

Disciplina de Gestão de Dados e de Bases de Dados

Ano Letivo 2013/2014

Normalização Relacional

Tópicos

- Normalizar porquê?
- Etapas da modelização da informação
- Objetivos da normalização
- Etapas da normalização
- Como decompor uma relação
- Exemplo de normalização

Normalizar Porquê?

Após a construção do modelo comcetual dos dados (Diagrama de Classes) é feita a transformação para o modelo lógico (Esquema Relacional).

O Esquema Relacional obtido representa a estrutura da informação de um modo natural e completo

Mas terá o mínimo de redundância e será o mais estável possível ?

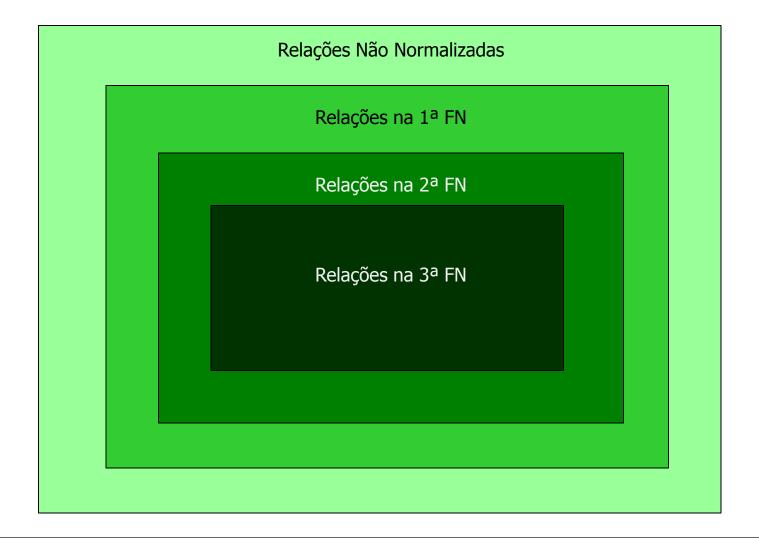
A Normalização tem como objetivo **avaliar a qualidade do Esquema Relacional** e decompô-lo, em caso de necessidade, noutro Esquema Relacional equivalente, **menos redundante e mais estável**

Etapas da Modelização da Informação

Análise das necessidades informacionais e elaboração do Modelo Concetual Etapa 1 Análise e **Modelo Concetual** Conceção Transformação do Modelo Concetual num Etapa 2 Modelo Lógico (Esquema Relacional) Desenho Relações não normalizadas Normalização do Esquema Relacional Etapa 3 Relações normalizadas

Objetivos da Normalização

- Minimizar a redundância de dados
- Conseguir que cada relação possa ser consistente e corretamente atualizada


N_Func	Nome	Categoria	Vencimento	Disciplina
10234	Tiago Silva	Prof. Associado	4.000 €	GF1
10345	Tomás Ribeiro	Prof. Auxiliar	3.000 €	TI
11908	Maria Margues	Assistente	2.000 €	SIG
	•	Prof. Auxiliar	3.000 €	тт
	Raquel Silva	Assistente	2.000 €	SIG

Assumindo que a cada categoria corresponde um determinado salário

- Problemas de Atualização Para alterar o salário de uma categoria têm de se alterar várias linhas (todos os docentes com essa categoria)
- Problemas de Anulação Se se apagar o registo do Tiago Silva deixa de se ter informação relativa ao salário de um Prof. Associado

Formas Normais

Exemplo

Numa Escola, pretende-se manter informação sobre:

- os Estudantes da escola (nº interno, nome e curso a que pertencem)
- as Disciplinas que são ministradas na escola (nº disciplina e nome)
- os Professores contratados pela escola (código, nome e categoria)
- Inscrições dos Alunos em Disciplinas
- Notas obtidas pelos alunos nas disciplinas em que estão inscritos
- Considera-se que a uma Disciplina está afeto um único Professor (responsável), mas que um Professor pode ser responsável por várias Disciplinas

Definição de 1^a FORMA NORMAL

Uma relação está na <u>1ª Forma Normal</u> (1FN) se e só se cada linha contém exatamente um valor para cada atributo

Dado que as Tabelas são estruturas bidimensionais, então no cruzamento de uma linha com uma coluna (atributo) só é possível armazenar valores atómicos

Relação Não Normalizada

Relação NOTAS

Nº Estudante	Nome Estudante	Curso	Nº Disciplina	Nome Disciplina	Cod Professor	Nome Professor	Categoria Professor	Nota
21934	Antunes	Informática	04	Álgebra	21	Gil Alves	PA	15
			14	Análise Sist.	87	Ana Lopes	PC	-
			23	Progr.Linear	43	Paulo Pinto	AS	16
42346	Bernardo	Matemática	08 04	Topologia Algebra	32 21	Nuno Neves Gil Alves	AE PA	10
			12	Geometria	21	Gil Alves	PA	18
			16	Lógica	32	Nuno Neves	AE	13
54323	Correia	Estatística	04	Álgebra	21	Gil Alves	PA	11
			08	Topologia	32	Nuno Neves	AE	10
 	•••				•••			

Dados em forma tabular, conforme são visualizados pelo utilizador

Esta relação foi desenhada para representar <u>Inscrições</u> e <u>Aprovações</u> de Alunos em Disciplinas. <u>Cada estudante está inscrito e/ou já foi aprovado em várias disciplinas</u>, com a informação correspondente. Assim, temos um grupo de atributos repetitivo :

{NoDisciplina, NomeDisciplina, Cod.Professor, Nome Professor, CategoriaProfessor, Nota}

1^a Forma Normal

N°Estudante Nome Estudante Curso

N° Nome Cod Nome Professor Nota

Relação ESTUDANTE

Chave

N°Estud.	Nome Estudante	Curso
21934	Antunes	Informática
42346	Bernardo	Matemática
54323	Correia	Estatística

Relação NOTAS

N°Estudante	Nº Disciplina	Nome Disciplina	Cod Professor	Nome Professor	Nota
21934	04	Álgebra	21	Gil Alves	15
21934	14	Análise Sist.	87	Ana Lopes	12
21934	23	Progr.Linear	43	Paulo Pinto	16
42346	08	Topologia	32	Nuno Neves	10
42346	04	Álgebra	21	Gil Alves	12
42346	12	Geometria	21	Gil Alves	18
42346	16	Lógica	32	Nuno Neves	13
54323	04	Álgebra	21	Gil Alves	11
54323	08	Topologia	32	Nuno Neves	10
		•••			

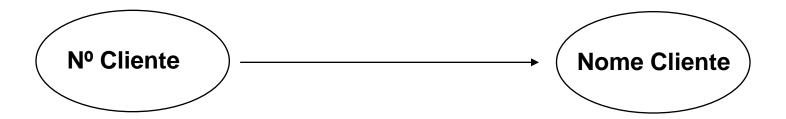
Assumimos que uma Disciplina tem um só Professor (Responsável) (Nº_Disciplina → Cod_Professor), mas um Professor pode ser responsável por várias Disciplinas

1a FORMA NORMAL

Problemas na relação NOTAS

Remoção

Se quisermos apagar a informação sobre todos os alunos aprovados ou inscritos numa determinada disciplina, então perdemos toda a informação dessa disciplina e do respetivo professor responsável


Atualização

Se pretendermos modificar o nome de uma disciplina (por exemplo Álgebra passa a Álgebra e Aplicações) é necessário percorrer toda a relação e fazer essa modificação para todos os alunos inscritos ou aprovados nessa disciplina

No caso de falhar a aplicação de modificação em alguma ocorrência, então teríamos dados inconsistentes

Dependências Funcionais

Por vezes, dois atributos estão intrinsecamente ligados entre si. Ex:

Num determinado instante, em qualquer ponto da base de dados onde figurem estes dois atributos, a um mesmo no de cliente corresponderá necessáriamente o mesmo nome (*).

Isto significa que é válida a Dependência Funcional (DF)
Nº Cliente→ Nome Cliente

(*) Note que o inverso poderá não ser verdade!

Dependências Funcionais Parciais e Transitivas

As dependências funcionais satisfazem um conjunto de regras de inferência, como por exemplo:

1. Dependências Funcionais Parciais

Se nFatura → nFornecedor existe

também nFatura, data → nFornecedor existe

A DF nFatura, data → nFornecedor diz-se **parcial** porque nFornecedor pode ser identificado por apenas nFatura

2. Dependências Funcionais Transitivas

Se nFatura → nFornecedor e nFornecedor → nomeFornecedor também nFatura → nomeFornecedor que se designa por **DF Transitiva**

Chaves Candidatas

São os atributos de uma relação que identificam, de forma inequívoca, uma ocorrência específica dessa relação, distinguindo-a das restantes. A chave tem de conter todos os atributos necessários à identificação de todos os restantes atributos da relação, ou seja Chave Atributo, para todos os atributos da relação

Chave Primária

É a chave candidata escolhida

Descritores

São os atributos que apenas descrevem ou caraterizam as ocorrências de uma relação

Definição de 2^a FORMA NORMAL

Uma relação está na 2ª Forma Normal (2FN) se está na primeira e se todos os atributos dependerem da totalidade da chave (e não apenas de parte dela – Dependências Funcionais Parciais).

Dependências Funcionais Parciais

rependencias i ancionais i arciais

Chave

Relação NOTAS

Nº Estudante	Nº Disciplina	Nome Disciplina	Cod Professor	Nome Professor	Categoria Professor	Nota	
21934	04	Álgebra	21	Gil Alves	PA	15	
21934	14	Análise Sist.	87	Ana Lopes	PC	12	
21934	23	Progr.Linear	43	Paulo Pinto	AS	16	
42346	08	Topologia	32	Nuno Neves	AE	10	
42346	04	Álgebra	21	Gil Alves	PA	12	
42346	12	Geometria	21	Gil Alves	PA	18	
42346	16	Lógica	32	Nuno Neves	AE	13	
54323	04	Álgebra	21	Gil Alves	PA	11	
54323	08	Topologia	32	Nuno Neves	AE	10	
•••	•••	•••	, ···	•••	··	•••	

Os atributos **Nome Disciplina, Cod-Professor, Nome-Professor e Categoria- Professor** dependem apenas do atributo **Nº Disciplina** (que está estritamente contido na chave da relação)

2^a Forma Normal

N°	Nº Nº	Nome	Cod	Nome	Categoria	Nota
Estudante	Disciplina	Disciplina	Professor	Professor	Professor	Nota

Chave e atributos que dependem da totalidade desta

Relação NOTA

Nº Estudante	<u>Nº</u> <u>Disciplina</u>	Nota
21934	04	15
21934	14	12
21934	23	16
42346	08	10
42346	04	12
42346	12	18
42346	16	13
54323	04	11
54323	08	10
		•••

Atributos que dependem de parte da chave mais a referida parte da chave

Relação DISCIPLINA

Nº Disciplina	Nome Disciplina	Cod Professor	Nome Professor	Categoria Professor
04	Álgebra	21	Gil Alves	PA
14	Análise Sist.	87	Ana Lopes	PC
23	Progr.Linear	43	Paulo Pinto	AS
08	Topologia	32	Nuno Neves	AE
12	Geometria	21	Gil Alves	PA
16	Lógica	32	Nuno Neves	AE
	•••	•••		•••

Definição de 3^a FORMA NORMAL

Uma relação está na 3ª Forma Normal (3FN) se está na 2ª Forma Normal e se não existirem atributos a dependerem funcionalmente de outros atributos (que não pertençam à chave)- Dependências Funcionais Transitivas.

Assim sendo, cada atributo deve depender apenas da Chave Primária da relação

Se a relação contiver **atributos calculados** (p.ex. Total_parcial numa linha de Fatura), devem retirar-se estes atributos:

total_parcial = preço x quantidade

portanto

(preço, quantidade) → total_parcial,

o que viola a 3FN

Dependências Funcionais Transitivas

Chave Relação DISCIPLINAS

Nº Disciplina	Nome Disciplina	Cod Professor	Nome Professor	Categoria Professor
04	Álgebra	21	Gil Alves	PA
14	Análise Sist.	87	Ana Lopes	PC
23	Progr.Linear	43	Paulo Pinto	AS
08	Topologia	32	Nuno Neves	AE
12	Geometria	21	Gil Alves	PA
16	Lógica	32	Nuno Neves	AE
•••		•••		•••
		.4		

Os atributos **Nome Professor** e **Categoria Professor** dependem do atributo **Cod.Professor** (que não é chave da relação) e portanto as DFs N°Disciplina → Nome_Professor e N°Disciplina → Categoria_Professor são Transitivas, porque, p.ex., N°Disciplina → CodProfessor e CodProfessor → Nome_Professor).

3^a Forma Normal

Nº	Nome	Cod	Nome	Categoria
<u>Disciplina</u>	Disciplina	Professor	Professor	Professor

Atributos que dependem do atributo não chave + esse atributo

Relação PROFESSOR

<u>Cod</u> <u>Professor</u>	Nome Professor	Categoria Professor
21	Gil Alves	PA
87	Ana Lopes	PC
43	Paulo Pinto	AS
32	Nuno Neves	AE
		•••

Atributos que apenas dependem da chave

Relação DISCIPLINA

Nº Disciplina	Nome Disciplina	Cod Professor
04	Álgebra	21
14	Análise Sist.	87
23	Progr.Linear	43
08	Topologia	32
12	Geometria	21
16	Lógica	32
•••	•••	

Outra Definição de 3ª FORMA NORMAL

Uma relação está na 3ª Forma Normal se cada atributo depende apenas da chave primária (1FN), de toda a chave (2FN) e de nada mais do que da chave (3FN)

Como Decompôr uma Relação

Teorema da Decomposição Binária

Dada uma relação R (A, B, C, D, E, F) e dada a dependência funcional A->B, a relação é sempre decomponível em R1 (A, B) e R2 (A, C, D, E, F)

Normalização — Exemplo (1/3)

Consideremos a Relação Notas, cujo esquema relacional é:

Notas (nEstudante, nomeEstudante, curso, nDisciplina, nomeDisciplina, codProf, nomeProf, catProf, nota)

Neste esquema é válida a DF1 nEstudante → nomeEstudante, curso, mas não é válida a DF2 nEstudante → nDisciplina, nomeDisciplina, codProf, nomeProf, catProf, nota

Aplicando o Teorema da decomposição binária à DF1, obtemos as seguintes duas relações:

Estudante (<u>nEstudante</u>, nomeEstudante, curso) 3FN

Notas1 (<u>nEstudante, nDisciplina</u>, nomeDisciplina, codProf, nomeProf, catProf, nota) 1FN

Normalização - Exemplo (2/3)

A relação não está na 3FN, pelo que tem de continuar a ser "decomposta"

Notas1 (<u>nEstudante, nDisciplina</u>, nomeDisciplina, codProf, nomeProf, catProf, nota) 1FN

Neste esquema é válida a DF3: nDisciplina \rightarrow nomeDisciplina, codProf, nomeProf, catProf

Então Notas1 é decomposta em:

DisciplinaProf (<u>nDisciplina</u>, nomeDisciplina, codProf, nomeProf, catProf) **2FN**

NotaDisciplina (<u>nEstudante, nDisciplina, nota</u>) 3FN

Vamos agora tratar da relação DisciplinaProf, em que é válida a dependência funcional:

DF4: codProf →nomeProf, catProf

Normalização — Exemplo (3/3)

DisciplinaProf (nDisciplina, nomeDisciplina, codProf, nomeProf, catProf)

DF4: codProf → nomeProf, catProf

Então DisciplinaProf é decomposta em:

Professor (codProf, nomeProf, catProf) 3FN

Disciplina (nDisciplina, nomeDisciplina, codProf)

Pretendemos com esta aula sobre Normalização que os alunos compreendessem:

- Normalizar porquê?
- Etapas da modelização da informação
- Objetivos da normalização
- Etapas da normalização