
 

1 

 

SIMULATION 

1. Introduction 

• Basic idea: To use methods based on random number generation to simulate “complex” processes to 

get an insight about the random behavior of some important variables; 

• The first “real” use of simulation was related to the “Manhattan project” at Los Alamos at the end of 

World War 2 (nuclear bomb) and was linked to the names of von Neumann, Stanislaw Ulam and 

Nicholas Metropolis. Since then, simulation techniques are used in many scientific domains and cover a 

great variety of applications. 

• The use of simulation to obtain an approximation to the sampling distribution of a statistic illustrates 

the process. The process can be summarized in three stages: 

a. Simulate the production of random samples from the population; 

b. For each sample generated in the previous stage, get the value of the statistic for which we want 

to approximate the sampling distribution; 

c. Now we can use the simulated values of the statistic to get an approximation to its sampling 

distribution (each replica provides an “observed value” of the statistic). 

• Two problems remain: how to generate the random samples and how many replicas should we use. 
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2. How to generate random samples from a population with a known distribution? 

• We follow a two-step procedure:  

a. First, we generate pseudorandom numbers, i.e. values that can be considered as independent 

observations of a random variable with a uniform (0;1) distribution;   

b. Second, using probability theory we transform our pseudorandom numbers to get pseudo 

random observations from the wanted distribution. 

 

2.1 – Pseudo random numbers generation 

• Random numbers versus pseudorandom numbers. A random number is a realization of a continuous 

random variable following a uniform distribution between 0 and 1. All the generated variables should 

be independent from each other. As it is not possible to generate these numbers (the best we can get 

is to generate discrete variable but, even that, is quite difficult) we will use pseudorandom numbers.  

• A pseudorandom number generator is an algorithm for generating a sequence of numbers that look 

like independent observations of a U(0;1) distribution. Obviously, the sequence is not random as it is 

completely determined by a relatively small set of initial values.  
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• One common method to generate pseudorandom numbers is based on the multiplicative linear 

congruential generator introduced by Lehmer in 1949. The idea is the following 

1t tn a n +=  mod c   1,2,t = �  

/t tu n c=  

where tu  is t-th generated random number ( 1,2,t = �) and a , c  and 0n  are three positive 

integers with adequate properties. 0n  is called the seed. 

o Example 

Let 123a = , 1000c =  and  0 135n = . Generate 25 pseudo random numbers. Verify that 20 0n n=  

and comment (Use Excel or another software).  

o As illustrated by the example, the maximum length of the sequence before it begins to repeat can 

be a major concern. Another important points are to verify if we can assume that the 

observations (i) could have been generated by an independent process and (ii) mimic a U(0;1) 

behavior.  

Parameters a , c  and 0n  are chosen to answer these points. 

• Pseudorandom generation is still an area of active research (one main application of random numbers 

is cryptography!). The Mersenne-Twister algorithm, introduced in 1997, is replacing linear 

congruential generator as the “standard”. 
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2.2. From a uniform distribution to other distributions 

• Assuming that we got a sequence of independently distributed uniform variables between 0 and 1, 

the problem is now how to define functions of these variables that follow a given distribution. We can 

give a general answer to this problem, but in many situations we can design more efficient methods. 

• The general answer is called the inverse transform and is based on the following theorem: 

• Theorem: Let ~ (0;1)Y U  and ( )F x  be the distribution function of a continuous random variable (we 

are assuming that F  is strictly increasing on the open interval ( ),a b  where X  has positive density – 

the interval can be unlimited – with ( ) 0F a =  and ( ) 1F b = ). Then the random variable 
1( )X F Y

−=  is 

continuous and ( )F x  is its distribution function. 

• Example: Illustrate the procedure using (i) the exponential distribution and (ii) the normal distribution 

• Extensions: 

o Suppose that the distribution function has a jump at x c= , i.e. ( )F c a
− =  and ( )F c b=  with b a>  . 

If the random number u  is such that a u b≤ < , choose c  as the simulated value; 

o Suppose that the distribution function is constant in a given interval, i.e. ( )F x p=  for a x b≤ ≤ . If 

the random number u  is equal to p  (abnormal case) choose x b= ; 
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• Example 21.2 – Suppose 
0.5 0 1

( )
0.5 0.25 1 2

X

x x
F x

x x

≤ <
= 

+ ≤ ≤
.  

Determine the simulated values of x  resulting from the uniform numbers 0.3, 0.6 and 0.9. 
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• Specific answers - For many situations one can design a computationally more efficient (and reliable) 

method to use with specific distributions. The idea is to take advantage of the properties of these 

distributions. 

o Bernoulli 

o Binomial as the sum of independent Bernoulli variables 

o Normal (Box-Muller transform, Central Limit Theorem) 

o Poisson (Time between events follows an exponential distribution) 

• Box-Muller formula: ( )1 2,U U   independent uniform variables, then ( )1 1 22ln cos 2Z U Uπ= −  and 

( )2 1 22ln sin 2Z U Uπ= −   are independent (0;1)n  random variables. 

• Example: generate 10 uniforms and then generate (i) 10 Bernoulli variables with parameter 0.2 (ii) 10 

normally distributed variables (mean=3, standard deviation=2) using the inverse method and Box-

Muller formula. 
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• Example 21.1 – generate 10000 pseudo Pareto (with 3α =  and 1000θ = ) variables and verify that 

they are indistinguishable from real Pareto observations.  

 Procedure: 

o Generate 10000 (pseudo) uniforms, iu  

o Obtain 10000 (pseudo) Pareto, ( )( )1/
1 1i ix u

α
θ

−
= − −   

o Compare the generated values with the theoretical model: 

� Kolmogorov-Smirnov test 

� 2χ  goodness of fit test (Loss Models solution ) 

� Other approaches (Anderson-Darling test, graphical techniques, …) 

  

A possible solution using R 

> # generate n Pareto (alpha,theta) variables - inverse method 

> n=10000; alpha=3; theta=1000 

> u=runif(n); x=theta*((1-u)^(-1/alpha)-1) 

> # ks test 

> Pareto_dist_func=function(x,alpha,theta) { 

+   1-(theta/(x+theta))^alpha 

+   } 



 

8 

 

 

> ks.test(x,"Pareto_dist_func",alpha=3,theta=1000) 

 

        One-sample Kolmogorov-Smirnov test 

 

data:  x  

D = 0.0074, p-value = 0.6515 

alternative hypothesis: two-sided  

 

>  

> # Qui2 test for large samples(n/50 classes, n is multiple of 50) 

> m=n/50; aux1=0:(m-1); lb=theta*((1-(aux1/m))^(-1/alpha)-1);  

> ub=c(lb[2:m],Inf) 

> counts=rep(NA,m) 

> for (j in 1:m) counts[j]=sum((x>=lb[j]) & (x<ub[j])) 

> expected=rep(50,m) 

>  

> chi2=((counts-expected)^2)/expected 

> chi2.test=sum(chi2) 
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> result=cbind(lb,ub,counts,expected,chi2) 

> result 

            lbound      ubound counts expected chi2 

  [1,]    0.000000    1.672244     45       50 0.50 

  [2,]    1.672244    3.355730     46       50 0.32 

  [3,]    3.355730    5.050591     34       50 5.12 

  [4,]    5.050591    6.756962     46       50 0.32 

… 

[197,] 2684.031499 3054.801330     51       50 0.02 

[198,] 3054.801330 3641.588834     58       50 1.28 

[199,] 3641.588834 4848.035476     53       50 0.18 

[200,] 4848.035476         Inf     54       50 0.32 

> chi2.test 

[1] 185.52 

> p.value=pchisq(chi2.test,m-1,lower.tail=FALSE) 

> p.value 

[1] 0.7447192 
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3. How many replicas should be used? 

• The answer depends on the problem we want to solve. 

• Nowadays we can define a huge number of replicas for many situations. This is the usual solution. 

• Sometimes, using the Central Limit Theorem we can define an approximate value to the number of 

replicas to ensure a given precision. Example 21.5 illustrates 3 situations. 

• Example 21.5 – Use simulation to estimate the mean, (1000)XF  and 0.9π , the 90
th

 percentile of the 

Pareto distribution with 3α =  and 1000θ = . In each case, stop the simulation when you are 95% 

confident that the answer is within 1%±  of the true value. 

o As we know the true values, the simulation is useless but we will behave as these values are 

unknown ( 500µ = , (1000) 0.875XF = , ( )1/3

0.9 1000 0.1 1 1154.435π −= × − ≈ ) 

o We will discuss only the first 2 situations. 
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o Mean ( µ ): The usual estimator is the statistic T X=  and ~ (0;1)
/

T
n

n

µ

σ

− �

  

( ) ( )
0.01 0.01 0.01

Pr 0.01 Pr 0.01 Pr 2 1
/ / / /

T
T T

n n n n

µ µ µ µ
µ µ µ µ

σ σ σ σ

−   
− ≤ = − ≤ = − ≤ ≤ = Φ −   

   
 

Then ( )
2 2

2

0.01 0.01 1.96
Pr 0.01 0.95 0.975 1.96

0.01/ /
T n

n n

µ µ σ
µ µ

µσ σ

    
− ≤ ≥ ⇔ Φ ≥ ⇔ ≥ ⇔ ≥ ×    

    
 

As µ  and 
2σ  are unknown we run a first simulation to estimate them: xµ =�   and 

2 2
sσ =�  

Procedure: 

� Define m  (number of replicas of the first simulation) 

� Generate m  (pseudo) Pareto observations and compute xµ =�   and 
2 2

sσ =�  

� Let n  be the smallest integer greater than or equal to  

2 2

2

1.96

0.01

σ

µ

  
×   

   

�

�
 

� Generate an additional sample with n m−  observations and recomputed µ�  using all 

observations (from both samples). 
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Using R and choosing 10000m = : 

> alpha=3; theta=1000; m=10000; 

> u=runif(m); x1=theta*(((1-u)^(-1/alpha))-1) 

> tau2_h=var(x1); miu_h=mean(x1) 

> n_min=((1.96/0.01)^2)*(tau2_h/(miu_h^2)) 

> miu_h; tau2_h; n_min 

[1] 502.2063 

[1] 878943.7 

[1] 133877.9 

> m2=123878 

> u=runif(m2); x2=theta*(((1-u)^(-1/alpha))-1) 

> x=c(x1,x2) 

> miu_h=mean(x) 

> tau2_h=var(x1); n_min=((1.96/0.01)^2)*(tau2_h/(miu_h^2)) 

> miu_h; tau2_h; n_min 

[1] 498.7444 

[1] 737651.6 

[1] 113921.9 
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o Distribution Function ( (1000)XF ): Let (1000)Xp F= . The usual estimator is the ecdf 

{ }# 1000
(1000) i

n

X
T F

n

≤
= =  and we get ~ (0;1)

(1 ) /

T p
n

p p n

−

× −

�

  

( )
0.01

Pr 0.01 2 1
(1 ) /

p
T p p

p p n

 
− ≤ = Φ − 

× − 
, then 

( )
2

1.96 1
Pr 0.01 0.95

0.01

p
T p p n

p

 − 
− ≤ ≥ ⇔ ≥ ×   

   
 

As p  is unknown we run a first simulation ( m  replicas) to estimate it: { }# 1000 /ip x m= ≤�    

Procedure: 

� Define m  (number of replicas of the first simulation) 

� Generate m  (pseudo) Pareto observations and compute { }# 1000 /ip t x m= = ≤�  

� Let n  be the smallest integer greater than or equal to  

2
1.96 1

0.01

θ

θ

 − 
×   

   

�

�
 

� Generate an additional sample with n m−  observations and recomputed p�  using all 

observations (from both samples). 
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Using R and choosing 10000m = : 

> alpha=3; theta=1000; m=10000; 

> u=runif(m); x1=theta*(((1-u)^(-1/alpha))-1) 

> t=mean(x1<=1000) 

> n_min=((1.96/0.01)^2)*(1-t)/t 

> t; n_min 

[1] 0.881 

[1] 5188.994 

 

As 10000>5189 we stop. 
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4. How to use simulation? 

• Build a model for the random variable for which we want to approximate the distribution, S . This 

variable can be function of other random variables. 

• Define the number of replicas to be used, NR  

• For each replica generate as many pseudo-random variables as we need and compute a value for S  

using the model from step 1. Let us call this value js . 

• The cdf of S  is then approximated by the ecdf based on 1 2, , , NRs s s� . Compute quantities of interest 

such as the mean, variance, percentiles, probabilities, … from the ecdf. 
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3.1 – Approximating the sampling distribution of a statistic 

 

Example A – Consider a normal population with mean 10 and standard deviation 3 from which we observe 

a sample of size n=5 . Using simulation, obtain the sampling distribution of X  and compare with the 

theoretical result. 

Procedure: 

• Choose the number of replicas, NR  

• For each replica i , 1,2, ,i NR= �  

o Generate 5 random (pseudo) numbers and obtain 5 r.v. with a (10; 3)n σ =  distribution 

o Compute the sample average and keep this value as element i  of the vector res  

• Perform a test to check if the values in vector res  can be considered as observations of a normal 

with mean 10 and standard deviation 3 / 5 . 
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Solution using R 

> NR=1000; n=5; miu=10; sig=3 

> res=rep(NA,NR)  

> for(i in 1:NR){ 

+   x=rnorm(n,miu,sig); res[i]=mean(x) 

+   } 

> mean(res); sd(res) # can also compute skewness and kurtosis 

[1] 10.01766 

[1] 1.351131 

> ks.test(x,"pnorm",10,3/sqrt(5)) 

 

        One-sample Kolmogorov-Smirnov test 

 

data:  x  

D = 0.4427, p-value = 0.2087 

alternative hypothesis: two-sided  

> breaks=seq(4,16,0.5) 

> points=c(seq(5+0.5/2,16-0.5/2,0.5),10); points=sort(points) 

> dens=dnorm(points,miu,sig/sqrt(n)) 

> hist(res,breaks,prob=TRUE) 

> lines(points,dens,type="l") 
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Example B – Consider a normal Pareto population ( 1.5α = , 100θ = ) from which we observe a sample of 

size 10.  (i) Explain how to use simulation to get an approximation to the sampling distribution of X  and 

compare it with the normal distribution. (ii) Perform the simulation with 1000 replicas. (iii) Do you think 

that increasing the sample size will help? 

(i) 

Determine NR , the number of replicas to be used. 

For each of the NR  replicas, 1,2, ,i NR= �  

• Generate 10 pseudo Pareto distributed variables – we generate 10 uniforms(0,1), ju , 1,2, ,10j = �  

and using the inverse method we get 10 Paretos, ( )( )1/
1 1j jx u

α
θ

−
= − −  

• Calculate the sample mean, 
10

1i jj
x x

=
=∑  

Now we compare the simulated distribution of X using our NR  pseudo observations ( )1 2
, , ,

NR
x x x�  with a 

normal distribution and conclude (descriptive statistics, qqplot, ecdf, …) 
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(ii) 

> NR=1000; n=10; alpha=1.5; theta=100 

> res=rep(NA,NR) 

> for(i in 1:NR){ 

+   u=runif(n); x=theta*((1-u)^(-1/alpha)-1); res[i]=mean(x) 

+   } 

> library(moments) 

> cbind(mean(res),median(res),sd(res),skewness(res),kurtosis(res)) 

         [,1]     [,2]     [,3]     [,4]    [,5] 

[1,] 195.7378 126.9872 339.5334 13.12755 248.533 

> qqnorm(res)  # result on next slide 

 

(iii) As 1.5 2α = <  the variance of the Pareto distribution does not exist and consequently the CLT does not 

apply. The sampling distribution of X  does not converge to a normal distribution. Using the same R 

program with 1000n =  we get 

> cbind(mean(res),median(res),sd(res),skewness(res),kurtosis(res)) 

         [,1]     [,2]     [,3]     [,4]    [,5] 

[1,] 197.5064 186.5814 115.4582 26.57593 789.149 

> > qqnorm(res)  # result on next slide
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Sample size=10 Sample size=1000 
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Example C – Using simulation determine the p-value of the Kolmogorov-Smirnov test to test if the sample 

(11.79,11.25,6.83,10.47,13.60,10.60,17.40,10.99,16.45,12.47,8.19,13.46,13.82,11.93,7.47,10.09,14.26, 

12.04,12.13,9.66) came from a normal distribution with mean 10 and standard deviation 3. 

Procedure 

• Compute the value of the test statistic using the observed sample, D  

• Determine NR , the number of replicas to be used 

• For each of the NR  replicas, 1,2, ,i NR= �  

o Generate 20 pseudo normal (mean 10 and standard deviation 3) variables – generate 20 

uniforms(0,1), ju , 1,2, ,20j = � , then, using the Box-Muller method, get 20 (0,1)n , jz , and 

finally get 10 3j jx z= + × , 1,2, ,20j = � . 

o Using the generated sample, compute the value of the K-S test statistic, iKS  

• The estimated p-value is given by the proportion of values of KS  greater than D   
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Using R and 10000 replicas we get 

> x=c(11.79,11.25,6.83,10.47,13.60,10.60,17.40,10.99,16.45,12.47,8.19, 

+     13.46,13.82,11.93,7.47,10.09,14.26,12.04,12.13,9.66) 

>  

> # test if x follows a normal distribution with mean 10 and stdev=3 

> a=ks.test(x,"pnorm",10,3) 

> D=a$statistic 

> a 

        One-sample Kolmogorov-Smirnov test 

data:  x  

D = 0.3122, p-value = 0.03132 

alternative hypothesis: two-sided  

>  

> NR=10000; n=length(x) 

> res=rep(NA,NR) 

> for(i in 1:NR){ 

+   y=rnorm(20,10,3); a=ks.test(y,"pnorm",10,3) 

+   res[i]=a$statistic 

+   } 

> p.value=mean(res>=D); p.value 

[1] 0.0326 
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3.1 – More complex analysis 

• Among the examples presented in Loss Models we will analyze Example 21.17. Skip section 21.2.4 

(unless you are familiar with coppulas) and return to section 21.2.6 after bootstrap has been 

presented. 

• Example 21.17 – An insurance company offers the following product to individuals age 40. A single 

premium of 10000 is paid (an administrative fee has already been deducted). In return, there are two 

possible benefits. The 10000 is invested in a mutual fund. If the policyholder dies during the next four 

years, the fund value is paid to the beneficiary. If not, the fund value is returned to the policyholder at 

the end of the four years. The policyholder may purchase a guarantee. If the fund has earned less 

than 5% per year at the time of payment, the payment will be based on a 5% per year accumulation 

rather than the actual fund value. Determine the 90
th

 percentile of the cost of providing this 

guarantee. Assume that the force of mortality is constant at 0.02 and that 50000 policies will be sold. 

Also assume that the annual fund increase has a lognormal distribution with 0.06µ =  and 0.02σ = . 

We also assume that payments to the beneficiaries (policyholders who died) are made at the end of 

each year. 
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Constant force of mortality at 0.02 →
0.021 0.0198q e

−= − =  

0n  - number of policies at the beginning of year 1. 0 50000n =  

0C  - Capital value for each policy at the beginning of year 1. 0 10000C =   

Let us describe the simulation for replica k  

• Years 1,2,3i =   

o Simulate the number of death im  from 1~ ( ,0.0198)i iM b n −  and calculate the number of 

survivors 1i i in n m−= −  

o Simulate ix , the fund increase during year i  from ~ lnormal(0.06;0.02)iX  and calculate 

the value of the policy at the end of year i , 1i i iC X C −= ×  

o If the value of the fund is smaller than the guaranteed capital the insurance fund has to pay 

the difference to the beneficiaries of the policyholders who died during the year, i.e. 

( )0 0( 1.05 ) 1.05 0i i

i i i i iif C C then P C C m else P< × = − =  

• Years 4i =  (similar to the previous years except that we have to reimbursed all policyholders  

o Simulate ix , the fund increase during year i  from ~ lnormal(0.06;0.02)iX  and calculate 

the value of the policy at the end of year i , 1i i iC X C −= ×  
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o If the value of the fund is smaller than the guaranteed capital the insurance fund has to pay 

the difference to all policyholders (including the beneficiaries of the ) i.e. 

( )0 0 1( 1.05 ) 1.05 0i i

i i i i iif C C then P C C n else P−< × = − =  

• Compute the present value of the payments due to the guarantee. Let us assume that the 

discount rate is given by the increase of the fund, i.e.  
1

/
k

k i ii
Paym P v

=
=∑  where 

1

i

i jj
v x

=
= ∏ . 

 

Repeat the procedure for 1,2, ,k NR= �  where, for instance, we can define 10000NR = . 

Sort array kPaym  and estimate the 90
th

 percentile using the usual method. We can calculate the 

corresponding value per policy (just divide by 50000) to price the insurance option. We can also estimate 

the mean value or others statistics of interest. 

 

See file example21.17.xlsx to see a realization of the simulation. 

Challenging question: Can you develop the simulation using R? 
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q=1-exp(-0.02); C0=10000; N0=50000; 

G=rep(1.05,4); G=cumprod(G)*C0  

 

NR=1000; pp=rep(NA,NR) 

for(j in 1:NR){ 

  pay=rep(0,4) 

  x=rlnorm(4,0.06,0.02); discount=1/cumprod(x); C=C0*cumprod(x) 

  NReimb=rep(NA,4) 

  n=N0 

  for(i in 1:3){ 

    NReimb[i]=rbinom(1,n,q); n=n-NReimb[i] 

    } 

  NReimb[4]=n 

  pay=NReimb*(G-C)*(G>C) 

  pp[j]=sum(pay*discount) 

  # G;C;NReimb;pay; 

  } 

 

pp_p=pp/N0 

mean(pp_p); sd(pp_p); quantile(pp_p,0.9,type=6) 

hist(pp_p) 
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Appendix 01 – Proof of the inverse transform theorem 

Let us prove the theorem. 

Part (a): ~ ( )XX F x  ( ) ~ (0;1)XY F X U=  

( )

1 1

1

( ) Pr( ) Pr( ( ) )                 ( )

Pr( ( ))                                    as  is strictly increasing  exists

( ) 0 1                 follows a uniform distributio

Y X X

X

X

F y Y y F X y Y F X

X F y F F

F F y y y Y

− −

−

= ≤ = ≤ =

= ≤

= = < < n between 0 and 1

 

Part (b): ~ (0;1)Y U  Let us define ( )X G Y= , where G is a strictly increasing function    

( )

1

1 1

( ) P r( ) P r( ( ) ) P r( ( ))           is striclty increasing        

( ) ( )                       as ~ (0;1)

X

Y

F x X x G Y x Y G x G

F G x G x Y U

−

− −

= ≤ = ≤ = ≤

= =
 

Then, if G  is equal to 
1

XF
−

 we get our proof.  

Note that in this case ( )XF x  is given and then we have to choose G  in accordance. 
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Appendix 01 – R program 

 

>#xx is used to define space in the plot  

>x=seq(0,2,length=101);  xx=.5*x  

> # type=”n” originates no output 

> plot(x,xx,type="n",xlab="x",ylab= "distribution function")  

> #internal axes  

>lines(c(0,2),c(0,0));lines(c(0,0),c(0,1))     

> # distribution functions  

> lines(c(0,1),c(0,0.5),col="red");  

> lines(c(1,2),c(0.75,1),col="red") 

> # u=0.3   

> lines(c(0,0.6),c(0.3,0.3),lty=2);   

> lines(c(0.6,0.6),c(0,0.3),lty=2) 

> # u=0.6 

> lines(c(0,1),c(0.6,0.6),lty=2); 

> lines(c(1,1),c(0,0.6),lty=2) 

> # u=0.9 

> lines(c(0,1.6),c(0.9,0.9),lty=2); 

> lines(c(1.6,1.6),c(0,0.9),lty=2)  
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Appendix 02 –using R  

 

u=0; t=0; lambda=3 # Poisson parameter 

x=rep(NA,1000) 

for(i in 1:1000){ 

n=0; tt=0; 

repeat{ 

  u=runif(1); t=-log(1-u)/lambda; tt=tt+t; n=n+1; 

  if (tt>=1) {n=n-1; break} 

  } 

x[i]=n 

} 

 

z=rep(1,1000) 

tapply(z,x,sum) 
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Appendix 03 – Example 21.17  

( ) 0.02h t = , then 
0 0

( ) ( ) 0.02 0.02
t t

H t h u du du t= = =∫ ∫  and 
( ) 0.02( ) H t t

S t e e
− −= = . 

0.02( 1)
0.02

0.02

Pr( 1) ( ) ( 1)
Pr( 1| ) 1 1 0.0198

Pr( ) ( )

x

x x

x X x S x S x e
q X x X x e

X x S x e

− +
−

−

< ≤ + − +
= ≤ + > = = = − = − =

>
 

 


