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Markov processes

Let (Ω,F ,P) be a filtered probability space with filtration (Ft , t ≥ 0).

A stochastic process X = (X (t), t ≥ 0) is adapted to the (Ft , t ≥ 0) if

each X (t) is Ft -measurable

Any process X is adapted to its natural filtration FX
t := σ {X (s) , s ≤ t} .

Definition

An adapted process X is a Markov process if for all measurable bounded

function f , we have (for s ≤ t)

E [f (X (t)) |Fs] = E [f (X (t)) |X (s)] a.s.

Markov process: "past and future are independent, given the present".

Transition probabilities of a Markov process:

ps,t (x ,A) = P [X (t) ∈ A|X (s) = x ]
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Markov processes

Theorem

If X is an adapted Lévy process where each X (t) has law qt , then it is a

Markov process with transition probabilities:

ps,t (x ,A) = qt−s (A− x) .

Proof: By the stationarity of increments,

E [f (X (t)) |Fs] = E [f (X (s) + X (t)− X (s)) |Fs]

=

∫
Rd

f (X (s) + y) qt−s (dy) .

Hence,

E [f (X (t)) |Fs] = E [f (X (t)) |Xs]

and the transition probabilities are obtained for f = χA and

ps,t (x ,A) =
∫
Rd χA (x + y) qt−s (dy) = qt−s (A− x) . �
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Martingales

Definition

The process X is a martingale if X is adapted to (Ft , t ≥ 0), E [|X (t)|] <∞ for

all t ≥ 0 and

E [X (t) |Fs] = Xs a.s for all s < t .

Theorem

An adapted Lévy process with finite first moment and zero mean is a

martingale (with respect to its natural filtration)

Proof: X adapted, E [|X (t)|] <∞ for all t ≥ 0 and

E [X (t) |Fs] = E [X (s) + X (t)− X (s) |Fs]

= X (s) + E [X (t)− X (s)] = X (s) .
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Martingales

Examples of Lévy processes that are also martingales:

1 σB (t), B (t) d-dim. BM and σ an r × d matrix.

2 Ñ (t) - compensated Poisson process
3 exp {i (u,X (t))− tη (u)} where u ∈ Rd is fixed and X is a Lévy process with

Lévy symbol η.
4 |σB (t)|2 − trace (A) t , with A = σTσ

5

[
Ñ (t)

]2

− λt

Exercise: Show that exp {i (u,X (t))− tη (u)} is a martingale.
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Càdlág paths

f : R+ → R is a càdlàg function if it is "continue à droite et limité à

gauche" - right continuous with left limits.

Notation: f (t−) := lim
s↑t

f (s) and ∆f (t) := f (t)− f (t−).

If f is càdlàg then # {0 ≤ t ≤ T : ∆f (t) 6= 0} is at most countable.

If the filtration satisfies the "usual hypothesis" then every Lévy process

has a càdlàg modification which is itself a Lévy process (proof: theorem

2.1.8, pag 87 - Applebaum).

Usual hypothesis for (Ft , t ≥ 0) :

1 (completeness): F0 contains all sets of P-measure 0.
2 (right continuity): Ft = Ft+ where Ft+ = ∩ε>0Ft+ε.
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Assumptions

From now on, we will allways assume that:

(Ω,F ,P) will be a fixed filtered probability space with a filtration

(Ft , t ≥ 0) which satisfies the "usual hypotheses".

Every Lévy process X will be assumed to be Ft -adapted and with càdlàg

sample paths.

X (t)− X (s) is independent of Fs for all s < t .

Note: given two processes (X (t) , t ≥ 0) and (Y (t) , t ≥ 0) we say that Y

is a modification of X if, for each t ≥ 0, P [X (t) 6= Y (t)] = 0. As a

consequence X and Y have the same finite dimensional distributions.
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The jumps of a Lévy process

The jump process ∆X associated to X is defined by

∆X (t) = X (t)− X (t−) .

Theorem

If N is an increasing, integer-valued Lévy process such that ∆N (t) takes

values in {0,1} then N is a Poisson process.

Proof: see Applebaum (2005). Lectures on Lévy Processes...Lecture 2, page

2.

Lemma

If X is a Lévy process, then for fixed t > 0, ∆X (t) = 0 (a.s.).
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The jumps of a Lévy process

Proof:

Let (t(n); n ∈ N) be a sequence in R+ with t(n) ↑ t as n→∞.

X has càdlàg paths =⇒ lim
n→∞

X (t(n)) = X (t−).

By the stochastic continuity condition (in the Lévy process definition)

=⇒ X (t(n)) converges in probability to X (t), and so has a subsequence

which converges a.s to X (t). Then, by the uniqueness of the limits X (t) =
X (t−) (a.s.) and ∆X (t) = 0 (a.s.). �
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The jumps of a Lévy process

Analytic difficulty in manipulating Lèvy processes has to do with the fact

that is possible to have: ∑
0≤s≤t

|∆X (s)| =∞ a.s.

To overcome this difficulties, we will use the fact that always:∑
0≤s≤t

|∆X (s)|2 <∞ a.s.

In order to count jumps of specified size, define (for a set

A ∈ B
(
Rd − {0}

)
):

N(t ,A) = # {0 ≤ s ≤ t : ∆X (s) ∈ A}

=
∑

0≤s≤t

χA (∆X (s))

For each ω ∈ Ω, t ≥ 0, the map A→ N(t ,A) is a counting measure on

B
(
Rd − {0}

)
. (Note: B

(
Rd − {0}

)
is the σ−algebra of Borelian

measurable sets in Rd − {0})
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The jumps of a Lévy process

Then

E [N(t ,A)] =

∫
N(t ,A) (ω) dP (ω)

is a measure on B
(
Rd − {0}

)
.

Notation: µ (·) = E [N(1, ·)] is a measure on B
(
Rd − {0}

)
called the

intensity measure (considers the mean number of jumps until time 1).

We say that A ∈ B
(
Rd − {0}

)
is bounded below if 0 /∈ A (note: A is the

closure of A =all points in A plus the limit points of A).

Lemma

If A is bounded below then N(t ,A) <∞ a.s. for all t ≥ 0.

If A fails to be bounded below, then the Lemma may no longer hold,

because of the accumulation of large numbers of small jumps.
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The jumps of a Lévy process

Sketch of the Proof: Define the stopping times (T A
n ,n ∈ N) by

T A
1 = inf {t > 0 : ∆X (t) ∈ A} and T A

n = inf
{

t > T A
n−1 : ∆X (t) ∈ A

}
X has càdlàg paths =⇒ T A

1 > 0 a.s. and lim
n→∞

T A
n =∞ a.s. Otherwise, the set

of all jumps in A would have an accumulation point, and this is not possible if

X is càdlàg (see the proof of Theorem 2.8.1 in appendix 2.8 of Applebaum).

Moreover,

N(t ,A) =
∑
n∈N

χ{T A
n ≤t} <∞ a.s.
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The jumps of a Lévy process

If A fails to be bounded below, then the Lemma may no longer hold,

because of the accumulation of large numbers of small jumps.

Theorem

1. If A is bounded below, then the process (N(t ,A), t ≥ 0) is a Poisson

process with intensity µ(A).
2. If A1, . . .Am ∈ B

(
Rd − {0}

)
are disjoint then the r.v. N(t ,A1), . . . ,N(t ,Am)

are independent.

Proof: pages 101-103 of Applebaum.
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The jumps of a Lévy process

Consequence: µ(A) <∞ whenever A is bounded below.

Main properties of N:

1 For each t and ω ∈ Ω, N (t , ·) (ω) is a counting measure on B
(
Rd − {0}

)
.

2 For each A bounded below, (N(t ,A), t ≥ 0) is a Poisson process with

intensity µ(A) = E [N(1,A)] .
3 The compensated (Ñ(t ,A), t ≥ 0) is a martingale-valued measure where

Ñ(t ,A) = N(t ,A)− tµ(A), for A bounded below, i.e. for fixed A bounded

below, (Ñ(t ,A), t ≥ 0) is a martingale.
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Poisson integration

Let f be a measurable function from Rd to Rd and let A be bounded

below. Then we may define the Poisson integral of f as the random finite

sum ∫
A

f (x) N (t ,dx) (ω) =
∑
x∈A

f (x) N (t , {x}) (ω) ,

where {x} are the jump sizes of the process (in A), i.e. N (t , {x}) 6= 0

⇐⇒ ∆X (u) = x for some 0 ≤ u ≤ t .∫
A

f (x) N (t ,dx) is a Rd -valued r.v. and gives rise to a càdlàg stoch.

process as we vary t .

We have also∫
A

f (x) N (t ,dx) =
∑

0≤u≤t

f (∆X (u))χA (∆X (u)) .
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Poisson integration

Theorem

Let A be bounded below. Then:

1.
(∫

A
f (x) N (t ,dx) , t ≥ 0

)
is a compound Poisson process with

characteristic function

exp

(
t

∫
Rd

(
ei(u,x) − 1

)
µf ,A (dx)

)
,

where µf ,A (B) = µ
(
A ∩ f−1 (B)

)
for B ∈ B

(
Rd
)
.

2. If f ∈ L1 (A, µA) then (µA is the restriction to A of the measure µ):

E
[∫

A

f (x) N (t ,dx)

]
= t

∫
A

f (x)µ (dx) .

3. If f ∈ L2 (A, µA) then

Var

(∣∣∣∣∫
A

f (x) N (t ,dx)

∣∣∣∣) = t

∫
A

|f (x)|2 µ (dx) .
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Poisson integration

Sketch of the proof: 1. Assume f ∈ L1 (A, µA) and let f be a simple function:

f =
∑n

j=1 cjχAj
(with the Aj ’s disjoint). Then, by part 2 of the previous theorem,

we have that

E

[
exp

{
i

(
u,

∫
A

f (x) N (t ,dx)

)}]
=

n∏
j=1

E

[
exp

{
i

(
u,

∫
A

cjN (t ,Aj )

)}]

=
n∏

j=1

exp
{

t
(

ei(u,cj) − 1
)
µ (Aj )

}
= exp

{
t
(

ei(u,f (x)) − 1
)
µ (dx)

}
.

For an arbitrary f ∈ L1(A, µA), we can find a sequence of simple functions

converging to f in L1 and hence a subsequence which converges to f a.s.

Passing to the limit along this subsequence yields the required result. Parts 2.

and 3. follow from 1. by differentiation (moments from characteristic function:

E
[
X k
]

= (−i)k Φ(k) (0))�
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Poisson integration

It follows from Theorem - part (2) that a Poisson integral will fail to have a

finite mean if f /∈ L1(A, µ).

For f ∈ L1(A, µA), we define the compensated Poisson integral by∫
A

f (x) Ñ (t ,dx) =

∫
A

f (x) N (t ,dx)− t

∫
A

f (x)µ (dx) .

The process
(∫

A
f (x) Ñ (t ,dx) , t ≥ 0

)
is a martingale.
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Poisson integration

By the previous theorem, we have that

E

[
exp

{
i

(
u,

∫
A

f (x) Ñ (t ,dx)

)}]
= exp

(
t

∫
Rd

(
ei(u,x) − 1− i (u, x)

)
µf ,A (dx)

)
and if f ∈ L2 (A, µA) then

E

[∣∣∣∣∫
A

f (x) Ñ (t ,dx)

∣∣∣∣2
]

= t

∫
A

|f (x)|2 µ (dx) .
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