Martingales, stopping times and random measures

João Guerra

CEMAPRE and ISEG, UTL

October 19, 2011

João Guerra (CEMAPRE and ISEG, UTL) Martingales, stopping times and random measures October 19, 2011

Martingales, stopping times and random measures

Markov processes

- Let (Ω, \mathcal{F}, P) be a filtered probability space with filtration $(\mathcal{F}_t, t \ge 0)$.
- A stochastic process X = (X(t), t ≥ 0) is adapted to the (F_t, t ≥ 0) if each X (t) is F_t-measurable
- Any process X is adapted to its natural filtration $\mathcal{F}_{t}^{X} := \sigma \{X(s), s \leq t\}$.

Definition

An adapted process X is a Markov process if for all measurable bounded function f, we have (for $s \le t$)

$$E[f(X(t))|\mathcal{F}_{s}] = E[f(X(t))|X(s)]$$
 a.s.

- Markov process: "past and future are independent, given the present".
- Transition probabilities of a Markov process: $p_{s,t}(x, A) = P[X(t) \in A | X(s) = x]$

1/1

Markov processes

Theorem

If X is an adapted Lévy process where each X(t) has law q_t , then it is a Markov process with transition probabilities:

 $p_{s,t}(x,A) = q_{t-s}(A-x).$

Proof: By the stationarity of increments,

$$E[f(X(t)) | \mathcal{F}_{s}] = E[f(X(s) + X(t) - X(s)) | \mathcal{F}_{s}]$$
$$= \int_{\mathbb{R}^{d}} f(X(s) + y) q_{t-s}(dy).$$

Hence,

 $E[f(X(t)) | \mathcal{F}_{s}] = E[f(X(t)) | X_{s}]$

and the transition probabilities are obtained for $f = \chi_A$ and $p_{s,t}(x, A) = \int_{\mathbb{R}^d} \chi_A(x + y) q_{t-s}(dy) = q_{t-s}(A - x)$.

João Guerra (CEMAPRE and ISEG, UTL)

Martingales, stopping times and random measures

October 19, 2011 2 / 1

Martingales, stopping times and random measures

Martingales

Definition

The process X is a martingale if X is adapted to $(\mathcal{F}_t, t \ge 0)$, $E[|X(t)|] < \infty$ for all $t \ge 0$ and

$$E[X(t) | \mathcal{F}_s] = X_s$$
 a.s for all $s < t$.

Theorem

An adapted Lévy process with finite first moment and zero mean is a martingale (with respect to its natural filtration)

Proof: X adapted, $E[|X(t)|] < \infty$ for all $t \ge 0$ and

$$E[X(t) | \mathcal{F}_{s}] = E[X(s) + X(t) - X(s) | \mathcal{F}_{s}]$$

= X(s) + E[X(t) - X(s)] = X(s).

Martingales

Examples of Lévy processes that are also martingales:

- (1) $\sigma B(t)$, B(t) *d*-dim. BM and σ an $r \times d$ matrix.
 - 2 $\tilde{N}(t)$ compensated Poisson process
 - (3) exp { $i(u, X(t)) t\eta(u)$ } where $u \in \mathbb{R}^d$ is fixed and X is a Lévy process with Lévy symbol η .
 - $(\sigma B(t))^2 trace(A) t, \text{ with } A = \sigma^T \sigma$
 - $\begin{bmatrix} \widetilde{N}(t) \end{bmatrix}^2 \lambda t$
- Exercise: Show that $\exp \{i(u, X(t)) t\eta(u)\}$ is a martingale.

João Guerra (CEMAPRE and ISEG, UTL)

Martingales, stopping times and random measures

October 19, 2011 4 / 1

Martingales, stopping times and random measures

Càdlág paths

- *f* : ℝ⁺ → ℝ is a càdlàg function if it is "continue à droite et limité à gauche" right continuous with left limits.
- Notation: $f(t-) := \lim_{s \uparrow t} f(s)$ and $\Delta f(t) := f(t) f(t-)$.
- If *f* is càdlàg then $\# \{ 0 \le t \le T : \Delta f(t) \ne 0 \}$ is at most countable.
- If the filtration satisfies the "usual hypothesis" then every Lévy process has a càdlàg modification which is itself a Lévy process (proof: theorem 2.1.8, pag 87 - Applebaum).
- Usual hypothesis for $(\mathcal{F}_t, t \ge 0)$:
 - (completeness): \mathcal{F}_0 contains all sets of *P*-measure 0.
 - (ight continuity): $\mathcal{F}_t = \mathcal{F}_{t+}$ where $\mathcal{F}_{t+} = \bigcap_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon}$.

From now on, we will allways assume that:

- (Ω, F, P) will be a fixed filtered probability space with a filtration (F_t, t ≥ 0) which satisfies the "usual hypotheses".
- Every Lévy process X will be assumed to be *F_t*-adapted and with càdlàg sample paths.
- X(t) X(s) is independent of \mathcal{F}_s for all s < t.
- Note: given two processes (X(t), t ≥ 0) and (Y(t), t ≥ 0) we say that Y is a modification of X if, for each t ≥ 0, P[X(t) ≠ Y(t)] = 0. As a consequence X and Y have the same finite dimensional distributions.

João Guerra (CEMAPRE and ISEG, UTL)	Martingales, stopping times and random measures	October 19, 2011	6 / 1

Martingales, stopping times and random measures

The jumps of a Lévy process

• The jump process ΔX associated to X is defined by

 $\Delta X(t) = X(t) - X(t-).$

Theorem

If N is an increasing, integer-valued Lévy process such that $\Delta N(t)$ takes values in $\{0, 1\}$ then N is a Poisson process.

Proof: see Applebaum (2005). Lectures on Lévy Processes...Lecture 2, page 2.

Lemma

If X is a Lévy process, then for fixed t > 0, $\Delta X(t) = 0$ (a.s.).

The jumps of a Lévy process

Proof:

- Let $(t(n); n \in N)$ be a sequence in \mathbb{R}^+ with $t(n) \uparrow t$ as $n \to \infty$.
- X has càdlàg paths $\Longrightarrow \lim_{n \to \infty} X(t(n)) = X(t-).$
- By the stochastic continuity condition (in the Lévy process definition)
 ⇒ X(t(n)) converges in probability to X(t), and so has a subsequence which converges a.s to X(t). Then, by the uniqueness of the limits X(t) = X(t-) (a.s.) and ΔX(t) = 0 (a.s.).

João Guerra (CEMAPRE and ISEG, UTL)

Martingales, stopping times and random measures

October 19, 2011 8 / 1

Martingales, stopping times and random measures

The jumps of a Lévy process

 Analytic difficulty in manipulating Lèvy processes has to do with the fact that is possible to have:

$$\sum_{0 \le s \le t} |\Delta X(s)| = \infty$$
 a.s.

• To overcome this difficulties, we will use the fact that always:

$$\sum_{0\leq s\leq t} \left|\Delta X(s)
ight|^2 <\infty$$
 a.s.

In order to count jumps of specified size, define (for a set A ∈ B (ℝ^d − {0})):

$$N(t, A) = \# \{ 0 \le s \le t : \Delta X(s) \in A \}$$
$$= \sum_{0 \le s \le t} \chi_A(\Delta X(s))$$

For each ω ∈ Ω, t ≥ 0, the map A → N(t, A) is a counting measure on B (ℝ^d - {0}). (Note: B (ℝ^d - {0}) is the σ-algebra of Borelian measurable sets in ℝ^d - {0})

Martingales, stopping times and random measures The jumps of a Lévy process

Then

$$E[N(t,A)] = \int N(t,A)(\omega) dP(\omega)$$

is a measure on $\mathcal{B}\left(\mathbb{R}^{d} - \{0\}\right)$.

- Notation: μ(·) = E[N(1,·)] is a measure on B(ℝ^d {0}) called the intensity measure (considers the mean number of jumps until time 1).
- We say that A ∈ B (ℝ^d {0}) is bounded below if 0 ∉ A (note: A is the closure of A = all points in A plus the limit points of A).

Lemma

If A is bounded below then $N(t, A) < \infty$ a.s. for all $t \ge 0$.

• If A fails to be bounded below, then the Lemma may no longer hold, because of the accumulation of large numbers of small jumps.

João Guerra (CEMAPRE and ISEG, UTL)	Martingales, stopping times and random measures	October 19, 2011	11 10 / 1
Martingales, stopping times	s and random measures		

The jumps of a Lévy process

Sketch of the Proof: Define the stopping times $(T_n^A, n \in \mathbb{N})$ by $T_1^A = \inf \{t > 0 : \Delta X(t) \in A\}$ and $T_n^A = \inf \{t > T_{n-1}^A : \Delta X(t) \in A\}$ X has càdlàg paths $\implies T_1^A > 0$ a.s. and $\lim_{n \to \infty} T_n^A = \infty$ a.s. Otherwise, the set of all jumps in A would have an accumulation point, and this is not possible if X is càdlàg (see the proof of Theorem 2.8.1 in appendix 2.8 of Applebaum). Moreover,

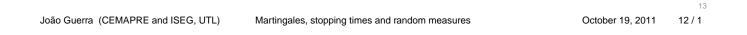
$$N(t, A) = \sum_{n \in \mathbb{N}} \chi_{\{T_n^A \le t\}} < \infty$$
 a.s.

 If A fails to be bounded below, then the Lemma may no longer hold, because of the accumulation of large numbers of small jumps.

Theorem

1. If A is bounded below, then the process $(N(t, A), t \ge 0)$ is a Poisson process with intensity $\mu(A)$. 2. If $A_1, \ldots A_m \in \mathcal{B}(\mathbb{R}^d - \{0\})$ are disjoint then the r.v. $N(t, A_1), \ldots, N(t, A_m)$ are independent.

Proof: pages 101-103 of Applebaum.



Martingales, stopping times and random measures

The jumps of a Lévy process

- Consequence: $\mu(A) < \infty$ whenever A is bounded below.
- Main properties of *N*:
 - **1** For each *t* and $\omega \in \Omega$, $N(t, \cdot)(\omega)$ is a counting measure on $\mathcal{B}(\mathbb{R}^d \{0\})$.
 - 2 For each A bounded below, $(N(t, A), t \ge 0)$ is a Poisson process with intensity $\mu(A) = E[N(1, A)]$.
 - ③ The compensated $(\tilde{N}(t, A), t \ge 0)$ is a martingale-valued measure where $\tilde{N}(t, A) = N(t, A) t\mu(A)$, for A bounded below, i.e. for fixed A bounded below, $(\tilde{N}(t, A), t \ge 0)$ is a martingale.

14

Poisson integration

• Let *f* be a measurable function from \mathbb{R}^d to \mathbb{R}^d and let *A* be bounded below. Then we may define the Poisson integral of *f* as the random finite sum

$$\int_{A} f(\mathbf{x}) N(t, d\mathbf{x})(\omega) = \sum_{\mathbf{x} \in A} f(\mathbf{x}) N(t, \{\mathbf{x}\})(\omega),$$

where $\{x\}$ are the jump sizes of the process (in *A*), i.e. $N(t, \{x\}) \neq 0$ $\iff \Delta X(u) = x$ for some $0 \le u \le t$.

- $\int_A f(x) N(t, dx)$ is a \mathbb{R}^d -valued r.v. and gives rise to a càdlàg stoch. process as we vary *t*.
- We have also

$$\int_{A} f(\mathbf{x}) N(t, d\mathbf{x}) = \sum_{0 \le u \le t} f(\Delta X(u)) \chi_{A}(\Delta X(u)).$$

João Guerra (CEMAPRE and ISEG, UTL)

Martingales, stopping times and random measures

October 19, 2011 14 / 1

Martingales, stopping times and random measures

Poisson integration

Theorem

Let A be bounded below. Then: 1. $\left(\int_A f(x) N(t, dx), t \ge 0\right)$ is a compound Poisson process with characteristic function

$$\exp\left(t\int_{\mathbb{R}^d}\left(e^{i(u,x)}-1\right)\mu_{f,\mathcal{A}}(dx)\right)$$

where $\mu_{f,A}(B) = \mu(A \cap f^{-1}(B))$ for $B \in \mathcal{B}(\mathbb{R}^d)$. 2. If $f \in L^1(A, \mu_A)$ then $(\mu_A$ is the restriction to A of the measure μ):

$$\mathbb{E}\left[\int_{A}f(\mathbf{x})N(t,d\mathbf{x})\right]=t\int_{A}f(\mathbf{x})\mu(d\mathbf{x}).$$

3. If $f \in L^2(A, \mu_A)$ then

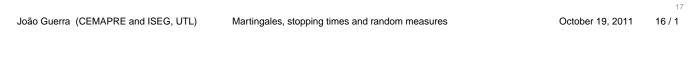
$$\operatorname{Var}\left(\left|\int_{A}f(\boldsymbol{x})N(\boldsymbol{t},d\boldsymbol{x})\right|\right)=t\int_{A}\left|f(\boldsymbol{x})\right|^{2}\mu(d\boldsymbol{x}).$$

Poisson integration

Sketch of the proof: 1. Assume $f \in L^1(A, \mu_A)$ and let f be a simple function: $f = \sum_{j=1}^{n} c_j \chi_{A_j}$ (with the A_j 's disjoint). Then, by part 2 of the previous theorem, we have that

$$E\left[\exp\left\{i\left(u,\int_{\mathcal{A}}f(x)N(t,dx)\right)\right\}\right] = \prod_{j=1}^{n}E\left[\exp\left\{i\left(u,\int_{\mathcal{A}}c_{j}N(t,A_{j})\right)\right\}\right]$$
$$= \prod_{j=1}^{n}\exp\left\{t\left(e^{i\left(u,c_{j}\right)}-1\right)\mu(A_{j})\right\} = \exp\left\{t\left(e^{i\left(u,f(x)\right)}-1\right)\mu(dx)\right\}.$$

For an arbitrary $f \in L^1(A, \mu_A)$, we can find a sequence of simple functions converging to f in L^1 and hence a subsequence which converges to f a.s. Passing to the limit along this subsequence yields the required result. Parts 2. and 3. follow from 1. by differentiation (moments from characteristic function: $E[X^k] = (-i)^k \Phi^{(k)}(0)$)



Martingales, stopping times and random measures Poisson integration

- It follows from Theorem part (2) that a Poisson integral will fail to have a finite mean if *f* ∉ L¹(A, μ).
- For $f \in L^1(A, \mu_A)$, we define the compensated Poisson integral by

$$\int_{A} f(\mathbf{x}) \widetilde{N}(t, d\mathbf{x}) = \int_{A} f(\mathbf{x}) N(t, d\mathbf{x}) - t \int_{A} f(\mathbf{x}) \mu(d\mathbf{x}).$$

• The process $\left(\int_{A} f(x) \widetilde{N}(t, dx), t \ge 0\right)$ is a martingale.

18

Poisson integration

• By the previous theorem, we have that

$$E\left[\exp\left\{i\left(u,\int_{A}f(x)\widetilde{N}(t,dx)\right)\right\}\right]$$
$$=\exp\left(t\int_{\mathbb{R}^{d}}\left(e^{i(u,x)}-1-i(u,x)\right)\mu_{f,A}(dx)\right)$$

and if $f \in L^2(A, \mu_A)$ then

$$E\left[\left|\int_{A}f(x)\widetilde{N}(t,dx)\right|^{2}\right]=t\int_{A}\left|f(x)\right|^{2}\mu(dx).$$

João Guerra	(CEMAPRE and ISEG, UTL)
	(

Martingales, stopping times and random measures

19 October 19, 2011 18 / 1

Martingales, stopping times and random measures

- Applebaum, D. (2004). Lévy Processes and Stochastic Caculus. Cambridge University Press. - (Overview and chapter 1)
- Applebaum, D. (2005). Lectures on Lévy Processes, Stochastic Calculus and Financial Applications, Ovronnaz September 2005, Lecture 1 in http://www.applebaum.staff.shef.ac.uk/ovron1.pdf
- Papantaloleon, A. An Introduction to Lévy Processes with Applications in Finance. arXiv:0804.0482v2.
- Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.

20