Lévy-Itô decomposition and stochastic integration

João Guerra

CEMAPRE and ISEG, UTL

October 19, 2011

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2011 1 / 20

Processes of Finite Variation

- Let $\mathcal{P} = \{a = t_1 < t_2 < \cdots < t_n < t_{n+1} = b\}$ be a partition of $[a, b] \subset \mathbb{R}$, with diameter $\delta = \max_{1 \le i \le n} |t_{i+1} t_i|$.
- Variation $Var_{\mathcal{P}}[g]$ of a càdlàg function g over partition \mathcal{P} :

$$Var_{\mathcal{P}}[g] := \sum_{i=1}^{n} |g(t_{i+1}) - g(t_i)|.$$

- If $V[g] := \sup_{\mathcal{P}} Var_{\mathcal{P}}[g] < \infty$, we say g has finite variation on [a, b].
- If g is defined on ℝ (or ℝ⁺), we say it has finite variation if it has finite variation on each compact interval.
- Every non-decreasing *g* has finite variation.

- Functions of finite variation are important in integration: if we propose g as an integrator, in order to define the Stieltjes integral: ∫₁ fdg for all continuous functions f, a necessary and sufficient condition for obtaining ∫₁ fdg as a limit of Riemann sums is that g has finite variation.
- A stochastic process (X(t), t ≥ 0) is of finite variation if the paths (X(t)(ω), t ≥ 0) are of finite variation for almost all ω ∈ Ω.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2011 2 / 20

Processes of finite variation

Example - Poisson integrals

 N: Poisson random measure with intensity measure μ, let f be a measurable function and A bounded below. Let

$$Y(t) = \int_{A} f(x) N(t, dx).$$

- The process Y has finite variation on [0, t] for each $t \ge 0$.
- Indeed:

$$extsf{Var}_{\mathcal{P}}\left[extsf{Y}
ight] \leq \sum_{0\leq s\leq t} \left|f\left(\Delta X\left(s
ight)
ight)
ight| \chi_{\mathcal{A}}\left(\Delta X\left(s
ight)
ight) < \infty \quad extsf{a.s.} \;,$$

where $X(t) = \int_{A} x N(t, dx)$ for each $t \ge 0$.

 Necessary and sufficient condition for a Lévy process to be of finite variation: there is no Brownian part (A = 0 in the Lévy-Khinchine formula), and

$$\int_{|\boldsymbol{x}|<1}|\boldsymbol{x}|\,\nu\left(\boldsymbol{d}\boldsymbol{x}\right)<\infty.$$

• For A bounded below,

$$\int_{\mathcal{A}} x N(t, dx) = \sum_{0 \le s \le t} \Delta X(s) \chi_{\mathcal{A}}(\Delta X(s)).$$

is the sum of all the jumps taking values in A, up to time t.

- paths of X are càdlàg \implies the sum is a finite random sum. In particular, $\int_{|x|\geq 1} xN(t, dx)$ is finite ("big jumps"). It is a compound Poisson process, has finite variation but may have no finite moments.
- Conversely, X (t) − ∫_{|x|≥1} xN (t, dx) is a Lévy process with finite moments of all orders.
- Exercise: show that if X is a Lévy process with bounded jumps then we have E(|X(t)|^m) < ∞ for all m ∈ N. (Hint: see proof of theorem 2.4.7, pages 118-119 of Applebaum).

```
João Guerra (CEMAPRE and ISEG, UTL)
```

Lévy-Itô decomposition and stochastic integration

October 19, 2011 4 / 20

Lévy-Itô decomposition

 For small jumps, let us consider compensated integrals (which are martingales): (A bounded below)

$$M(t,A) := \int_{A} x \widetilde{N}(t,dx)$$

• Consider the "ring-sets":

$$egin{aligned} B_m &:= \left\{ x \in \mathbb{R}^d : rac{1}{m+1} < |x| \leq rac{1}{m}
ight\}, \ A_n &:= igcup_{m=1}^n B_m. \end{aligned}$$

• We can show that

$$\int_{|x|<1} x \widetilde{N}(t, dx) = L^2 - \lim_{n\to\infty} M(t, A_n).$$

Therefore $\int_{|x|<1} x \widetilde{N}(t, dx)$ is a martingale (the L^2 limit of a sequence of martingales).

Lévy-Itô decomposition

Lévy-Itô decomposition

• Taking the limit in $E\left[\exp\left\{i\left(u, \int_{A_n} x\widetilde{N}(t, dx)\right)\right\}\right] = \exp\left(t \int_{\mathbb{R}^d} \left(e^{i(u,x)} - 1 - i(u,x)\right) \mu_{x,A_n}(dx)\right)$ (see Poisson integration in the previous session), we obtain

$$E\left[\exp\left\{i\left(u,\int_{|x|<1}x\widetilde{N}(t,dx)\right)\right\}\right]$$
$$=\exp\left(t\int_{|x|<1}\left(e^{i(u,x)}-1-i(u,x)\right)\mu(dx)\right)$$

Consider

$$B_{A}(t) = X(t) - bt - \int_{|x|<1} x \widetilde{N}(t, dx) - \int_{|x|\geq1} x N(t, dx),$$

where $b = \mathbb{E} \left(X(1) - \int_{|x| \ge 1} x N(1, dx) \right).$

- B_A is a centered martingale with continuous paths and has covariance matrix A.
- By the Lévy characterization of B.M., B_A is a Brownian motion with covariance matrix A.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2011 6 / 20

Lévy-Itô decomposition

Theorem

(Lévy-Itô decomposition): If X is a Lévy process, then exists $b \in \mathbb{R}^d$, a Brownian motion B_A with covariance matrix A and an independent Poisson random measure N on $\mathbb{R}^+ \times (\mathbb{R}^d - \{0\})$ such that

$$X(t) = bt + B_{A}(t) + \int_{|x|<1} x \widetilde{N}(t, dx) + \int_{|x|\geq1} x N(t, dx).$$
 (1)

• The 3 processes in (1) are independent.

• The Lévy-Khintchine formula is a corollary of the Lévy-Itô decomposition.

Corollary

(Lévy-Khintchine formula): If X is a Lévy process then

$$E\left[e^{i(u,X(t))}\right] = \exp\left\{t\left[i\left(b,u\right) - \frac{1}{2}\left(u,Au\right) + \int_{\mathbb{R}^{d} - \{0\}}\left[e^{i(u,y)} - 1 - i\left(u,y\right)\chi_{B}\left(y\right)\right]\mu\left(dy\right)\right]\right\}$$

- The intensity measure μ is the Lévy measure for *X*.
- $\int_{|x|<1} x \widetilde{N}(t, dx)$ is the compensated sum of small jumps (it is an L^2 -martingale).
- $\int_{|x|\geq 1} xN(t, dx)$ is the sum of large jumps (compound Poisson process, but may have no finite moments).

João Guerra (CEMAPRE and ISEG, UTL)	Lévy-Itô decomposition and stochastic integration	October 19, 2011	8 / 20
	Lévy-Itô decomposition		

Lévy-Itô decomposition

A Lévy process has finite variation if its Lévy-Itô decomposition is

$$X(t) = \gamma t + \int_{x \neq 0} x N(t, dx)$$
$$= \gamma t + \sum_{0 \le s \le t} \Delta X(s),$$

where $\gamma = b - \int_{|x| < 1} x \nu (dx)$.

Financial interpretation for the jump terms in the Lévy-Itô decomposition:

- if intensity measure (μ or ν) is infinite: the stock price has "infinite activity" ≈ flutuations and jumpy movements arising from the interaction of pure supply shocks and pure demand shocks.
- if the intensity measure (μ or ν) is finite, we have "finite activity" \approx sudden shocks that can cause unexpected movements in the market, such as a major earthquake.
- If a pure jump Lévy process (no Brownian part) has finite activity => then it has finite variation. The converse is false.
- The first 3 terms on the rhs of (1) have finite moments to all orders ⇒ if a Lévy process fails to have a moment, this is due to the "large jumps"/"finite activity" part ∫_{|x|>1} xN(t, dx).
- $E\left[\left|X(t)\right|^{n}\right] < \infty$ if and only if $\int_{|x|>1} |x|^{n} \nu(dx) < \infty$.

João Guerra (CEMAPRE and ISEG, UTL)	Lévy-Itô decomposition and stochastic integration	October 19, 2011	11 10 / 20
	Stochastic integration		

Semimartingales

Definition

A stochastic process $X = \{X(t), t \ge 0\}$ is a semimartingale if it an adapted process which admits a decomposition:

$$X = X(0) + M(t) + C(t), \qquad (2)$$

where M is a local martingale and C is an adapted process of finite variation.

- Semimartingales are "good integrators": largest class of processes with respect to which the Itô integral can be defined.
- A Lévy process is a semimartingale:by (1),

$$\begin{split} M(t) &= B_A(t) + \int_{|x| < 1} x \widetilde{N}(t, dx) \,, \\ C(t) &= bt + \int_{|x| \ge 1} x N(t, dx) \,. \end{split}$$

Stochastic integration

- Let X = M + C be a semimartingale.
- Stochastic integral w.r.t. X:

$$\int_{0}^{t} F(s) \, dX_{s} = \int_{0}^{t} F(s) \, dM_{s} + \int_{0}^{t} F(s) \, dC_{s}. \tag{3}$$

- $\int_{0}^{t} F(s) dC_{s}$ defined by the usual Lebesgue-Stieltjes integral.
- In general, $\int_0^t F(s) dM_s$ requires a stochastic definition (in general, *M* has infinite variation).
- Define a "martingale valued measure"

$$M(t, E) = B_t \delta_0(E) + \widetilde{N}(t, E - \{0\}), \qquad (4)$$

where B_t is a one-dim. BM and $E \subset \mathbb{R}^n$ is measurable.

• M((s, t], E) = M(t, E) - M(s, E) is independent of \mathcal{F}_s .

$$\int_{0}^{t} \int_{E} F(s, x) M(ds, dx) = \int_{0}^{t} G(s) dB_{s} + \int_{0}^{t} \int_{E-\{0\}} F(s, x) \widetilde{N}(ds, dx),$$
(5)

where G(s) = F(s, 0).

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

Stochastic integration

Stochastic integration

•
$$\mathbb{E}[M((s,t], E)] = 0,$$

• $\mathbb{E}[(M((s,t], E))^2] = \rho((s,t], E), \text{ where}$
 $\rho((s,t], E) := (t-s)(\delta_0(E) + \nu(E - \{0\})).$

14

October 19, 2011

12/20

- Let P be the smallest σ-algebra with respect to which all the mappings
 F : [0, T] × E × Ω → ℝ satisfying (1) and (2) below are measurable:
 - **1** For each t, $(x, \omega) \to F(t, x, \omega)$ is $\mathcal{B}(E) \times \mathcal{F}_t$ measurable.
 - 2 For each x and ω , $t \to F(t, x, \omega)$ is left continuous.
- \mathcal{P} is called the predictable σ -algebra. A \mathcal{P} -measurable mapping is said predictable.
- Let \mathcal{H}_2 be the linear space of mappings $F : [0, T] \times E \times \Omega \to \mathbb{R}$ which are predictable and

$$\int_{0}^{T} \int_{E} \mathbb{E}\left[|F(t, \mathbf{x})|^{2}\right] \nu(d\mathbf{x}) dt < \infty,$$
(6)

$$\int_{0}^{T} \mathbb{E}\left[\left|F(t,0)\right|^{2}\right] \nu dt < \infty.$$
(7)

			15
João Guerra (CEMAPRE and ISEG, UTL)	Lévy-Itô decomposition and stochastic integration	October 19, 2011	14 / 20
	Stochastic integration		

• Let *F* be a simple process:

$$F = \sum_{j=1}^{m} \sum_{k=1}^{n} F_{k}(t_{j}) \mathbf{1}_{(t_{j}, t_{j+1}]} \mathbf{1}_{A_{k}}$$
(8)

• F is predictable and its stochastic integral is defined by

$$I(F) = \sum_{j=1}^{m} \sum_{k=1}^{n} F_k(t_j) M((t_j, t_{j+1}], A_k)$$
(9)

Lemma If F is simple then

$$\mathbb{E}\left[I(F)\right] = 0,$$

$$E\left[\left(I(F)\right)^{2}\right] = \int_{0}^{T} \int_{E} \mathbb{E}\left[\left|F(t,x)\right|^{2}\right] \nu\left(dx\right) dt \qquad (10)$$

16

- Exercise: Show that $\mathbb{E}[I(F)] = 0$.
- I is a linear isometry from S (set of simple processes) into $L^{2}(\Omega)$ and since S is dense in \mathcal{H}_2 , I can be extended to \mathcal{H}_2 and it is a isometry of \mathcal{H}_2 into $L^{2}(\Omega)$.
- For $F \in \mathcal{H}_2$ we define

$$I_t(F) = \int_0^t \int_E F(t, x) M(ds, dx)$$

and

$$\int_0^t \int_E F(t,x) M(ds, dx) = \lim_{n \to \infty} (L^2) \int_0^t \int_E F_n(t,x) M(ds, dx), \quad (11)$$

where $\{F_n, n \in \mathbb{N}\}$ is a sequence of simple processes.

			17
João Guerra (CEMAPRE and ISEG, UTL)	Lévy-Itô decomposition and stochastic integration	October 19, 2011	16 / 20
	Stochastic integration		

• The stochastic integral $I_t(F)$ with $F \in \mathcal{H}_2$ satisfies:

(1) I_t is a linear operator

2
$$\mathbb{E}[I(F)] = 0, E\left[(I(F))^2\right] = \int_0^T \int_E \mathbb{E}\left[|F(t,x)|^2\right] \nu(dx) dt.$$

- 3 { $I_t(F)$, $t \in [0, T]$ } is { \mathcal{F}_t } adapted 4 { $I_t(F)$, $t \in [0, T]$ } is a square-integrable martingale.

18

• The integral of a predictable process K(t, x) with respect to the compound Poisson process $P_t = \int_A x N(t, dx)$ is defined by

$$\int_{0}^{T} \int_{A} K(t, x) N(dt, dx) = \sum_{0 \le s \le T} K(s, \Delta P_{s}) \mathbf{1}_{A}(\Delta P_{s}).$$
(12)

• We can also define

$$\int_{0}^{T} \int_{A} H(t, x) \widetilde{N}(dt, dx) = \int_{0}^{T} \int_{A} H(t, x) N(dt, dx) - \int_{0}^{T} \int_{A} H(t, x) \nu(dx) dt$$
(13)

if H is predictable and satisfies (6).

			19
João Guerra (CEMAPRE and ISEG, UTL)	Lévy-Itô decomposition and stochastic integration	October 19, 2011	18 / 20

Lévy-Type stochastic integrals

• We say Y is a Lévy type stochastic integral if

$$Y_{t} = Y_{0} + \int_{0}^{t} G(s) \, ds + \int_{0}^{t} F(s) \, dB_{s} + \int_{0}^{t} \int_{|x| < 1} H(s, x) \, \widetilde{N}(ds, dx) + \int_{0}^{t} \int_{|x| > 1} K(s, x) \, N(ds, dx) \,,$$
(14)

where we assume that the processes G, F, H and K are predictable and satisfy appropriate integrability conditions.

- Y is a semimartingale.
- Let *L* be a Lévy process with Lévy triplet (*b*, *c*, *ν*) and let *X* be a predictable left-continuous process satisfying (6). Then we can construct a Lévy stochastic integral Y_t by

$$dY_t = X_t dL_t.$$

20

- Applebaum, D. (2004). Lévy Processes and Stochastic Caculus. Cambridge University Press. - (Overview and chapter 1)
- Applebaum, D. (2005). Lectures on Lévy Processes, Stochastic Calculus and Financial Applications, Ovronnaz September 2005, Lecture 2 in http://www.applebaum.staff.shef.ac.uk/ovron2.pdf
- Cont, R. and Tankov, P. (2003). Financial modelling with jump processes. Chapman and Hall/CRC Press.
- Papantaloleon, A. An Introduction to Lévy Processes with Applications in Finance. arXiv:0804.0482v2.
- Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.
- Schoutens, W. (2002). Lévy Processes in Finance: Pricing Financial Derivatives. Wiley.

21 October 19, 2011 20 / 20