

lecture 5: natural monopoly – regulation under asymmetric information

the story so far

Natural monopoly:

- Definitions
- (Ideal) Pricing solutions
 - Linear:
 - o MC pricing
 - AC pricing
 - Non-linear: two-part or multiple-part tariffs
 - Ramsey prices (for multiproduct NM)
- Regulation in practice
 - Rate of return regulation (traditional solution)
 - Incentive regulation:
 - Earnings sharing
 - \circ Price caps
 - Yardstick regulation
 - Loeb Magat mechanism
 - Franchise bidding
 - Rate structure

outline

Natural monopoly

• Regulation under asymmetric information

References

- LT, ch. 1
- Joskow, P. (2007) "Incentive Regulation in Theory and Practice: Electricity Distribution and Transmission Networks," NBER Chapters, in: Economic Regulation and Its Reform: What Have We Learned? National Bureau of Economic Research, Inc.

Asymmetric information

- Regulators cannot rely on contracts that are 0 contingent on information held only by the firm (or more generally on information not verifiable by a court), e.g., information on costs, profits,...
- There are two types of informational constraints: 0
 - On actions/endogenous variables "effort" not observed by the agency; e.g., number of hours and intensity of work,...- moral hazard
 - On exogenous variables "type"; e.g. technological possibilities, difficulty in implementing some tasks, demand,... - adverse selection

Asymmetric information

- Moral hazard and adverse selection (and the loss of control of the regulator) create a demand for information gathering; e.g., audits in public firms and controls in private firms
- But most dimensions of asymmetric information do not show up in accounting statements!

Regulation as an agency relationship

- Regulation can be seen as a Principal-Agent relationship:
 - The firm (Agent) has more information than the regulator (Principal)

- A firm's cost opportunities may be high or low
- The regulator does not know the firm's true cost opportunities, but has some information about its probability distribution
- The firm's actual costs depend on (i) its cost opportunities and (ii) decisions made by managers to exploit these opportunities
- Managers may exert more (or less) effort to get more (or less) out of cost opportunities (the > the effort, the lower the actual costs)
- High effort is costly for managers
- The regulator cannot observe effort directly

- So, the firm wants to convince the regulator that it is a high cost firm, so that it is allowed to set high prices (to ensure financial viability)
- This is an **adverse selection problem**
- If the regulator can obtain reasonably good information on actual costs, ROR regulation (prices set to equal ex post costs) would solve the adverse selection problem
- But, if this loss of opportunity to earn rents reduces managers' incentives to make effort, costs may rise above efficient levels
- So, bad regulatory incentives may reduce effort; this is a moral hazard problem

- The regulator will then use a mechanism that takes both problems into account, subject to the firms' financial viability (IR constraint)
- Two polar cases:
 - Setting a fixed price ex-ante and forever (or adjusting with exogenous factors) gives high incentives for effort (and minimizes moral hazard); but, given IR, the regulator has to set high prices, so that rent extraction is poor (full cost of adverse selection)
 - Implement ROR (with no ex post negotiation) that reimburses cost ex post; if audits of expenses are accurate, the firm reveals if it's high or low cost (adverse selection disappears), but there may managerial slack (full cost of moral hazard)
- Trade-off: managerial efficiency vs. rent extraction

- The solution is somewhere in between as in a sliding scale
- But, LT show that the regulator can perform better by offering a menu of contracts
- Example: menu with two options: a price cap and a ROR contract; the price cap can be demanding because the ROR option exists (IR is not violated); but if the firm has low cost, choosing the price cap, more rent are conveyed to the consumer

Regulation as an agency relationship aims and instruments

The optimal regulation of a monopoly is influenced by many factors:

- 1. Whether the regulator is benevolent or self-interested
- ² The regulator's objective (when he is benevolent)

 $S + \alpha R$, $\alpha \in [0,1]$

- The cost of raising revenue from taxpayers (social cost of public funds) λ
- The range of policy instruments available (e.g., ability to use public funds/tax firms directly)
- 5. The regulator's bargaining power
- 6. The information available to the regulator and the firm
- The regulator's ability to commit to long-term policies

Regulation as an agency relationship aims and instruments

LT assume:

- Whether the regulator is benevolent or self-interested: benevolent
- The regulator's objective: S + R
- The cost of raising revenue from taxpayers (social cost of public funds) $\lambda > 0$
- The range of policy instruments available (e.g., ability to use public funds/tax firms directly): transfers are allowed
- The regulator's bargaining power: all
- The information available to the regulator and the firm: firm knows everything; regulator knows actual costs, but not cost opportunities and effort to reduce costs (*ex ante* knows probability distribution on cost opportunities)
- The regulator's ability to commit to long-term policies: no need

Regulation as an agency relationship taxonomy

Power	Are transfers allowed?	
	Yes (Procurement)	No (Regulation)
High (firm residual claimant)	Fixed-price contract	Price-caps
Intermediate (cost or profit sharing)	Incentive contract	Incentive regulation
Low	Cost-plus	Rate-of-return (ROR) regulation

Regulation as an agency relationship LT approach

- Regulators use accounting (cost or profit) and demand (prices, quantity, quality) data to monitor a firm's performance; we assume these data are observable
- Our focus is on cost-reimbursement rules that:
 - Reduce the firm's rent (as the government bears part of the costs) but
 - Reduce the firm's incentives to reduce costs

Regulation as an agency relationship LT approach

- We will start by looking at cases in which the regulator can make transfers to the firm (procurement contracts)
- In a typical procurement contract, we assume that the government reimburses costs C and gives transfer t = a bC, 0 < b < 1
- (So, the firm receives C + t = a + (1-b)C)
- "b" is the power of the incentive scheme: the bigger "b," the bigger the firm's incentives to decrease costs

Regulation as an agency relationship taxonomy

Power	Are transfers allowed?	
	Yes (Procurement)	No (Regulation)
High (firm residual claimant)	Fixed-price contract (b=1, a=assess. of efficient high costs)	Price-caps
Intermediate (cost or profit sharing)	Incentive contract (O <b<1, o<a<aehc)<="" td=""><td>Incentive regulation (Performance Based Regulation - PBR)</td></b<1,>	Incentive regulation (Performance Based Regulation - PBR)
Low	Cost-plus (a=b=0)	Rate-of-return (ROR) regulation

Regulation as an agency relationship roadmap

- Model 1: cost reimbursement problem when q = 1 (project with fixed dimension), two types of firms
- Model 2: cost reimbursement problem when q = 1, continuum of firms
- Model 3: cost reimbursement + pricing problem when q >1, two types of firms
- Model 4: transfers are not allowed

Regulation as an agency relationship roadmap

- Model 1: cost reimbursement problem when q = 1 (project with fixed dimension), two types of firms
- Model 2: cost reimbursement problem when q = 1, continuum of firms
- Model 3: cost reimbursement + pricing problem when q >1, two types of firms
- Model 4: transfers are not allowed

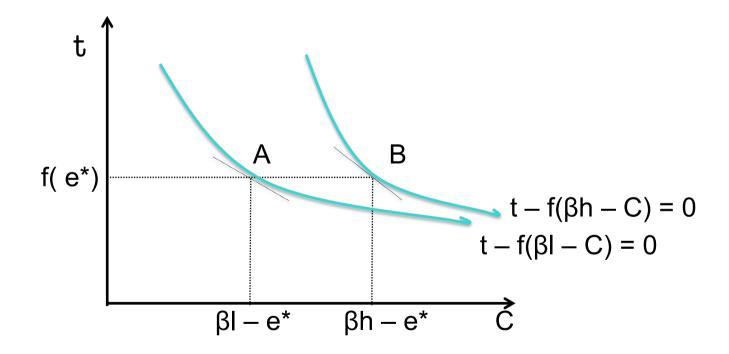
Model 1 assumptions

- $C = \beta e \text{ where } \beta \text{ is the efficiency or adverse selection (AS)}$ and e is the effort or moral hazard (MH) parameter
- $_{\circ}~~\beta$ is βl (effic.) with probability v and βh (ineff.) w. prob. 1-v
- C is observable and verifiable (it's an AS problem)
- Firm's rent U = t f(e), where t are the regulator's transfers and f describes the disutility of effort; f' > 0, f'' > 0, f(0)=0 (*)

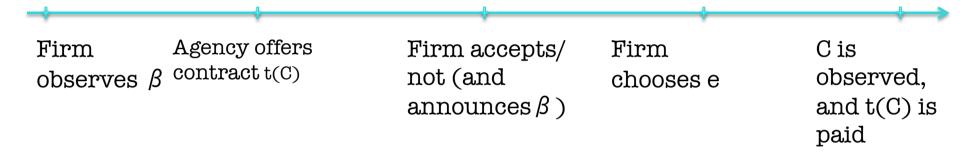
• $W = S - (1 + \lambda)(C + t) + U$, where S is cons. surplus and λ represents distortions (**)

Model 1

complete information benchmark


- $_{\circ}$ β is known, so that e is known
- o Agency's problem: $Max_{e,U}$ W s.t. U ≥ 0 solution: U = 0 and e* s.t. f'(e*) = 1 (MC of e = MB of e)

Using a fixed-price contract (b =1): t = a – (β –e), we obtain the first-best:


• The firm solves: $Max_{\{e\}} U = a - (\beta - e) - f(e)$ to obtain e* (the firm internalizes all cost reductions)

• And
$$a = f(e^*) + (\beta - e^*)$$

Model 1 complete information benchmark

Model 1 problem

- To find t(C), we use a direct mechanism $[t(\beta), C(\beta)]$ (**Revelation Principle**)
- The agency offers contract $[t(\beta), C(\beta)]$ when the firm announces β (ie, offers two contracts [tl,Cl] and [th,Ch])
- Rmk: the complete information contracts A and B cannot be offered as the efficient firm would pretend to be inefficient

D-tour

the revelation principle

- $_{\circ}~$ A regulatory mechanism induces a game in which the firm plays a strategy $\sigma(.)$
- Consider now the direct revelation mechanism that associates with the announcement of $\overline{\beta}$ the pair $\{C(\sigma^*(\overline{\beta})), t(\sigma^*(\overline{\beta}))\}$
- \circ It is in the best interest of the firm to announce $\overline{\beta}=\beta$

Model 1 problem

• Agency's problem:

$$\begin{split} &Max_{\{tl,th.,Cl,Ch\}} \; E(W) \; s.t. \\ &Ul = tl - f(\beta I - Cl) \geq 0 \; (IR \; \beta I) \\ &Uh = th - f(\beta h - Ch) \geq 0 \; (IR \; \beta h) \\ &tl - f(\beta I - Cl) \geq th - f(\beta I - Ch) \; (IC \; \beta I) \\ &th - f(\beta h - Ch) \geq tl - f(\beta h - Cl) \; (IC \; \beta h) \end{split}$$

- Remarks:
 - (IR βI) is satisfied when (IR βh) and (IC βI) are
 - $Ch \ge Cl$ (monotonicity)
 - IR $\beta h=0$ (othw th could be reduced and the condition would still be satisfied)
 - IC β I is also active (same argument)
 - IC βh to be ignored and checked later

Model 1 problem

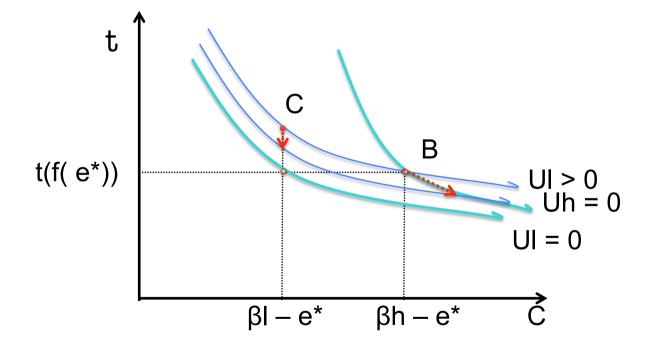
• Agency's problem:

$$\begin{split} &Max_{\{tl,th.,Cl,Ch\}} \ E(W) \ s.t. \\ &Ul = tl - f(\beta I - Cl) \ge 0 \ (IR \ \beta I) \\ &Uh = th - f(\beta h - Ch) = 0 \ (IR \ \beta h) \\ &tl - f(\beta I - Cl) = th - f(\beta I - Ch) \ (IC \ \beta I) \\ &th - f(\beta h - Ch) \ge tl - f(\beta h - Cl) \ (IC \ \beta h) \end{split}$$

- Remarks:
 - (IR βI) is satisfied when (IR βh) and (IC βI) are
 - $Ch \ge Cl$ (monotonicity)
 - IR $\beta h=0$ (othw th could be reduced and the condition would still be satisfied)
 - IC β I is also active (same argument)
 - IC βh to be ignored and checked later

```
(IR \betah): th = f(\betah - Ch) = f(eh)
(IC \betaI): tl = th + f(el) - f[eh - (\betaI - \betah)]
Therefore:
```


- The efficient firm's rent is $U(\beta I) = f(eh) - f(eh - \Delta\beta) = \Phi(eh)$, with $\Phi > 0$ and $\Phi' > 0$
- $_{\circ}$ And we have


th = f(eh) and tl = f(el) +
$$\Phi(eh)$$

(So, increasing the inefficient firm's effort implies increasing the efficient firm's rent!)

To determine: eh, el The agency's problem becomes: $Max_{\{eh,el\}} E(W) = v[S - (1 + \lambda)(f(el) + \beta I - el) - \lambda UI] + (1 - v)[S - (1 + \lambda)(f(eh) + \beta h - eh) - \lambda Uh]$ F.O.C. imply $f'(el) = 1 \implies el = e^{*}$ $f'(eh) = 1 - \frac{\lambda}{1 + \lambda} \frac{v}{1 - v} \Phi'(e) < 1 \implies eh < e^{*}$

Concluding: we have a menu of contracts with $eh < e^*; el = e^*; Uh = 0; Ul > 0$ The distortion in e grows with λ and v.

- $_{\circ}$ $\,$ If only the efficient firm produces, the contract is such that: f'(el) = 1 and Ul = 0 $\,$
- So, it is better to have just the efficient firm producing when

 $v[S - (1 + \lambda)(f(e^*) + \beta | - e^*)] >$

$$\begin{split} v[S - (1 + \lambda)(f(el) + \beta I - el) - \lambda \Phi(eh)] + \\ (1 - v)[S - (1 + \lambda)(f(eh) + \beta h - eh)] \end{split}$$

Model 1

to sum up

- With complete information,
 - the agency can use a **fixed-price contract** with b = 1
 - e = e *
 - U = O (the agency extracts all the rent)
- With asymmetric information,
 - the agency offers a menu of (two) contracts
 - The efficient firm's effort is e*, but the inefficient firm's effort is distorted
 - The efficient firm obtains positive rents, whereas the inefficient firm gets 0 utility
 - There's a **trade-off** between inducing effort and giving rent

Conclusion

- In the last 15 years incentive regulation theory has developed considerably, but practical implementation has lagged behind
- Price caps are the most common form of incentive regulation; but
 - Only seldom best instrument in theory
 - Include ratchets that reduce the power of incentives
 - Not simple: defining relevant capital and operating costs is difficult
 - Information burden is similar to that of ROR
 - Accompanied by other incentive schemes for quality
- Formal offers of menus are rare, though the give and take of regulatory negotiations may be a substitute