
following commands into the R console:

> x=5; y=2

> z1=x*y; z2=x^y

> z1

> z2

Even though R did not display the values of x and y, it “remembers” that it assigned values to
them. Just type x or y to see the values stored in those variables. Typing z1 and z2 into the
command line makes R display these values.

Now let’s try doing the same with a script. Open your R editor, start a new file, and copy the
commands into the file, without the >. You should have four lines that look like

x=5; y=2

z1=x*y; z2=x^y

z1

z2

Now save the file (give it any name and save it anywhere you like). Next, go back to R, make
sure you switched to the directory in which you saved the file, and run it using the source

command. What happened? Probably nothing. If you run a program as a script, R does not
print values that it might print if you type it into the console! So if we want to see the values for
z1, z2, we need to tell R. This can be done by replacing z1 with cat(z1,"\n") and the same
for z2. Save the file and run it again. You should now see the values for z1 and z2 displayed.
The cat function (short for “concatenate”) for printing results to the console window. cat

converts its arguments to character strings, concatenates them, and then prints them. The
"\n" argument is a line-feed character so that each entry is put on a separate line. Use ?cat

to learn more about this function. Since most of the examples here are very short, I assume
that you will type them straight into the console. But as mentioned in Section 4.1, you should
use scripts as soon as your code goes beyond a few simple lines.

You can combine several operations in one calculation:

> A=3

> B=(A+2*sqrt(A))/(A+5*sqrt(A)); B

(Recall that R cares about capitalization. The variable A is different from a). Parentheses
specify the order of operations. The command

> B=A+2*sqrt(A)/A+5*sqrt(A)

is not the same as the one above; rather, it is equivalent to > B=A + 2*(sqrt(A)/A) + 5*sqrt(A).

The default order of operations is: (1) parentheses; (2) exponentiation, or powers, (3) multipli-
cation and division, (4) addition and subtraction.

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 12

abs() absolute value
cos(), sin(), tan() cosine, sine, tangent of angle x in radians
exp() exponential function, ex

log() natural (base-e) logarithm
log10() base-10 logarithm
sqrt() square root

Table 1: Some of the built-in mathematical functions in R. You can get a more complete list
from the Help system: ?Arithmetic for simple, ?log for logarithmic, ?sin for trigonometric,
and ?Special for special functions.

x < y less than
x > y greater than
x <= y less than or equal to
x >= y greater than or equal to
x == y equal to
x ! = y not equal to

Table 2: Some comparison operators in R. Use ?Comparison to learn more.

> a = 12-4/2^3 gives 12 - 4/8 = 12 - 0.5 = 11.5

> a = (12-4)/2^3 gives 8/8 = 1

> a = -1^2 gives -(1^2) = -1

> a = (-1)^2 gives 1

In complicated expressions it’s best to use parentheses to specify explicitly what you want. A
few extra sets of parentheses never hurt and might help you avoid doing the wrong computation
by accident.

R also has many built-in mathematical functions that operate on variables (Table 1 shows a
few). Check how these functions work by typing help(functionname) or ?functionname.

5.3 Logical operators

Often, you will want to compare variables with each other. The operators shown in Table 2 do
that. They return a logical value of TRUE or FALSE. For example, try:

> a=1; b=3;

> x1=a<b; x1

> x2=(a>b); x2

The parentheses around (a>b) are optional but do make the code easier to read. One special
case where you do need parentheses (or spaces) is when you make comparisons with negative
values; a<-1 will surprise you by setting a=1, because <- (representing a left-pointing arrow) is
equivalent to = in R. Use a< -1, or more safely a<(-1), to make this comparison.

Note that = and == are not the same! Try the following and make sure you understand what
happens here

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 13

> a=1:3; a

> b=2:4; b

> a==b

> a=b

> a==b

Exclamation points ! are used in R to mean “not”; != means “not equal to” (note that there
is only a single equal sign).

R also does arithmetic on logical values, treating TRUE as 1 and FALSE as 0. For instance

> a=1:3; b=1:3;

> c=(a==b); c

> sum(c)

returns the value 3 since the 3 TRUE entries are interpreted as ones. Note that we did something
in this snippet of code that you shouldn’t do. Do you know what? (Hint: Re-read Section 5.1).

One issue you should always keep in mind with comparisons is that computers make round-off
errors. For instance if you try

> exp(-1000)==0

R will claim that these two expressions are equal. They are of course not, the exponential
expression is slightly larger than zero. But it’s so close to zero that R can’t distinguish it from
zero. Equally, you might sometimes get two results that you consider to be equal, but since
R arrived at them through computation and rounding, they are not strictly the same. For
instance try

> sin(pi)

> sin(pi)==0

> sin(pi/2)==1

The first expression, sin(pi), should be equal to zero and therefore the second should re-
turn a TRUE, but it does not. Interestingly, the last expression does give an exact value for
sin(pi/2) and therefore returns TRUE as it should. To get around these rounding issues it is
more robust to write comparisons like this: > abs(a-b)<eps where you set eps to some small
number for which you consider that a==b is satisfied for all practical purposes. For instance
abs(sin(pi)-0)<1e-10 works.

More complicated conditions are built by connecting different expressions with AND or OR.
In R you write &, or && for AND and | or || for OR. The two forms of AND and OR differ
in how they handle vectors. The shorter one does element-by-element comparisons; the longer
one only looks at the first element in each vector. More about vectors in the next section.

Try the following examples and make sure you understand what happens. Then try a few more
on your own.

> a=c(1,2,1,4)

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 14

> b=c(1,1,4,5)

> (a<b) & (b>4)

> (a<b) & (b<4)

> (a<3) & (b<5)

> (a<3) && (b<5)

> (a<b) | (b>3)

> (a<b) || (b>3)

5.4 Exercises

Exercise 5.1 Try the following commands

> 12^0-1/(log(1)+3)

> (12^0-1)/(log(1)+3)

> 12^0-1/log(1)+3

> (12^0-1)/log(1)+3

and explain the different results. Take a peek at Section 5.9 if you don’t understand some of
the answers.

5.5 Vectors

R has several different data types. Vectors and matrices (1- and 2-dimensional rectangular
arrays of numbers) are some of the most useful ones for scientific computing. We will discuss
those next.

5.5.1 Constructing vectors

seq(from,to,by=n) Vector of evenly spaced values, increment = n)
seq(from, to,

length.out=n)

Vector of n evenly spaced values)

c(u,v,...) Combine a set of numbers and/or vectors into a single vector
rep(a,b) Create vector by repeating elements of a by amounts in b

Table 3: Some important R functions for creating and working with vectors. Many of these
have other optional arguments; use the help system (e.g. help(rep)) for more information.

Some functions for creating and working with vectors are listed in Table 3. Try them out by
typing the following commands

> seq(1,3,length=6)

> seq(1,10,by=2)

> c(1:8)

> rep(3,5)

Try some more commands. You can also combine commands, for instance try

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 15

> c(rep(2,4),seq(1,5,length=2))

> c(seq(1,5),seq(1,5,by=2))

Keep playing around some more to understand how these commands work. The worst thing
that can happen is that R complains and doesn’t do anything useful. But you can’t break
anything.

You may be wondering if vectors in R are row vectors (lying vectors with 1 row and many
columns) or column vectors (standing vectors with one column and many rows). The answer
is “both and neither”. Vectors are printed out as row vectors, but if you use a vector in an
operation that succeeds or fails depending on the vector’s orientation, Rwill assume that you
want the operation to succeed and will proceed as if the vector has the necessary orientation.
For example, R will let you add a vector of length 5 to a 5× 1 matrix or to a 1× 5 matrix, in
either case yielding a matrix of the same dimensions. The fact that R wants you to succeed is
both good and bad – good when it saves you needless worry about details, bad when it masks
an error that you would rather know about. We will come back to that below when we talk
about matrices.

5.5.2 Addressing vectors

Often it is necessary to extract a specific entry or other part of a vector. This is done using
subscripts, for example

> q=c(1,3,5,7,9,11); q[3]

q[3] extracts the third element in the vector q. Note that these are square brackets, unlike
for instance in Matlab, where the brackets are round. R uses square brackets to address
vectors, matrices, etc. and round brackets to indicate functions, e.g. c() is a
function creating a vector.

You can also access a block of elements from a vector by writing for instance

v=q[2:5]; v

This extracted 2nd through 5th elements in the vector. If you enter v=q[seq(1,5,2)], what
will happen? Try it and see, and make sure you understand what happened. Extracted parts
of a vector don’t have to be regularly spaced. For example try

> v=q[c(1,2,5)]; v

If you want the last element of a vector, you need to first find its length. You can do so with

> q[length(q)]

A more flexible way of getting the n first or last elements from a vector such as q is with the
commands head(q,n) and tail(q,n). Check the help file to see how they work.

Addressing is also used to set specific values within a vector. For example,

> q[1]=12

changes the value of the first entry in q while leaving all the rest alone, and

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 16

> q[c(1,3,5)]=c(22,33,44)

changes the 1st, 3rd, and 5th values.

We can also use logical vectors (lists of TRUE and FALSE values) to pick elements out of vectors.
For instance, try the following

> a=runif(20)

> a.low=a[a<0.5]; a.low

> a.high=a[a>=0.5]; a.high

What is happening here is that a<0.5 generates a logical vector the same length as a which
is then used to select the appropriate values and stick them into a new variable, a.low. Type
a<0.5 to see this logical vector. Make sure you understand how this whole approach works.

If you want the positions at which a is lower than 0.5, you could say (1:length(a))[a<0.5],
but you can also use a built-in function: which(a<0.5). If you wanted the position at which
the maximum value of a occurs, you could say which(a==max(a)). (This normally results in
a vector of length 1; when could it give a longer vector?) There is even a built-in command
for this specific function, which.max() (although which.max() always returns just the first
position at which the maximum occurs).

(What would happen if instead of setting a.low you replaced a by saying a=a[a<0.5]? Why
would that be the wrong thing to do?)

We can also combine logical operators (making sure to use the element-by-element & and |

versions of AND and OR):

> a[a>0.5 & a <= 0.8]

> a[a>0.5 | a <= 0.8]

Finally, it is sometimes handy to be able to drop a particular set of elements, rather than taking
a particular set: you can do this with negative indices. For example, x[-1] extracts all but the
first element of a vector.

5.5.3 Manipulating vectors

A vector can be used in calculations as if it were a number (more or less). Try the following

> v1=c(1, 3, 5, 7, 9, 11)

> v2=v1+1; v3=sqrt(v1); v2; v3;

Notice that the operations were applied to every entry in the vector. Similarly, commands
like v1-5, 2*v1, v1/10 apply subtraction, multiplication, and division to each element of the
vector. The same is true for v1^2. Try it.

In R the default is to apply functions and operations to vectors in an element by element
manner; anything else (e.g. matrix multiplication) is done using special notation (discussed
below). This also holds for comparisons of two vectors or a number with a vector. For example,

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 17

> x=1:5; x

> b=(x<=3); b

compares the value 3 with all elements of the vector x and returns either TRUE or FALSE de-
pending on if the condition is met or not. So if x and y are vectors (of the same length), then
(x==y) will return a vector of values giving the element-by-element comparisons. If you want to
know whether x and y are identical vectors, use identical(x,y) which returns a single value:
TRUE if each entry in x equals the corresponding entry in y, otherwise FALSE.

Often, you might want to do something more interesting than adding 10 to a collection of
numbers that you stored in a vector. R has many built-in functions that let you do cool stuff
very rapidly. Try the following

> v1=rnorm(100)

> mean(v1)

> sort(v1)

> plot(v1)

> plot(sort(v1))

> sqrt(v1)

> mean(sqrt(v1))

The second to last command might produce a warning and the last command likely produced
an error message. Make sure you understand what’s going on. We will come back to NaN and
similar issues in Section 5.9. We will also discuss the plot command in Section 5.11.

Most of these functions you just used have a number of optional arguments, which means in
practice that you can choose to specify their value, or if you don’t a default value is assumed. For
example, x=rnorm(100) generates 100 random numbers with a Normal (Gaussian) distribution
having mean=0, standard deviation=1. But rnorm(100,2,5) yields 100 random numbers from
a Gaussian distribution with mean=2, standard deviation=5.

In the R documentation and help pages, the existence of default values for some arguments of
a function is indicated by writing (for example) rnorm(n, mean=0, sd=1). Since no default
value is given for n, the user must supply one: rnorm() gives an error message.

5.5.4 Exercises

Exercise 5.2 Create a vector v=(1 5 9 13) using seq. Create a vector going from 1 to 5 in
increments of 0.2 first by using seq, and then by using a command of the form v=1+b*c(i:j).

Exercise 5.3 Execute the following code

> c=3; c=c(c,c,c(c,c)); c

Explain why it’s a really bad piece of code and come up with a better way to produce the same
result.

Exercise 5.4 Use runif(n) to create a vector of 20 numbers, then find the subset of those
numbers that is less than the mean.

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 18

Exercise 5.5 Find the positions of the elements that are less than the mean of the vector you
just created (e.g. if your vector were (0.1 0.9. 0.7 0.3) the answer would be (1 4)).

Exercise 5.6 : Find a way to take only the elements in the odd positions (first, third, . . .) of
a vector of arbitrary length.

Exercise 5.7 Generate a vector of 1000 random numbers from a Gaussian distribution with
mean=3, standard deviation=2. Use the functions mean, sd to compute the sample mean and
standard deviation of the values in the vector, and hist to visualize the distribution. If you
can’t get these functions to work right away, read the help files (e.g. help(hist)).

5.6 Matrices

A matrix is a two-dimensional array of numbers. While one could simply consider a vector as a
matrix that happens to have either a single row or a single column, R does treat matrices and
vectors a bit differently – though there are overlaps. Just keep in mind that sometimes, certain
functions produce different results depending on if they act on matrices or vectors.

5.6.1 Constructing matrices

One way to produce a matrix is to first produce a vector of the matrix entries, and then reshape
it to the desired number of rows and columns using the matrix function. For example

> X=matrix(c(1,2,3,4,5,6),2,3); X

takes the values 1 to 6 and reshapes them into a 2 by 3 matrix. Note that values in the data
vector are put into the matrix column-wise, by default. You can change this by using the
optional parameter byrow). For example

> A=matrix(1:9,3,3,byrow=T); A

Rwill re-cycle through entries in the data vector, if need be, to fill out a matrix of the specified
size. So for example matrix(1,5,5) creates a 5× 5 matrix of all 1’s.

Another useful function for creating matrices is diag. diag(v,n) creates an n×n matrix with
data vector v on its diagonal. So for example diag(1,5) creates the 5 × 5 identity matrix,
which has 1’s on the diagonal and 0 everywhere else.

If their sizes match, vectors can be combined to form matrices, and matrices can be combined
with vectors or matrices to form other matrices. The functions that do this are cbind and
rbind (which stand for column-bind and row-bind).

cbind binds together columns of two objects. One thing it can do is put vectors together to
form a matrix:

> v1=seq(1,5); v2=rep(3,5);

> A=cbind(v1,v2); A

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 19

matrix(v,m,n) m× n matrix using the values in v
diag(v,n) diagonal n× n matrix with v on diagonal, 0 elsewhere
cbind(a,b,c,...) combine compatible objects by binding them along columns
rbind(a,b,c,...) combine compatible objects by binding them along rows
outer(v,w) “outer product” of vectors v,w: the matrix whose (i, j)th ele-

ment is v[i]*w[j]

dim(X) dimensions of matrix X. dim(X)[1]=# rows, dim(X)[2]=#
columns

apply(A,MARGIN,FUN) apply the function FUN to each row of A (if MARGIN=1) or
each column of A (if MARGIN=2). See ?apply for details and
examples.

Table 4: Some important functions for creating and working with matrices. Many of these have
additional optional arguments; use the Help system for full details.

Now try

> v1=seq(1,5); v2=rep(3,6);

> A2=cbind(v1,v2); A2

and make sure you understand the warning message and what R is doing when it produces the
matrix A.

Remember that R interprets vectors as row or column vectors according to what you’re doing
with them. Here it treats them as column vectors so that columns exist to be bound together.
On the other hand,

> v1=seq(1,5); v2=rep(3,5);

> B=rbind(v1,v2); B

treats them as rows. You can also combine matrices, e.g. try cbind(A,A). Table 4 lists several
useful functions for dealing with matrices.

5.6.2 Addressing matrices

Matrix addressing works like vector addressing except that you have to specify both the row
and column, or range of rows and columns. Try the following:

> A=matrix(2:10,3,3)

> A[2,3]

> A[2,2:3]

> A[2:3,2]

> B=A[2:3,1:2]; B

> C=A[2:3,c(1,3)]; C

There is an easy shortcut to extract entire rows or columns: leave out the limits.

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 20

> first.row=A[1,]; first.row

> second.column=A[,2]; second.column

As with vectors, addressing works in reverse to assign values to matrix entries. For example,

A[1,1]=12; A

The same can be done with blocks, rows, or columns, for example

> A[1,]=runif(3); A

5.6.3 Matrix operations and matrix-vector multiplication

As with vectors, a numerical function applied to a matrix acts element-by-element.

> A=matrix(c(1,4,9,16),2,2); A

> sqrt(A);

The same is true for scalar multiplication and division. Try 2*A and A/3 and see what you get.
If two matrices (or two vectors) are the same size, then you can do element-by-element addition,
subtraction, multiplication, division, and exponentiation: (A+B, A-B, A*B, A/B, AB̂). Matrix
× matrix and matrix × vector multiplication (when they are of compatible dimensions) is
indicated by the special notation %*%. Remember, element-by-element is the default in
R. This requires some attention, because R’s eagerness to make things work can sometimes let
errors get by without warning. So for example

> A=matrix(c(1,4,9,16),2,2);

> v=1:2; A*v

A is a 2× 2 matrix, and v is a vector of size 2, so the matrix-vector product Av is legitimate.
However, Av should be a vector, not a matrix. Since you (incorrectly) “asked” for element-by-
element multiplication, that’s what R did, “recycling” through the elements of v when it ran
out of entries in v before it ran out of entries in A. What you should have done is

> A%*%v

5.6.4 Exercises

Exercise 5.8 Create matrices A and B with dimensions 2×3 and 3×3 (fill them with numbers
any way you want). Try to use rbind and cbind to build larger matrices by combining the
matrices with themselves and with each other. Some of the combinations should not work.
Read about the transpose command (help(t)), try it and see if you can use it to get those
non-working combinations to work. Play with it and look at the matrices you create until you
understand what exactly is going on.

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 21

Exercise 5.9 Use runif to construct a 5×5 matrix of random numbers with a uniform dis-
tribution between 0 and 1. Extract from it the second row; the second column; and the 3×3
matrix of the values that are not at the margins (i.e. not in the first or last row, or first or last
column). Use seq to replace the values in the first row by 2 5 8 11 14.

5.7 Other variable types

R apart from vectors and matrices, R has additional types of variables. I will only mention
them rather briefly. Once you start using them, you will need to teach yourself more about
those data types.

5.7.1 Strings

You likely won’t need strings as often as the numerical data types. However, sometimes they
are useful. Strings are made up of characters. Use character to learn more about this data
type. Some useful commands for manipulating or printing characters are paste, substr,

cat, print, sprintf. We have already used cat above. Look up the other functions to learn
how to use them. Here are a few simple examples

> n=4;

> print(sprintf(’The number is %d’,n));

> cat("It is really",n,"\n");

> paste(’b’,n,’ the dawn’,sep = "");

5.7.2 Lists

Vectors and matrices have to contain elements that are all the same type: lists in R can contain
anything — vectors, matrices, other lists . . . Indexing is a little different too, use [[]] to
extract an element of a list by number or name, or $ to extract an element by name only. Try:

> x=c(5,9,1); y=matrix(rep(5,6),nrow = 2, ncol = 3); z=c("one","two","three");

> L = list(L1=x,L2=y,L3=z)

> L$L1

> L[["L3"]]

> L[[2]]

5.7.3 Data frames

Data frames are the solution to the problem that vectors and matrices (which might seem to
be the most natural way to store data) can only contain a single type of data, but most data
sets have several different kinds of variables for each observation. Data frames are a hybrid of
lists and vectors; internally, they are a list of vectors that can be of different types but all have
to be the same length, but you can do most of the same things with them (e.g., extracting a

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 22

subset of rows) that you can do with matrices. You can index them either the way you would
index a list, using [[]] or $ — where each variable is a different item in the list — or the
way you would index a matrix. Use as.matrix() if you have a data frame (where all variables
are the same type) that you really want to be a matrix, e.g. if you need to transpose it (use
as.data.frame() to go the other way).

5.8 Reading and writing data

Once you start doing serious work with R, you might often want to work with data that has been
previously recorded. You can relatively easily import data into R. The best way to do so is to
have the data in a plain text table, with entries separated by tabs or semicolons or similar field
delimiters. You can easily read and write data using read.table, read.csv, write.table,

write.csv and similar variants. Check the help file. There are ways to read and write Excel
files, but the best procedure is to first convert any Excel file to a CSV (comma-separated-values)
type file, which you can easily do in Excel. If you absolutely need to read/write Excel files,
search online for help. Also note that you need to make sure that R is looking for the data file
in the right place. Either move the data file to your current working directory, or change the
line so that it points to the actual location of the data file.

5.9 Special values

R has a number of “special values”. These are NA, NaN, Inf, -Inf. The last two should be
obvious, they arise for instance if you do 1/0, -1/0. You can compute with Inf, try

> Inf > 1E10

> Inf - 1E10

But something like 0/0 or Inf/Inf is ill defined, and therefore you get NaN (= not a number).
Check ?NaN for more information on those three. There are special functions, such as is.nan

that allow you to manipulate such values. The value NA stands for “not available” and often
represents a missing value in a dataset. There is no fixed rule on how functions that you apply
to a dataset which contains NA behave. Some functions have built-in options for dealing with
NA. Try for instance

> n=c(2,3,NA)

> mean(n)

> mean(n,na.rm=TRUE)

Re-visit the help entry for mean to understand what is happening and ?NA to learn more. In
general, you need to be careful with any of these special values. While they can often be used
to your advantage, make sure you carefully check all your computations, otherwise things can
go badly wrong.

5.10 Exercises

Exercise 5.10 Create a matrix, fill it with any numbers you like. Then save the matrix to a
CSV file, using write.csv(). Use Excel or OpenOffice Calc to open the file you created. Delete

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 23

a random entry in the table. Then save it again. Make sure you keep the CSV format and
don’t change to the native format of whatever program you are using. Now use read.csv()

to read the file back into R (e.g. M=read.csv(’test.csv’)). Take a look at the new matrix.
It should contain a NA value. (I tested this with Excel 2007 and OpenOffice 3, I hope it also
works with other spreadsheet programs).

Exercise 5.11 Create any matrix filled with numbers. Set at least one entry in the matrix to
NA. Compute the mean over all rows, over all columns and over the whole matrix. Make sure
you deal properly with the NA value. Read ?mean to see how to deal with NA values and how to
do means of rows or columns.

Exercise 5.12 Write an R script that automatically creates a 4x5 matrix, writes it to a file,
reads it from the file, replaces an entry with NA, computes the mean and sum of the matrix,
and prints the values onto the screen. Note that you might want to use write.table and
read.table instead of write/read CSV. If you use the latter, you might have to manipulate
the matrix a bit once you load it.

Exercise 5.13 Modify your script such that a random entry is replaced with NA. Hint: Think
about a way to produce 2 random integers between 1 and the number of columns/rows of
the matrix. Then use those 2 numbers in B[rownum,colnum]=NA. There are many different
possibilities to solve this.

5.11 Plotting and saving figures

R comes with a wealth of graphical capabilities, both in the base package and several packages
you can download and install. A very versatile function is plot. Here is a simple example of a
plot

> x=seq(1,21,by=2);

> y=rnorm(length[x]);

> plot(x,y);

The above snippet of code contains a mistake! I stuck it in on purpose. You should by now
know how to fix it.

There are myriad options for plot. You can set pretty much anything in the figure, the line
or marker type, style, thickness, color, you can change axes, add legends, etc. Use ?plot to
learn about all those options. Some other useful types of plots are points, lines, barplot,

matplot, hist, persp, image. Check out the R help files or the resources mentioned in
Section 3.2 for more on plotting. Further manual and books can be found on the R webpage or
Amazon. A few specific resources that might be worth checking out:

• Producing Simple Graphs with R by Frank McCown: http://www.harding.edu/fmccown/
R/. Nice quick intro to basic plotting.

• R Graph Gallery: http://addictedtor.free.fr/graphiques/. A large collection of
mostly fancy R graphs. Shows you some of the graphics capabilities of R and R packages.
You can also see the source code that lead to these figures.

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 24

R plotting is so flexible that you can produce (almost) any plot you like – it’s just a matter of
finding out how to do it.

To learn how to save figures you created, see the last exercise in the next section.

5.12 Exercises

Exercise 5.14 The axes in plots are scaled automatically, but the outcome is not always ideal
(e.g. if you want several graphs with exactly the same axes limits). You can control scaling
using the xlim and ylim arguments, e.g. plot(x,y,xlim=c(x1,x2)) will draw the graph with
the x-axis running from x1 to x2, and using ylim=c(y1,y2) within the plot() command will
do the same for the y-axis. Create two vectors x, y, plot them, and play around with the x
and y-axes.

Exercise 5.15 Several graphs can be placed within a single figure by using the par func-
tion (short for “parameter”) to adjust the layout of the plot. For example the command
par(mfrow=c(m,n)) divides the plotting area into m rows and n columns. As a series of graphs
is drawn, they are placed along the top row from left to right, then along the next row, and so on.
mfcol=c(m,n) has the same effect except that successive graphs are drawn down the first col-
umn, then down the second column, and so on. Save any of the example files (yari-example1.r
or yari-example2.r) with a new name and modify the program as follows. Before the first
plot command, write par(mfcol=c(2,1)). Also replace one of the lines commands with a
plot command. Run the program using source. Do the same again, using mfcol=c(1,2).
Also play with axes limits and similar options to make the plots look nicer.

Exercise 5.16 Use ?par to read about other plot control parameters that can be set using
par() (feel free to just skim — this is one of the longest help files in the whole R system).
Then draw a 2 × 2 set of plots, each showing the line y = 5x + 3 with x running from 3 to 8,
but with 4 different line styles and 4 different line colors. Make sure you are plotting lines, not
markers/symbols!

Exercise 5.17 Modify one of the example scripts so that at the very end it saves the plot as
a .png file. In Windows you can do this with savePlot(), otherwise with dev.print(). Use
?savePlot, ?dev.print to read about these functions.

5.13 Flow control in R

When you write longer programs, you sometimes want to execute or not execute certain com-
mands, depending on the current status of things. For instance you might want to do one thing
if a>b and another if a<b. In addition, you might often want to do the same thing many times.
To get your program to do such things, i.e. to control the flow of your code, R has several basic
ways of achieving this. We will briefly discuss them now.

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 25

5.13.1 For-loops

Loops make it easy to do the same operation over and over again. A for loop runs for a specified
number of steps and is written as

for (var in seq)

{

commands

}

Here’s an example. Note that it might be a good idea to write this example (and the ones that
follow below) into an R script, give it a filename, and then run it with source.

#create vector of length 10 filled with zeros. Set first element to 1.

popsize=rep(0,10); popsize[1]=1;

calculate population size at times 2 through 10, write to Command Window

for (n in 2:10)

{

popsize[n]=2*popsize[n-1];

x=log(popsize[n]);

cat(n,x,"\n");

}

plot(1:10,popsize,type="l");

The first time through the loop, n=2. The second time through, n=3. When it reaches n=10,
the for-loop is finished and R starts executing any commands that occur after the end of the
loop. The result is a table of the log population size in generations 2 through 10.

Several for loops can be nested within each other, which is sometimes useful for working with
matrices as in the example below. It is important to notice that the second loop is completely
within the first. Loops must be either nested (one completely inside the other) or sequential
(one starts after the previous one ends).

A=matrix(0,3,3);

for (row in 1:3)

{

for (col in 1:3)

{

A[row,col]=row*col

}

}

Type this into a script file and run it; It seems like nothing happens, but if you now type A into
the console, you should see

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 26

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

[3,] 3 6 9

Line 1 creates A as a matrix of all zeros - this is an easy way to create a matrix of whatever
size you need, which can then be filled in with meaningful values as your program runs. Then
two nested loops are used to fill in the entries. Line 2 starts a loop over the rows of A, and
immediately in line 3 a loop over the columns is started. To fill in the matrix we need to
consider all possible values for the pair (row, col). So for row=1, we need to consider col=1,2,3.
Then for row=2 we also need to consider col=1,2,3, and the same for row=3. That’s what the
nested for-loops accomplish. For row=1 (as requested in line 2), the loop in lines 3-5 is executed
until it ends. Then we get to the end in line 6, at which point the loop in line 2 moves on to
row=2, and so on.

Also note in the above example how the code is written, with opening and closing parentheses
in the same position. This is not strictly necessary, but writing code like this helps you to
quickly see which blocks of statements belong together and makes reading and programming
much easier.

If this discussion of looping doesn’t make sense to you, stop now and get help. Loops are an
essential component of programming in R or other languages. In fact, the “getting help” applies
to any topic we have covered so far and will continue to cover. Make sure you are comfortable
with everything explained here and that you fully understand it. If not, keep practicing and
asking for clarification.

5.13.2 While-loops

A while loop lets an iteration continue until some condition is satisfied. For example, we can
solve a model until some variable reaches a threshold. The format is

while(condition)

{

commands

}

The loop repeats as long as the condition remains true. Write the following lines into an R
script and run them:

n=1

while (n<10)

{

n=2*n

}

print(sprintf("n=%d",n))

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 27

Note the double-command print(sprintf()) which has a smiliar effect to cat used above,
but differs in the details. Learn about it by reading the help file. Move the print(sprintf())

command into the loop and run it again. What would happen if you replace the statement
inside the loop with n = n2? If you don’t know, try it. And you might want to revisit the
discussion about how to interrupt R...

Within a while-loop it is often helpful to have a counter variable that keeps track of how many
times the loop has been executed. In the following code, the counter variable is ct:

ct=1;

while(condition)

{

commands

ct=ct+1;

}

The result is that ct=1 is true while the commands (whatever they are) are being executed for
the first time. Afterward ct is set to 2, and this remains true during the second time that
the commands are executed, and so on. One use of counters is to store a series of results in a
vector or matrix: on the ctth time through the commands, put the results in the ctth entry of
the vector, ctth row of the matrix, etc.

5.13.3 Branching

Logical conditions also allow the rules for “what happens next” in a model to depend on the
current values of state variables. The if statement lets us do this; the basic format is

if(condition)

{

some commands

}

else

{

some other commands

}

More complicated decisions can be built up by nesting one if block within another, i.e. the
“other commands” under else can include a second if block. Here is an example where a
population grows, and the growth tails off in several steps as the population size increases.

rm(list=ls()) #this clears the workspace

graphics.off(); #close all graphics windows

popnow=10;

popsize=popnow;

for (i in 1:50)

{

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 28

if(popnow<250)

{

popnow=popnow*2;

}

else

{

if(popnow<500)

{

popnow=popnow*1.5

}

else

{

popnow=popnow*0.95

}

}

popsize=c(popsize,popnow);

} #this ends the for loop

plot(popsize,type="b") #plots with both lines and symbols

What does this accomplish?

• If popnow is still < 250, then growth by a factor of 2 occurs. Since the if condition was
satisfied, the entire else block isn’t looked at.

• If popnow is not < 250, R moves on to the else statement, and immediately encounters
another if.

• If popnow is < 500 the growth factor of 1.5 applies.

• If neither of the two if conditions is satisfied, the final else block is executed and
population declines by 5% instead of growing.

The final command inside the for-loop adds the current population size, popnow, to the vector
popsize, which therefore keeps growing. For a vector or matrix to grow like this, the variable
needs to exist. Test this by removing the popsize=popnow command and run it again. In
general, these growing arrays make the code run slower compared to creating an initial array of
all-zeros and filling it. But sometimes you don’t know how many numbers your code produces,
and then these growing arrays can be useful.

Also note the comment behind the last }. Such comments can be very useful if you have long
blocks of code that stretch over pages and you can’t see where the closing parentheses belong
to.

5.13.4 Exercises

Exercise 5.18 : For the code in the last section, replace the growing array popsize with a
fixed array that is initially empty, and then fill the array with the results as the simulation
runs.

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 29

Exercise 5.19 : Imagine that while doing fieldwork in some distant land you and your friend
have picked up a parasite that grows exponentially until treated. Your case is more severe than
your friend’s: on return there are 400 of them in you, and only 120 in your friend. However,
your field-hardened immune system is more effective. In your body the number of parasites
grows by 10 percent each day, while in your friend’s it increases by 20 percent each day. Write
a script file that uses a for-loop to compute the number of parasites in your body and your
friend’s over the next 30 days, and draws a single plot of both with the y-axis on log-scale.

Exercise 5.20 Write a script file that uses a while-loop to compute the number of parasites
in your body and your friend’s so long as you are sicker than him (i.e. so long as you have
more parasites) and stops when your friend becomes sicker than you. Then print out the day
at which that happens.

Exercise 5.21 : Write a script file that uses for-loops to create the following 5×5 matrix A.

0 1 2 3 4
0.1 0 0 0 0
0 0.2 0 0 0
0 0 0.3 0 0
0 0 0 0.4 0

Exercise 5.22 Write a script file that creates 1000 random numbers. Write this in several
ways:
1) Use a while-loop and dynamically add the newly created random number to a vector.
2) same as 1), but use a for-loop.
3) same as 1, but pre-allocate the result vector (i.e. create a vector of length 1000 that is filled
with zeros) and then write the newly created random number into the appropriate place in the
vector.
4) Use the vectorization ability of R, i.e. the fact that R can produce as many random numbers
as you want with a single command.

Exercise 5.23 It is often important to write code that runs as fast as possible. R has some built-
in functions that can help you test the speed of your code. For the script in the last exercise,
add commands that compute the time R needs for each of the different ways of creating the
random numbers. You can for instance use a function such as proc.time() or similar.

5.14 Functions in R

Functions (often called subroutines in other computing languages) allow you to break a program
into subunits. This makes complex problems easier to program, and helps us (and others)
to understand the logical flow of programs. Each function is an independent little program,
performing one task or a few related tasks, and returning the results. A program can then be
written to call on various functions to perform different tasks. Each function can be written
and tested independently, which leads naturally to the generally recommended modular style
of program construction.

Schematically, a function looks like

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 30

function.name=function(argument1,argument2,...)

{

command;

command;

...

command;

return(value)

}

In a somewhat oversimplified explanation, you send something into a function, the function
performs some operations on whatever you sent it, and gives you back a result. The result is
usually returned using the return() function. You have already used a lot of built-in functions
in previous sections. For instance the function mean takes a collection of numbers, computes
the mean, and returns it to you as an answer. We can write our own function to do a mean,
here it is

mymean=function(v)

{

sumv=0;

for (n in (1:length(v)))

{

sumv=sumv+v[n];

}

meanv=sumv/length(v);

return(meanv)

}

#end function, start main program

u=runif(100);

meanvalue=mymean(u) #this is the line which calls the function

cat("Mean is", meanvalue,"\n")

The main program creates a vector and stores it in the variable u. This is sent into the function
mymean. The function ”picks up” u and stores it internally in the variable v. It then computes
the mean (note that we make use of another built-in R function, namely length()). The
variable v is internal to the function; if you use mymean in a program, the program won’t
“know” the value of v. Also note that you could have also saved the function into its own script
and then called it by its file name.

You can in principle place your functions somewhere in the script file, as long as it is before
the line where you want to call the function. But it is usually better to place them all at the
beginning of the script, this gives your program a somewhat less cluttered structure.

Functions can return several different values. For that, you need to combine them into a list with
named parts. For instance in the example scripts, the function called odeequations returns
the variables that are being integrated (dSdt, dIndt, dRdt or dUtcdt, dItcdt, dVirdt).

Exercise 5.24 Write a script that defines a function mymax which takes as input a single
matrix, and returns a vector with components that contain the maximum value in each column

5 A QUICK OVERVIEW OF SPECIFIC TOPICS 31

of the matrix. Hint: You could use a loop or you might find the command apply() helpful.

Exercise 5.25 Extend your function from the last exercise so that one can specify if it should
return the maximum for each column or each row of the matrix. Hint: Write a function that
has as input the matrix and another variable which defines what procedure should be done.
E.g. mymax(M,cl), where cl=1 or cl=TRUE returns the maximum of each column, and if cl=0
or cl=FALSE, the maximum of each row is returned. Inside the function, you need statements
of the form if (cl==1) to distinguish between the cases.

Exercise 5.26 Extend your function further such that it tests if the first entry is really a
matrix, and the second entry is really either 0/1 or TRUE/FALSE. If not, make the function
print an error message.

5.14.1 Functions for solving systems of differential equations

R built-in functions make it relatively easy to do some complicated things. One important
application for us is finding numerical solutions for a system of differential equations. While the
core packages that come with the R installation do not include ODE solvers, several packages are
available. One such package is deSolve, which we installed previously. This package contains
a number of different solvers. It is worth reading through the documentation to familiarize
yourself a bit with those solvers. For most problems, you can likely use the solver called lsoda

without much difficulty. But sometimes this solver might fail. If you get weird results that
don’t make sense, it’s time to read the help files for lsoda and the deSolve package. And if
you start using ODE solvers more frequently, you should learn a bit more about how they work,
what stiff and non-stiff problems are, etc. Wikipedia has some good basic information and the
”Numerical Recipes” books are very good as well (an older version of Numerical Recipes is
available online for free).

To use the ODE solvers, the first step is to write a function that specifies the right side of the
set of differential equations in the specific format required by the solvers. Here’s what that looks
like for the differential equation used in yari-example2.r

odeequations=function(t,y,parameters)

{

Utc=y[1]; Itc=y[2]; Vir=y[3];

b=parameters[1]; delta=parameters[2]; p=parameters[3]; clear=parameters[4];

#these are the 3 differential equations

dUtcdt=-b*Vir*Utc;

dItcdt=b*Vir*Utc-delta*Itc;

dVirdt=p*Itc-clear*Vir;

return(list(c(dUtcdt,dItcdt,dVirdt)));

}

The call of this function in the main text is done by

6 A SMALL PROJECT 32

odeoutput=lsoda(Y0,timevec,odeequations,parvec);

Note that lsoda requires that your ODE function (here odeequations) has input arguments
(t,y,parameters), even if only the state vector y is used to compute the vector field. Here t

is time, y is the state vector, and parameters is a vector of parameter values for the function.
Note that the name of the variables does not matter. It is customary to call time t and the
vector of variables y. The variable for parameters is often called params, pars, p or something
else entirely. That might likely be confusing initially, but you’ll get used to it. The solver lsoda
has many options. At some point, read the help file and try to understand some of them. For
instance changing atol, rtol can often be very useful.

5.15 Other stuff that might be useful

As you saw in the example scripts, we cleared the workspace before running the script, using

> rm(list=ls())

It’s a good idea to use that at the beginning of your program.

You will soon spend a fair amount of time trying to find out why your program produces errors
or otherwise doesn’t perform as it should. During this bug-hunting season, a useful command
is browser(). Just stick it anywhere into your script. R will then run up to the point where it
encounters this command, then stop and turn the console over to you. Sticking in the command
at various places in your script can help you better localize the source of your error. Also, once
you have the console, you can check the values of all current variables and thereby test if some
are not what they are supposed to be. You can exit the browser command by either typing c,
which continues execution of your script, or Q, which exits the script.

6 A small project

Once you worked through the manual this far, and are able to fully understand all what you
read and did, you are well on your way to becoming a proficient R user. This final section will
push you further in that direction by making you write a complete simulation project.

Write a script file that simulates a simple model for density-independent population growth with
spatial variation. The model is as follows. The state variables are the numbers of individuals
in a series of L = 20 patches along a line (L stands for “length of the habitat”) .

1 2 3 4 L-1 L

Let Nj(t) denote the number of individuals in patch j (j = 1, 2, . . . , L) at time t (t = 1, 2, 3, . . .
), and let λj be the geometric growth rate in patch j. The dynamic equations for this model
consist of two steps:

6 A SMALL PROJECT 33

1. Geometric growth within patches:

Mj(t) = λjNj(t) for all j. (1)

2. Dispersal between neighboring patches:

Nj(t+ 1) = (1− 2d)Mj(t) + dMj−1(t) + dMj+1(t) for 2 ≤ j ≤ L− 1 (2)

where 2d is the “dispersal rate”. We need special rules for the end patches. For this
exercise we assume reflecting boundaries: those who venture out into the void have the
sense to come back. That is, there is no leftward dispersal out of patch 1 and no rightward
dispersal out of patch L:

N1(t+ 1) = (1− d)M1(t) + dM2(t)
NL(t+ 1) = (1− d)ML(t) + dML−1(t)

(3)

Write your script to start with 5 individuals in each patch at time t=1, iterate the model up
to t=50, and graph the log of the total population size (the sum over all patches) over time.
Use the following growth rates: λj = 0.9 in the left half of the patches, and λj = 1.2 in the right.

Notes and hints:

1. Write your program so that d and L are parameters, in the sense that the first line of your
script file reads d=0.1; L=20; and the program would still work if these were changed
other values.

2. You start with a founding population at time 1, and use a loop to compute successive
populations at times 2,3,4, and so on.

3. The population is described by a vector rather than a number. Therefore, to store the
population state at times t = 1, 2, · · · , 50 you will need a matrix njt with 50 rows and L
columns. Then njt(t,:) is the population state vector at time t.

4. Vectorize! Vector/matrix operations are much faster than loops. Set up your calculations
so that computing Mj(t) = λjNj(t) for j = 1, 2, · · · , L is a one-line statement of the
form a=b*c . Then for the dispersal step: if Mj(t), j = 1, 2, . . . , L is stored as a vector
mjt of length L, then what (for example) are Mj(t) and Mj±1(t) for 2 ≤ j ≤ (L− 1)?

Next, modify the model to ask how the spatial arrangement of good versus bad habitat patches
affects the population growth rate. For example, does it matter if all the good sites (λ > 1) are
at one end or in the middle? What if they are not all in one clump, but are spread out evenly
(in some sense) across the entire habitat? Notes and hints:

1. Patterns will be easiest to see if good sites and bad sites are very different from each
other.

2. Patterns will be easiest to see if you come up with a nice way to compare growth rates
across different spatial arrangements of patches.

3. Don’t confound the experiment by also changing the proportion of good versus bad patches
at the same time you’re changing the spatial arrangement.

7 NEXT STEPS 34

7 Next steps

You reached the end of this short tutorial. You have learned quite a bit. But as you start using
R you will find very soon (probably within minutes) that you encounter a problem that this
guide does not answer. Now it’s self-learning time. I hope that by going to the resources listed
in this guide, you will be able to find the answer in a short time.

