Instituto Superior de Economia e Gestão
unversidade técnica de usboa

CORPORATE INVESTMENT APPRAISAL

MASTERS IN FINANCE
EXAM

9 JANUARY 2012

2 HOURS + 30 minutes

INSTRUCTIONS TO READ BEFORE STARTING ANSWERING the questions:

1. Please fill in your name and student number.
2. The exam has 5 groups of questions, with marks clearly indicated.
3. You may use one A4 sheet of paper with notes.
4. The cumulative Normal distribution table is attached at the end.
Good Luck!

Name \qquad No. \qquad

PROFESSOR CLARA RAPOSO'S EXCLUSIVE AREA:

GROUP	GRADE	COMMENT
I		
II		
III		
IV		
V		
TOTAL		

GROUP I (4 points)

Firm EUQUD is analyzing a new investment project, called "VISION". The following table shows forecasts of annual earnings for the firm in two scenarios: the Current Scenario (without the project), and the Scenario with Project "VISION":

Current Scenario (without Project VISION)	Years 1 to 4	Scenario with Project VISION	Years 1 to 4
Revenues	$€ 1000000$	Revenues	$€ 1700000$
Operating Costs	$€ 500000$	Operating Costs	$€ 600000$
Depreciation	$€ 150000$	Depreciation	$€ 400000$
Interest Expenses	$€ 80000$	Interest Expenses	$€ 80000$
Net Income	$€ 189000$	Net Income	$€ 434000$

Project VISION requires immediate investment of $€ 1000000$ in capital expenditures, and there is no working capital. We also know that the appropriate discount rate to use is 11%.
(I.a)(1.5 points) Determine the discounted payback period of project VISION. Show your computations.

EBT	270	620
NI	189	434
Taxes	81	186
Tc	0,3	0,3

R	11%				
t	0	1	2	3	4
Revenues	0	700000	700000	700000	700000
Op Costs	0	100000	100000	100000	100000
Deprec.	0	250000	250000	250000	250000
EBIT	0	350000	350000	350000	350000
EBIT(1-Tc)	0	245000	245000	245000	245000
CapEx	1000000	0	0	0	0
Increase in					
NWC	0	0	0	0	0
	-				
FCFt	1000000	495000	495000	495000	495000

t	0	1	2	3	4
	-				
Disc FCF	1000000	445945,9	401753,1	361939,7	326071,8
Cumulative	1000000	-554054	-152301	209638,8	
Disc PP	2,420791	years			

(I.b) (1.25 points) "Since the net income more than doubles with project VISION, it is necessarily viable". Do you agree with this statement? Explain.

- Change in net income is not the appropriate indicator of project quality.
- Should rather trust FCFs and criteria such as the NPV.
- From previous question can actually realize that NPV is going to be positive.
(I.c) (1.25 points) "Project VISION's IRR does not exceed 10% ". Without computing the IRR, do you agree with the statement? Explain.
- By computing the NPV using 10% as discount rate we would find a positive NPV, meaning that the project's IRR would be higher than 10%, since the sequence of free cash flow signs is the standard one.

GROUP II (4 points)

Firm EUQUD considers investing in new project DIA (same industry as usual for the company), for which the free cash flows have already been estimated:

t	0	1	2
$\mathrm{FCF}_{\mathrm{t}}$	-500	620	435

We know that EUQUD is financed with a ratio $D / E=0.3$, the beta of its shares is 1.1 , and the firm is subject to corporate taxation at rate 35%. The firm's debt is risk-free with an annual cost of 5%, and the market risk premium is 4.5%.

```
    (II.a) (1.5 points) Assuming the project is financed with the same target capital structure as the firm, how good is this project? Show your computations.
Re 9,95\%
Rwacc 0,084038
NPV 442,10 €
The project is worth \(500+442,10\)
```

(II.b) (1.5 points) What is the present value of the interest tax shield of this project? Show your computations.

Ru	0,088077
Vu	$937,24 €$
PV(ITS)	$4,87 €$

(II.c) (1 point) If Project DIA is financed with equity of 250 and a debt of 250 (a loan with an annual interest payment of 6%), what is its net present value? Explain.

D	250
$R d$	6%

APV method
Assuming
Ru 0,088077
Vu $937,24 €$

t	0	1	2
Interest	0	15	15
ITS	0	5,25	5,25
PV(ITS)	$9,63 €$		

GROUP III (4 points)

(III.A) (1.5 points) Consider company EUQUD which is subject to a corporate income tax rate of 25%. Investors in the debt (bonds) issued by this firm are taxed at a personal rate of 30% on the interest earned. We were not given information about the personal tax rates on equity income. Suppose taxes are the only market imperfection. Is it advantageous for this company to have debt? Explain your answer.

The effective tax advantage of debt, T^{*}, depends on the values of Tc, Ti (given to us) and Te (unknown). For this T^{*} to be positive, it must be that $\mathrm{Te}>6.67 \%$.
(III.B) (2.5 points) Recall the asymmetric information problem (lemons) studied in the classes, regarding a company that needs to raise equity via an equity offering.

Consider there are two scenarios for the value of firm EUQUD without the new project: a more optimistic scenario (High) and a more pessimistic one (Low), each with probability $1 / 2$. In scenario High the equity of the firm would be worth 200, whereas in scenario Low the equity would be worth 100. To simplify, consider a zero discount rate. The current market capitalization of the company is 150 .

A new project appears, demanding an investment of 100 (right now), and with NPV of 12 (in both scenarios).
i. (1 point) Suppose the company goes ahead with the project. At the end of the year, when the true scenario is revealed, what will happen to the total value of equity (in each scenario, "High" and "Low")? And what will be the value of the shares of the "old" shareholders? Show your computations.

Prob	0,5		0,5	
	VH	VL		Average
No project		200	100	150

	VH	VL
New Inv	100	100
NPV	12	12

	VH	VL	
Average			
No project	200	100	150
New Inv	100	100	
NPV	12	12	
With Project	312	212	262

	VH	VL	Average
Old Shareholders	192,916	131,084	162
New			
Shareholders	119,084	80,91603	100

ii. (0.75 points) If the manager already knew the true scenario at the time of deciding to go ahead with the project, do you think the manager would go ahead? Explain.

The manager in the high scenario should not wish to go ahead with the project because the value to its old shareholders $(192,916)$ is lower than without the project (200).
Only the manager in the low scenario would have an incentive to go ahead with the project, thus revealing his firm's "Low type".
iii. (0.75 points) How good (in terms of NPV) would the new project have to be for the informed manager to decide to invest in the project in both scenarios? Explain.

If the project's NPV were higher than 12, it might compensate the dilution cost to old shareholders of firm "H".
With some computation you could find for an NPV $>18,61406$ that even the old shareholders of firm H would want to go ahead with the project.

GROUP IV (4 points)

Firm EUQUD has just announced a new issue of convertible bonds. 1 million bonds will be placed in the market at their nominal value, which is $€ 5$. The bonds promise to pay an annual coupon of 4%. Each bond may be converted into shares at maturity for a price of $€ 5$ per share, which takes place in two years time. By then the company wishes to see its equity value increase by $€ 5,000,000$ (if conversion takes place). The current stock price of EUQUD is $€ 5$, and its market capitalization is $€ 15,000,000$. The firm currently has no debt. We have estimated an annual volatility of 30% for EUQUD's assets. The risk-free interest rate is 3% (continuous compounding) and the yield-tomaturity of the straight bonds issued by companies similar to EUQUD is 4\%.
(IV.a) (2.5 points) What is the value of the convertible bonds issue at the time of its announcement? Comment briefly.

m	1000000 proceeds	5000000		K
r				
F	5000000			
T	2			
P	5			
Pn	15000000	$\mathrm{mrK}=\mathrm{F}$		
n	3000000	mr	1000000	
		r	1	

Rf 3%
y 4% coupon annual

Straight Bond Component

(IV.b) (1.5 points) What is the expected price of the shares immediately after the convertibles are issued? Comment briefly.
Keeping the same assumptions
P 4,699276277
price goes down since the bonds are sold too cheaply.

GROUP V (4 points)

Within the framework of Merton's Model, consider the following data concerning company EUQUD: The stock has a market capitalization of 40 and an annual volatility of 40%. After 3 years, EUQUD's debt of 220 reaches maturity (ignore intermediate cash flows). We also know that the annual risk-free rate of interest is 3% and that bankruptcy costs are approximately 15% of the asset value at the time of Liquidation.

Does it seem credible to you that the tree for this company's Assets is the one presented in the following table? Explain your answer.

Asset Value

Tree

\mathbf{t}	$\mathbf{0}$	1	2	3
195,7597484	264,248021	356,69752	481,49129	
	145,022388	195,75975	264,24802	
		107,43523	145,02239	
			79,589974	

Tree Parameters

Dt:	1
u:	1,349859
d:	0,740818
p:	0,474815

Stock Value Tree

40	76,37004	143,1053	261,4913
9,403051	20,39771	44,24802	
		0	0
			0

The stock price would be consistent with the true one, but the volatility would not be consistent.

$\mathrm{dS} / \mathrm{dV}:$	0,561683
Implied Stock	
Vol:	$82,47 \%$
Impl-Actual Vol:	$42,47 \%$

