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REAL OPTION VALUE 

 

CHAPTER 7   SEQUENTIAL INVESTMENT OPTIONS 

 

Thus far, it has been assumed that the investment amount is paid instantaneously 

upon exercise of the real option, that is when commencing the investment.  Often, 

investment opportunities require a sequence of expenditures, so that interim “mini-

investments” are necessary over a time line in order to keep the ultimate investment 

opportunity option alive.  This chapter allows for sequential investment options (also 

termed instalment options), where it is assumed that interim expenditures are 

completely sunk costs, having no alternative or scrap value. 

 

Assume first the investment program involves required initial expenditures (the real 

option premium), a second phase of required investment expenditures (D), and a 

final development phase, when then the project values (V) are realized. The 

essential aspect of this characterized program is that managers have a choice of 

whether to pay the interim expenditure, and then the development cost (K). This 

program constitutes a call option on a further call option. If all costs are considered 

“sunk costs”, the initial expense at t0 is an irrecoverable premium for a call option 

to pay D at t1, which is itself a premium for an option to pay K at t2, to receive then 

the project values.  Without management flexibility not to pay D or K, perhaps such 

a program should be valued using present values.  With management discretion, 

real option models are appropriate since future expenditures can be cancelled. The 

first stage decisions are based on the difference between perceived value (including 

future options) and cost at or before exercise dates. The transitions between the 

stages are sequential options.  

 

These models are suitable for any investment program, where there are required 

interim expenditures for program continuance such as: (a) a telecommunications 

company contemplating providing intermediate services and looking to maintain or 
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increase line usage, or a mobile operator initially bidding for a 4G license, that 

requires R&D at a first stage, and then implementation expenditures; (b) an 

E_Commerce software or a search service provider, which aims to add advertising, 

and then content in sequences, each requiring R&D and marketing expenditures; 

and (c) a property developer, who pays an initial price for development land, where 

there are required interim decontamination expenses, and then final construction 

costs. 

 

Here are several real option valuation methods, starting with a simple European 

compound option, extended to a European compound exchange option. Then an 

approximated American finite sequential exchange option is considered.  Finally, an 

American perpetual, and an American perpetual exchange option are presented, 

allowing for several stages of investment expenditures (and critical values which 

justify making those expenditures).  

 

The simplest European sequential model is the Geske (1979) compound call on a 

call option similar to the previous Chapter, where it is used in the process of 

approximating an American option. The simple European exchange option is an 

adapted Margrabe (1978) exchange option, set in a compound option format.  This 

assumes that both the development costs and the ultimate project value are both 

stochastic, and costs (D) must be spent at t1 in order to keep alive the option to 

exchange K for V at T(=t2).  

 

The sequential finite American exchange option model is a more realistic 

characterization of sequential investment options than standard American or 

European option models.  The Paxson (2007) approximation of an American 

sequential exchange option value is presented, where the asset is expected to have a 

significant current income.   Finally, building on Adkins and Paxson (2013), multi-

stage sequential American perpetual and American perpetual exchange models are 

provided.     
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7.1 SEQUENTIAL EUROPEAN REAL OPTIONS 

 

Geske (1979) developed an analytic framework for a European option, where in 

order to keep the option alive an interim expenditure is required.  Whereas in the 

previous chapter, the decision was about continuing an option on an income yielding 

asset, here the decision is about making a required payment in order to maintain the 

ultimate option. There is a critical value V* which justifies making the interim 

expenditure.   As before, assume that developed values (V) follow a geometric 

Brownian motion:  

vVVV VdzVdtdV   )(                                                         (7.1) 

where V is the equilibrium expected drift rate, V is the income rate (or payout rate) 

of V, and σV is the volatility.  Let the value of a call on a call be the real option value     

Cc, where D is the interim expenditure required at time τ’=.5 τ, and K the investment 

cost at time τ.  The value of a call on a call Cc is given by 
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where  is the correlation coefficient between the overlapping Brownian motion 

increments, which is defined as  /' , and N(.) and B(.) are the standard 

cumulative univariate and bivariate normal distributions with parameters: 
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       Figure 7.1  
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                                       GESKE EUROPEAN COMPOUND CALL OPTION

DEVELOPMENT TIME ' 1 10

INVESTMENT TIME     2 20

INTEREST RATE 0.04 0.04

V YIELD 0.04 0.04

VALUE VOLATILITY 0.20 0.20

V 100.00 100.00

D 20.00 20.00

K 80.00 80.00

REAL OPTION VALUE 7.1768 10.6141 B8*EXP(-B6*B4)*B26-B10*EXP(-B5*B4)*B27-B9*EXP(-B5*B3)*B25

-' 1.00 10.00 B4-B3

V* 99.58 94.80  

d1 1.19 0.58 (LN(B13/B10)+((B5-B6+0.5*B7^2)*B12))/(B7*SQRT(B12))

d2 0.99 -0.05 B14-B7*SQRT(B12)

N1 0.88 0.72 NORMSDIST(B14)

N2 0.84 0.48 NORMSDIST(B15)

EQ 7.4 20.00 20.00 B13*EXP(-B6*B12)*B16-B10*EXP(-B5*B12)*B17

EQ 7.4-D 0.00 0.00 B18-B9

' 0.71 0.71 SQRT(B3/B4)

d1,t1 0.12 0.40 (LN(B8/B13)+(B5-B6+0.5*B7^2)*B3)/(B7*SQRT(B3))

d1,t2 0.93 0.70 (LN(B8/B10)+(B5-B6+0.5*B7^2)*B4)/(B7*SQRT(B4))

d2,t1 -0.08 -0.23 B21-B7*SQRT(B3)

d2,t2 0.65 -0.20 B22-B7*SQRT(B4)

N2 0.47 0.41 NORMSDIST(B23)

B1 0.53 0.59 BiVariateNormalCDF(B21,B22,B20)

B2 0.44 0.29 BiVariateNormalCDF(B23,B24,B20)

The first five inputs are the D and K timing estimates, the interest rate, and the

value yield and volatility.

The next three inputs are V, D and K estimates.

Real call option value assumes V* is the value above which D should be paid at



USE TOOLS/SOLVER, SETTING B19=0 BY CHANGING B13.  

 

Using standard parameters, the Geske European sequential investment model is 

shown in Figure 7.1. Use Tools/Solver to solve equation (7.4)-D=0.  In column B, 

V* is almost 100, the current value, for this is a more or less at the money 

compound call option.  If V is 100 at time τ’, the payment D=20 should be made in 

order to keep the ultimate call option alive. 

 

Since the Geske compound option model is European, it is at best a first estimate 

for long-lived sequential options.  As also shown in Figure 7.1 column C, the 
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compound option value does not increase substantially as the time to ultimate 

exercise increases (with D at the half way time).   

 

It is easy to extend this compound option model to a European sequential exchange 

real option. Suppose that the D and development costs K follow a diffusion process 

similar to that for V: 

KKKK KdzKdtdK   )(                                                   (7.6) 

where K is the drift term (the expected cost escalation), δK is the payout rate on 

similar investment cost businesses, σK is the volatility of the investment cost, and 

the correlation between the Wiener processes is .  Assuming that the exercise price 

of the first (compound) option, D, is expressed as a fixed proportion (Q%) of K, i.e., 

D=QK, Carr (1988) gives the solution for the European compound exchange call 

option: 
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N(.) and B( ,  ;  ) are the standard normal cumulative univariate and bivariate 

distributions.  At time τ’, one would exercise the compound call and obtain the 

underlying European exchange call option if the critical price ratio is such that 

'

*


XX  . The critical price ratio, X

*
, above which the compound option should be 

exercised at time τ’ can be obtained using the solution for the European exchange 

call option:  
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        EUROPEAN COMPOUND EXCHANGE OPTION

DEVELOPMENT TIME ' 1

INVESTMENT TIME     2

V YIELD 0.04

K YIELD 0.04

VALUE VOLATILITY 0.20

K VOLATILITY 0.20

CORRELATION 0.50

EXCHANGE VOLATILITY 0.20 SQRT(B7^2+B8^2-2*B9*B7*B8)

V 100.00  

D 20.00  

K 80.00  

X=V/K 1.25 B11/B13

REAL OPTION VALUE 7.1768 B11*EXP(-B5*B4)*B30-B13*EXP(-B6*B4)*B31-B12*EXP(-B6*B3)*B29

-' 1.00 B4-B3

X* 1.24  

d1 1.22 (LN(B11/B13)+((B5-B6+0.5*B10^2)*B16))/(B10*SQRT(B16))

d2 1.02 B18-B10*SQRT(B16)

N1 0.89 NORMSDIST(B18)

N2 0.85 NORMSDIST(B19)

EQ 7.10 0.25 B17*EXP(-B5*B16)*B20-EXP(-B6*B16)*B21

EQ 7.10-D/K 0.00 B22-(B12/B13)

' 0.71 SQRT(B3/B4)

d1,t1 0.12 (LN(B14/B17)+(B6-B5+0.5*B10^2)*B3)/(B10*SQRT(B3))

d1,t2 0.93 (LN(B14)+(B6-B5+0.5*B10^2)*B4)/(B10*SQRT(B4))

d2,t1 -0.08 B25-B7*SQRT(B3)

d2,t2 0.65 B26-B7*SQRT(B4)

N2 0.47 NORMSDIST(B27)

B1 0.53 BiVariateNormalCDF(B25,B26,B24)

B2 0.44 BiVariateNormalCDF(B27,B28,B24)

The first five inputs are the D and K timing estimates, the 

value and cost yields and volatilities, and correlation.

After calculating the exchange volatility, the next three inputs are V, D and K estimates.

Real call option value assumes X* is the value above which D should be paid at



USE TOOLS/SOLVER, SETTING B23=0 BY CHANGING B17.  

The European sequential option model assumes that D cannot occur until τ’ and K 

is only paid or exercised at τ.  This is mechanical, and does not allow management 

any flexibility, except to choose whether to make the investment decisions.  The 

input parameters are chosen so that the ROV is the same as in the previous figure.  
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Different inputs for K yield and volatility, and correlation, will yield different 

results.    

 

7.2 AMERICAN FINITE SEQUENTIAL 

 EXCHANGE REAL OPTIONS 

   

A finite American sequential exchange option allows for management choice on the 

timing of the ultimate investment.  If investing in an early project stage (such as 

decontamination) allows further investment opportunities, exercising the first 

compound option may provide an option to exchange at any time thereafter 

construction cost for the value of the ultimate property.  

 

This compound exchange option process is simplified by assuming that the first 

compound option is European, so it can be only exercised at a fixed time, τ’. Then 

the early exercise premium for an underlying American exchange option is 

modelled, which provides the right to exchange one asset for another at any time 

before expiration τ.  The value of such an American compound exchange option is 

simply the sum of the Carr European compound exchange option and the early 

exercise premium for the underlying American exchange option between τ and τ’.  

 

Let Cw  denote a European compound call on a European exchange call option as 

specified in the previous section. When the asset to be received in the exchange 

pays a sufficiently large yield, there is always a positive probability that the 

underlying American exchange option should be exercised prior to expiration. 

Considering the early exercise premium for the American exchange call option with 

time horizon ],'[  , the value of the European compound option on American 

exchange call option, CW , becomes   

)'()'(
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                                                  (7.12) 
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where Cw  is the Carr European compound exchange call option. W is an American 

exchange call and w1 is a European exchange call option.  
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Maximizing W2, a twice-exercisable exchange call option, and employing an upper 

bound of a perpetual American exchange call option yields the CEA (confined 

exponential approximation) model.   

 

U* for CEA equals the value of a perpetual American exchange call option: 
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Here, )(* WV  denotes the optimal exercise price at which the perpetual American 

exchange call option should be exercised, and its value is equal to 
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Figure 7.3 shows that this real sequential American exchange approximation 

($7.86) is higher than the Geske-Margrabe compound exchange value ($7.18), since 

the option can be exercised anytime after the interim stage.  Also this real option 

value is sensitive to increases in the time horizon, approaching the American 

perpetual exchange value as  approaches infinity.  The value of the management 

flexibility to decide on the optimal timing of the ultimate option exercise is worth 

around 9.5% more than the alternative European setting with the same parameters.  

This management flexibility would be worth more with higher V, lower K, higher 

asset yield, and lower correlation of development value and development cost, 

indicating the practical considerations in using the more complex model.   
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Figure 7.3 
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AMERICAN FINITE SEQUENTIAL EXCHANGE OPTION

INPUT
' 1

 2

 0.2000

 0.2000

 0.5000

V 100

K 80.000

D 20.000

 0.04

 0.04

OUTPUT
D+I 100.000

 0.2000 SQRT(B6^2-2*B6*B7*B8+B7^2)

Critical Prices    X* 1.2332  

                          V* 98.73  

0.0000 B17*EXP((B13-B12)*(B5-B4))*B26-B27-B23

0.0000 B18-B10-B18*EXP(-0.5*B12*(B5-B4))*B41+B10*EXP(-0.5*B13*(B5-B4))*B42

Carr(1988) 0.0000 ABS(B19)+ABS(B20)

X=P/K 1.25 B9/B10

Q=D/K 0.2500 B11/B10

b*1(X*t1) 1.1480 (LN(B28)+(B13-B12+0.5*B16^2)*(B5-B4))/(B16*SQRT(B5-B4))

b*2(X*t1) 0.9480 B24-B16*SQRT(B5-B4)

N(b*1X*t1) 0.8745 NORMSDIST(B24)

N(b*2X*t1) 0.8284 NORMSDIST(B25)

X*(Critical Price Ratio) 1.2332  

a1(X/X*,t1) 0.1677 (LN(B22/B28)+(B13-B12+0.5*B16^2)*B4)/(B16*SQRT(B4))

a2(X/X*,t1) -0.0323 B29-B16*SQRT(B4)

b1(X,T) 0.9304 (LN(B22)+(B13-B12+0.5*(B16^2))*B5)/(B16*SQRT(B5))

b2(X,T) 0.6475 B31-B16*SQRT(B5)

' 0.7071 SQRT(B4/B5)

B[a1,b1;rho] 0.5438 BiVariateNormalCDF(B29,B31,B33)

B[a2,b2;rho] 0.4559 BiVariateNormalCDF(B30,B32,B33)

N(a2) 0.4871 NORMSDIST(B30)

Carr European Compound = W 7.1697 B9*EXP(-B12*B5)*B34-B10*EXP(-B13*B5)*B35-B23*B10*EXP(-B13*B4)*B36

APPROX. AMERICAN COMPOUND EXCHANGE OPTION
d1*(0.5Vt1) 1.5581 (LN(B43/B10)+(B13-B12+0.5*B16^2)*0.5*(B5-B4))/(B16*SQRT(0.5*(B5-B4)))

d2*(0.5Vt1) 1.4167 B39-B16*SQRT(0.5*(B5-B4))

N(d1*Vt1) 0.9404 NORMSDIST(B39)

N(d2*Vt1) 0.9217 NORMSDIST(B40)

V*(Critical Value) 98.73 B18

c1(V/V*,0.5(T-t)) 0.1611 (LN(B9/B43)+(B13-B12+0.5*B16^2)*0.5*(B5-B4))/(B16*SQRT(0.5*(B5-B4)))

c2(V/V*,0.5(T-t)) 0.0197 B44-B16*SQRT(0.5*(B5-B4))

d1(V/K,T-t) 1.2157 (LN(B9/B10)+(B13-B12+0.5*B16^2)*(B5-B4))/(B16*SQRT(B5-B4))

d2(V/K,T-t) 1.0157 B46-B16*SQRT(B5-B4)

 0.7071 SQRT(0.5*(B5-B4)/(B5-B4))

B[-c1,d1,-) 0.3335 BiVariateNormalCDF(-B44,B46,-B48)

B[-c2,d2,-) 0.3498 BiVariateNormalCDF(-B45,B47,-B48)

N(c1) 0.5640 NORMSDIST(B44)

N(c2) 0.5079 NORMSDIST(B45)

Twice Exercisable = W2(T-t1) 20.6085 B9*EXP(-B12*(B5-B4))*B49-B10*EXP(-B13*(B5-B4))*B50+B9*EXP(-B12*0.5*(B5-B4))*B51-B10*EXP(-B13*0.5*(B5-B4))*B52

d1(T-t) 1.2157 (LN(B9/B10)+(B13-B12+0.5*B16^2)*(B5-B4))/(B16*SQRT(B5-B4))

d2(T-t) 1.0157 B54-B16*SQRT(B5-B4)

N(d1) 0.8880 NORMSDIST(B54)

N(d2) 0.8451 NORMSDIST(B55)

European Exchange = W1(T-t1) 20.3552 B9*EXP(-B12*(B5-B4))*B56-B10*EXP(-B13*(B5-B4))*B57

 2.0000 (-(B13-B12-0.5*B16^2)+SQRT((B13-B12-0.5*B16^2)^2+2*B16^2*B13))/(B16^2)

V*(Critical Value) 200.0000 B59*B15/(B59-1)

Perpetual Exchange = W3(D= 0) 20.0000 (B10/(B59-1))*(B9/B60)^B59

CEA American (T-t1) 21.0423 B61+(B53-B61)^2/(B58-B61)

Confined Exponential Approximation for the American Compound Exchange Option

American Compound Exchange CEA 7.8568 B37+B62-B58

The first five inputs are the D & K timing estimates, and the 

value and investment cost volatility (and correlation) estimates.

The next three inputs are V, K and D%K estimates.

The last two inputs are the "on-going" yields of V and (K&D).

Use Tools/Solver, setting B19=0 by changing B15:B16.  
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7.3 PERPETUAL AMERICAN MULTI-STAGE  

SEQUENTIAL  REAL OPTION 

 

This section studies a project comprising a multiple sequential investment 

opportunity.  The analytical solution depends on assuming a probability of 

catastrophic failure at each investment stage that declines in value as the project 

nears completion, which is a characteristic of many R&D, exploration and 

infrastructure projects.  This real sequential investment opportunity is a set of 

distinct, ordered investments that have to be made before the project can be 

completed. The project can then be interpreted as a collection of investment stages, 

such that no stage investment, except the first, can be started until the preceding 

stage has been completed. Success at each stage is not guaranteed because of the 

possibility of a catastrophic failure that reduces the option value to zero. The project 

value is realized when all the stages have been successfully completed. A typical 

four-stage opportunity involves: (i) undertaking basic research. (ii) developing a 

marketable product, (iii) testing its viability and (iv) implementing the infrastructure 

for launch and delivery. Multiple sequential investment opportunities are common 

amongst industries as diverse as oil exploration and mining, aircraft manufacture, 

pharmaceuticals and consumer electronics. 

 

Schwartz and Moon (2000) model a new drug development process which consists 

of four distinct phases, each with a positive probability of failure, although not 

necessarily declining over time. Cortazar, Schwartz and Casassus (2003) describe 

four natural resource exploration stages of a project with technical success 

probability increasing over each phase, and then a production phase which is subject 

to commodity price uncertainty. Pennings and Sereno (2011) study the development 

path of a new medicine over seven phases, with a probability of failure declining 

over time. 

 

Making an investment at a stage depends on whether the prevailing project value is 

of sufficient magnitude to economically justify committing the investment cost, or 
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whether it is more desirable to wait for more favorable conditions. After making the 

stage investment, there is no absolute guarantee that the stage will be successfully 

completed, because of the presence of irresolvable difficulties in converting 

intentions into reality owing to technological, technical or market impediments. This 

means that the stage investment opportunity is subject to a catastrophic failure that 

causes the option value to be entirely destroyed, and the project as an entity becomes 

irredeemably lost. There are three sources of uncertainty, the stochastic project value 

and the investment cost, and the probability of a catastrophic failure, which are 

considered in a closed-form rule for the investment decision at each of the project 

stages. 

 

Other authors simplify the multiple investment stage problems for obtaining a 

meaningful solution. Building on the valuation of sequential exchange opportunities 

by (Carr 1988), (Lee and Paxson 2001) use an element of European style compound 

options (and approximation of an American option phase) for formulating a two-

stage sequential investment. (Brach and Paxson 2001) examine a two-stage 

sequential investment opportunity similar to the formulation currently under study 

but they confine their attention more to valuation. (Childs and Triantis 1999) 

formulate a multiple sequential investment model with interaction and obtain a 

solution through using a trinomial lattice. For all of these expositions, the solution is 

either not analytical or is restricted to only two stages. 

 

Cassimon et al. (2004) study American-type investment options, but provide a 

solution based on the complex multivariate distribution available in some 

mathematical programmes.  Building on Adkins and Paxson (2011), Adkins and 

Paxson (2013) suggest an analytic solution for N-stage sequential investments. 

  

Consider an investment project made up of a discrete number of sequential stages, 

each involving an individual non-zero investment cost. The project as an entity is 

not fully implemented and the project value not realized until all of the sequential 

stages have been successfully completed. Each successive investment stage relies on 
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the successful completion of the investment made at the preceding stage, but the 

stage timing is not specified.  Each investment stage is ordered by the number J  of 

remaining stages, including the current one, until project completion. The decision 

making position is first examined for the ultimate stage where 1J  , and then by 

replication for the preceding stages, incrementally. At the ultimate stage, the 

decision whether or not to make an investment in a real asset is decided by whether 

or not the option value at 1J   fully compensates the expected net present value of 

the cash flow stream rendered by the asset. At the penultimate stage 2J  , whether 

to make an expenditure to obtain the investment option at 1J   depends on whether 

or not the option value at 2J   fully compensates for the net option value at 1J  . 

This procedure is then replicated incrementally for stages greater than 2.  

 

A representation of the sequential investments process for a J N  stage project is 

illustrated in Figure 7.4. This figure reveals the ordered sequence of stage 

investments comprising the project. It also shows that after an investment, the 

possible outcomes are success and failure. If all the stage outcomes are successful, 

then the entire project is successfully completed and its value can be realized. 

However, there is a possibility of failure at each stage. Although the investment is 

committed, the stage may not be successfully completed owing to fundamental 

irresolvable technical or market impediments, in which case, the option value 

instantly falls to zero and the project is abandoned without any value. The 

probability of failure at stage J  is denoted by J  where 0 1J J   .  

 

Situations where an investment can produce an innovative breakthrough and 

generate an unanticipated increase in the project value are ignored. Also, other forms 

of optionality, such as terminating a project before completion for its abandonment 

value, are not considered. 

 

 

                                                        Figure 7.4 
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Sequential Investment Process 

 

 

The value of the project is defined by V . The investment expenditure made at any 

stage J  is denoted by JK  for all possible values of J . Both the project value and 

the set of investment expenditures are treated as stochastic. It is assumed that they 

are individually well described by the geometric Brownian motion process: 

                                    d d dX X XX X t X z                                                    (7.17) 

for  , JX V K J  , where X  represent the respective drift parameters, X  the 

respective instantaneous volatility parameter, and d Xz  the respective increment of a 

standard Wiener process. Dependence between any two of the factors is represented 

by the covariance term; so, for example, the covariance between the real asset value 

and the investment expenditure at stage J  is specified by: 

                                     Cov d ,d d
J JJ VK V KV K t    . 

Different stages may have different factor volatilities and correlations.  The risk-free 

rate is r, and the investment expenditure at each stage K is assumed to be 

instantaneous. 

 

One-Stage Model 

The stage 1J   model represents the investment opportunity for developing a 

project value V  following the investment cost 1K , given that the research effort may 
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fail totally with probability 1 .  The value 1F  of the investment opportunity at stage 

1J   depends on the project value and the investment cost, so  1 1 1,F F V K . By 

Ito’s lemma, the risk neutral valuation relationship is: 

 

1 1

1

2 2 2
2 2 2 21 1 11 1

1 12 22 2

1 1

1 1
1 1 1

1

0

V VK V K

V K

F F F
V K VK

V K V K

F F
V K r F ,

V K

  
     

   

 
      

 

                                   (7.18) 

where the X  for  , JX V K J  denote the respective risk neutral drift rate 

parameters. The generic solution is the two-factor power function: 

                              1 11

1 1 1 ,F AV K
 

                                                                        (7.19) 

where 1  and 11  denote the generic unknown parameters for the two factors, project 

value and investment cost, and 1A  denotes a generic unknown coefficient. The 

power parameter values satisfy the characteristic root function: 

 
 

     
1 1 1 1

1 1 11

2 21 1
1 1 11 11 1 11 1 11 12 2

1 1 0V K VK V K V K

Q ,

r .

 

                     
 

                                                                                                           (7.20) 

The threshold levels for the project value and the investment cost signaling the 

optimal exercise for the investment option at stage 1J   are denoted by 1V̂  and 11K̂ , 

respectively. The value matching relationship describes the conservation equality at 

optimality that the option value  1 1 1 11
ˆ ˆ ˆ,F F V K  exactly compensates the net asset 

value 1 11
ˆ ˆV K . Then: 

                               12 112

12 1 11 1 11
ˆ ˆ ˆ ˆA V K V K
 

  .                                                           (7.21) 

There are two associated smooth pasting conditions, one for each factor, which can 

be expressed as: 

                           12 112 1 11
12 1 11

12 102

ˆ ˆ
ˆ ˆ V K

A V K
 

 
   .                                                        (7.22) 
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Since the option value is always non-negative, 12 0A  . We conjecture that 12 0  

and 112 0  , and 12 112 1   . Replacing 112  by 121    yields: 

       
1 1

21
1 12 12 1 12 12 12 12

1 1 0                  
V K K

Q , r ,         (7.23) 

where 
1 1 1

2 2 2

1
2        

V K V,K V K
. Further, the threshold levels are related by: 

                                      12
1 11

12

ˆ ˆ ,
1

V K






                                                               (7.24) 

with   1212
1

12 12 12 1A


 
  .  The MEF (markup effective factor) is simply  

12
1 11

12

ˆ ˆ/
1

V K






. 

Two-Stage Model 

At the preceding stage, 2J  ,  the viability of committing an investment 2K  to 

acquire the option to invest 1F  is compared to the value of the compound option 2F  

with the net benefits 1 2F K .  2F  depends on the three factors V , 1K  and 2K , so 

 2 2 1 2, ,F F V K K . By Ito’s lemma, the risk neutral valuation relationship for 2F  is: 

 

1 2

1 1 2 2 1 2 1 2

2 1

2 2 2
2 2 2 2 2 22 2 21 1 1

1 22 2 22 2 2

1 2

2 2 2

2 2 2
, 1 , 2 , 1 2

1 2 1 2

2 2 2
2 1 2 2

2 1

0.

V K K

V K V K V K V K K K K K

V K K

F F F
V K K

V K K

F F F
VK VK K K

V K V K K K

F F F
V K K r F

V K K

  
 

  

  
  

     

  
     

  

  

        

   

  (7.25) 

 

The solution to (7.25) is a product power function, with generic form: 

                              24 21 22

2 2 1 2 ,F A V K K
  

                                                               (7.26) 

where 2 , 21  and 22  denote the generic unknown parameters for the three factors, 

project value and investment expenditure at stage-one and -two respectively, and 2A  

denotes an unknown coefficient.  
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The stage-two threshold levels signaling an optimal exercise are represented by 
2V̂ , 

21K̂  and 
22K̂  for V , 1K  and 2K , respectively. The set  2 21 22

ˆ ˆ ˆ, ,V K K  forms the 

boundary that discriminates between the “exercise” decision and the “wait” decision. 

The equilibrium amongst the threshold levels is the value matching relation that is 

expressed as: 

                      24 214 224 12 121

24 2 12 22 12 2 12 22
ˆ ˆ ˆ ˆ ˆ ˆ ,A V K K A V K K
    

                                            (7.27) 

where 12A  and 12  are known from the evaluation for stage-one. There are three 

smooth pasting conditions, one for each of the three factors V , 1K  and 2K , 

respectively, can be expressed as: 

                         24 214 224 12 121

24 24 2 12 22 12 12 2 12
ˆ ˆ ˆ ˆ ˆ ,A V K K A V K
      

                                        (7.28) 

                         24 214 224 12 121

214 24 2 12 22 12 12 2 12
ˆ ˆ ˆ ˆ ˆ1 ,A V K K A V K
      

                                (7.29) 

                                   24 214 224

224 24 2 12 22 22
ˆ ˆ ˆ ˆ .A V K K K
                                                  (7.30) 

 

As a simplification in calculating the solution values, let 24 24 12/ 0    , then by 

using the substitutions 24 24 12   ,  214 12 241     and 224 241   , the 

quadratic function 2Q  can be expressed as: 

  

        
 

1 1 2

2

2 12 24 12 24 24

2 21 1
24 24 2 24 12 12 1 122 2

2

, 1 ,1

1 1

0,

V K K K

K

Q

r

    

           

 

 

       

   

        (7.31)                     

where 

 
 

   
1 2

1 1 2 2 1 2 1 2

22 2 2 2 2

2 12 12

12 12 12 12

1

2 1 2 2 1

V K K

VK V K VK V K K K K K .

     

            

   

    
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The value of 24  is evaluated as the positive root of 2 0Q  , , where 12 is the 

previously calculated stage-one solution. The values of 24 , 214  and 224 are then 

obtained from 24  and  12 .  

                       

 

 

12
12

12 12

12
12

12 12

1
1 1

24 1212
2 12 22

12 24

1
1 1

24 1212
12 22

12 24 12

1ˆ ˆ ˆ
1 1

1 ˆ ˆ .
1

V K K

K K




 




 

 

 

 
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



 
  

  

 
  

  

                                     (7.32) 

For consistency with the Stage 1 markup factor, the Stage 2 markup effective factor, 

MEF, is simply 2 12 22
ˆ ˆ ˆ/ ( )V K K

. 

The 2Q  function can be expressed as:  

                 
2 2

21
2 24 24 2 24 1 22

1 0.K KQ r r                                    (7.33) 

The parameter 24 , which is required to be greater than one, is evaluated as the 

positive root of the quadratic function 2Q  (7.33).  

Three-Stage Model 

The extension of the sequential investment model to the 3J   stage is achieved by 

replication. The value of the option to invest at the 3J   stage 3F  depends on the 

project value V , and the investment costs at the 1J  , 2J   and 3J   stages, 1K , 

2K  and 3K , respectively, so  3 3 1 2 3F F V ,K ,K ,K . Using Ito’s lemma, it can be 

shown that the risk neutral valuation relationship for 3F  is: 

                             3 13 23 33

3 3 1 2 3F A V K K K
   

 ,                                                        (7.34) 

with a simplified characteristic root equation (7.36). 
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 

   
   
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2 1

1 1 2 1 2 1 2
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1

1 1 13 2 1
3 13 23 3311
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 

      



  

 

 



   
   

      

               (7.35) 

The Stage 3 markup effective factor, MEF, is simply 3 13 23 33
ˆ ˆ ˆ ˆ/ ( )V K K K 

. 

where: 
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   

       
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2 22 2 2 2 2 2 2 21 1 1 1 1
3 2 1 2 1 22 2 2 2 2
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         

                

              

     

    
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          
3 3

21
3 3 3 3 3 2 32

1 0K KQ r r .                                                (7.36) 

Numerical Illustrations 

Figure 7.5 is a spreadsheet evaluation on an illustration involving a 3-stage 

sequential investment project. The set of probabilities of catastrophic failure at the 

stages adheres to the condition 1 2 3    . Initially, the variances for the 

investment costs at the three stages have been set to be equal, the covariance terms 

between the four factors to equal zero, and the K thresholds are all assumed to be the 

same as the current value, so the threshold justifying investment at each stage is the 

ratio of  3 2 1N .. , .V̂   to the nominal investment costs remaining. 

Figure 7.5 
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A B C D E F G H I J

SEQUENTIAL MATRIX 3 STAGES STAGE VOLATILITY  MEF V^ V^-SKN ROV

Project value  V 100 1 0.2236 1.5177 2.9315 97.7142 64.3812 64.3812

theta_V 0.02 2 0.3238 1.4045 2.1572 143.8096 77.1436 37.9850

sigma_V 20% 3 0.4457 1.2255 2.0810 208.1001 108.1011 21.7932

Stage 1 

theta_K1 0

sigma_K1 10% Input the correlations:

Failure probability: lambda 0% V K1 K2 K3  Volatility

Stage 2 V 100% 0% 0% 0%  20%

theta_K2 0 K1 0% 100% 0% 0%  10%

sigma_K2 10% K2 0% 0% 100% 0%  10%

Failure probability: lambda 5% K3 0% 0% 0% 100%  10%

Stage 3 Assumes all V, K correlations are the same as in D10, Ks are not correlated.

theta_K3 0

sigma_K3 10%

Risk-free rate 5%

Failure probability: lambda 10%

Threshold Levels

K1^ 33.333

K2^ 33.333

K3^ 33.333

Calculations

Volatility 20% 10% 10% 10%  

Variance-Covariance Matrix    

V 0.0400 0.0000 0.0000 0.0000     

K1 0.0000 0.0100 0.0000 0.0000  

K2 0.0000 0.0000 0.0100 0.0000  

K3 0.0000 0.0000 0.0000 0.0100  

Analysis

Stage 1 

w 1 column vector with 2 elements

-1

wT (w transpose) 1 -1 TRANSPOSE(B31:B32)

Var-Covar*w 0.0400 MMULT(B25:C26,B31:B32)

-0.0100

sigma^2_1=wT*Var-Covar*w 0.0500 MMULT(B33:C33,B34:B35)

vol_1 0.2236 SQRT(B36)

theta_V - theta_K1 0.02 B3-B6

r + Lamda_1 - theta_K1 5% B16+B8-B6

T1 0.1000 0.5-B38/B36

T2 2.0100 B40^2+2*B39/B36

phi_1 1.5177 B40+SQRT(B41)

phi_1/(phi_1 - 1) 2.9315 B42/(B42-1)

beta_1 1.5177 B42

eta_11 -0.5177 1-B44

V1^ 97.7142 B43*B19

A1 0.3775 ((B42-1)^(B42-1))/(B42^B42)

Mark-up Factor  MEF 2.9315 B42/(B42-1)

ROV 1 64.3812 IF(B2<B46,B47*(B2^B44)*(B19^B45),MAX(B46-B19,0))

Stage 2

w 1.5177 column vector with 3 elements

-0.5177

-1.0000

wT 1.5177 -0.5177 -1.0000

Var-Covar*w 0.0607

-0.0052

-0.0100

sigma^2_2=wT*Var-Covar*w 0.1048 MMULT(B54:D54,B55:B57)

vol_2 0.3238 SQRT(B58)

r + lambda_1 - theta_K2 5% B16+B8-B10

r + lambda_2 - theta_K2 10% B16+B12-B10

T1 0.0230 0.5-B60/B58

T2 1.9085 B62^2+2*B61/B58

phi_2 1.4045 B62+SQRT(B63)

B2 0.4303 ((B64-1)^(B64-1))/(B64^B64)

beta_2 2.1317 B64*B44

eta_21 -0.7272 B64*B45

eta_22 -0.4045 1-B64

V2^ 143.8096 ((B64*(B19^(B42-1))*B20)/(B47*(B64-1)))^(1/B42)

A2 0.1096 B65*B47^B64

ROV 2 37.9850 IF($B$2<B69,B70*($B$2^B66)*($B$19^B67)*($B$20^B68),MAX(B69-B19-B20,0))

Mark-up Factor_2 4.3143 (B64/(B47*(B64-1)))^(1/B44)

V2^/(K1^+K2^)  MEF 2.1572 B69/(B19+B20)

Check: V2^/K2^ 4.3143 B69/B20

Stage 3

w 2.1317 column vector with 4 elements

-0.7272

-0.4045

-1.0000

wT 2.1317 -0.7272 -0.4045 -1.0000

Var-Covar*w 0.0853

-0.0073

-0.0040

-0.0100

sigma^2_3=wT*Var-Covar*w 0.1987 MMULT(B80:E80,B81:B84)

vol_3 0.4457 SQRT(B85)

r + lambda_2 - theta_K3 10% B16+B12-B14

r + lambda_3 - theta_K3 15% B16+B17-B14

T1 -0.0033 0.5-B87/B85

T2 1.5100 B89^2+2*B88/B85

phi_3 1.2255 B89+SQRT(B90)

B3 0.5571 ((B91-1)^(B91-1))/(B91^B91)

beta_3 2.6123 B91*B66

eta_31 -0.8911 B91*B67

eta_32 -0.4957 B91*B68

eta_33 -0.2255 1-B91

V3^ 208.1001 ((B91*(B19^(-B67))*(B20^(-B68))*B21)/(B70*(B91-1)))^(1/B66)

A3 0.0371 B92*B70^B91

ROV 3 21.7932 IF($B$2<B97,B98*($B$2^B93)*($B$19^B94)*($B$20^B95)*($B$21^B96),MAX(B97-$B$19-$B$20-$B$21,0))

Mark-up Factor_3 6.2431 (B91/(B70*(B91-1)))^(1/B66)

V2^/(K1^+K2^+K3^)  MEF 2.0810 B97/(B19+B20+B21)

Check: V2^/K2^ 6.2431 B97/B21  
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Figure 7.5 shows the results, using the backwardation principle so the 1J   stage is 

enumerated first, then the 2J   stage, and so on. The volatilities at each of the 3 

stages, 1 , 2 , and 3  are evaluated, as are  the parameters J  for 1J   and the 

mark-up factors for each of the 3 stages. Figure 7.5 illustrates that the volatilities at 

each stage increase in magnitude as the stage in question becomes more distant from 

completion. As expected, the parameter values J  are all greater than one.  Note that 

with these parameter values, V̂  increases with the distance of the stage from 

completion, and with the stage volatility, as does the excess of the V̂  over the 

assumed investment cost over each stage.  The real option value (ROV), which is the 

option to continue the next stages if ˆV V , and otherwise V  less the remaining 

investment costs (or zero), decreases with the distance from the final state.  

According to our results, the MEFs decrease in magnitude as the stage becomes 

more distant from completion, given these parameter values.  

 

There are many other alternative combinations of changes in value volatility, 

investment cost volatility at each stage, and probability of failure at each stage that 

could be simulated, to illustrate the power and surprises of viewing sequential 

investment opportunities (and eventually investment requirements over stages) using 

this model. 

 

SUMMARY 

 

Sequential investment options are appropriate when an investment program 

involves several stages, such as required initial expenditures (equivalent to a real 

option premium), a second phase of required investment expenditures (D), and a 

final development phase, when then the project values (V) are realized. The 

essential aspect of this characterized program is that managers have a choice about 

whether to pay the interim expenditure, and then the development cost (K).  
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This chapter presents several real option valuation methods, starting with a simple 

European compound option, extended to a European compound exchange option. 

Then an approximated American finite sequential exchange option is considered.  

Finally, an American perpetual, and an American perpetual exchange option are 

presented, allowing for several stages of investment expenditures (and critical 

values which justify making those expenditures).  

  

EXERCISES 

 

EXERCISE 7.1  A bungalow in Putney has a restrictive covenant requiring the 

permission of the adjacent house owner in order to convert the bungalow into a 

modern house.  That house owner has required extensive design and planning 

expenditures by the end of the next year prior to the construction of the new house.  

These expenditures and demolition costs are expected to be £150,000.    

Provisionally, a house of 3,000 square feet is envisioned (depends on design), which 

currently would be worth £300 per square foot, and costs £273 per square foot to 

build.    The volatility of Putney houses is 20% and interest rates are 4%.  The 

redevelopment must occur at the end of five years.    What is the value of this 

bungalow site?  At what house value should the construction start?   

 

EXERCISE 7.2   A bungalow in Putney has a restrictive covenant requiring the 

permission of the adjacent house owner in order to convert the bungalow into a 

modern house.  That house owner has required extensive design and planning 

expenditures by the end of the next year prior to the construction of the new house.  

These expenditures and demolition costs are expected to be £150,000, and along 

with construction costs are 50% correlated with housing prices.  Provisionally, a 

house of 3,000 square feet is envisioned (depends on design), which currently would 

be worth £300 per square foot, and costs £273 per square foot to build. The volatility 

of Putney houses is 20%, the same as the construction costs, the “yield” on renting 

such a house is 4%, construction cost escalate by 4%, and interest rates are 4%.  The 

provision planning permission to redevelop at any time after the planning 
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expenditure will expire at the end of five years.    What is the value of this bungalow 

site?  At what house value should the construction start?   

   

EXERCISE 7.3   Willard Wang wants to enjoy the fruits of his research involving 

two expenditures (both equal to 50) K1 at the end of the first year and K2 at end of 

the second year.  The current research price is 15, continuous cost is 10, the interest 

rate is 4% and the research yield is 4%.  The research volatility is 20%.  What’s 

today’s value of WW’s research, and at what research price should he make the first 

and second investment expenditures? 

  

PROBLEMS 

 

PROBLEM 7.4  Susie Wong wants to enjoy the fruits of her research involving two 

expenditures (both equal to 50) K1 at the end of the first year and K2 anytime until the 

end of the second year.  The current research price is 15, continuous cost is 10, the 

interest rate is 4% and the research yield is 4%.  The research volatility is 20%.  

What’s today’s value of Susie’s research, and at what research price should she make 

the first and second investment expenditures?      

 

PROBLEM 7.5      Pixit & Dindyck are planning a superior real options product 

PROD that will indicate optimal timing for perpetual multi-stage projects.  They 

estimate that the current value of PROD is 81, costs 90 to make in three stages of 

equal investment amounts, has a volatility of 20%, interest rates are only 5%, while 

the yield on the PROD is expected to be 2%.  The failure rate of the initial stage is 

10%, the second stage 5%, and there is no failure expected for the final stage. Advise 

P&D on this adventure.    

 

PROBLEM 7.6    Pixit & Dindyck are planning a superior real options product PROD 

that will indicate optimal timing for perpetual multi-stage projects.  This time they 

estimate that the current value of PROD is 87, costs 90 to make in three stages of 

equal investment amounts, has a volatility of 20%, cost volatility is 34%, with a -9% 
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correlation of PROD value and cost.  The yield on the PROD is expected to be 2%, 

with no yield for the investment cost.  The failure rate of the initial stage is 10%, the 

second stage 5%, and there is no failure expected for the final stage.  Advise P&D on 

this venture. 
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