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Stochastic exponentials

Stochastic exponential

Let d = 1 and consider the process Z = (Z (t), t ≥ 0) solution of the SDE:

dZ (t) = Z (t−) dY (t) , (1)

where Y is a Lévy-type stochastic integral.

The solution is the "stochastic exponential" or "Doléans-Dade

exponential":

Z (t) = EY (t) = exp

{
Y (t)− 1

2
[Yc ,Yc ] (t)

} ∏
0≤s≤t

(1 + ∆Y (s)) e−∆Y (s).

(2)

We require that (assumption):

inf {∆Y (t) , t ≥ 0} > −1 a.s. (3)
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Stochastic exponentials

Stochastic exponential

Proposition

If Y is a Lévy-type stochastic integral and (3) holds, then each EY (t) is a.s.

finite.

Exercise: Prove the previous proposition (see Applebaum)

Note that (3) also implies that EY (t) > 0 a.s.

The stochastic exponential EY (t) is the unique solution of SDE (1) which

satisfies the initial condition Z (0) = 1 a.s.

If (3) does not hold then EY (t) may take negative values.
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Stochastic exponentials

Stochastic exponential

Alternative form of (2):

EY (t) = eSY (t), (4)

where

dSY (t) = F (t) dB (t) +

(
G (t)− 1

2
F (t)2

)
dt

+

∫
|x|≥1

log (1 + K (t , x)) N (dt ,dx) +

∫
|x|<1

log (1 + H (t , x)) Ñ (dt ,dx)

+

∫
|x|<1

(log (1 + H (t , x))− H (t .x)) ν (dx) dt (5)
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Stochastic exponentials

Stochastic exponential

Theorem

dEY (t) = EY (t) dY (t)

Exercise: Prove the previous theorem by applying the Itô formula to (5)

(see Applebaum).
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Stochastic exponentials

Stochastic exponential

Example 1: If Y (t) = σB (t), where σ > 0 and B is a BM, then

EY (t) = exp

{
σB (t)− 1

2
σ2t

}
.

Example 2: If Y = (Y (t), t ≥ 0) is a compound Poisson process:

Y (t) = X1 + · · ·+ XN(t) then

EY (t) =

N(t)∏
i=1

(1 + Xj )
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Stochastic exponentials

Stochastic exponential

Let X be a Lévy process with characteristics (b, σ, ν) and Lévy-Itô

decomposition X (t) = bt + σB (t) +
∫
|x|<1

xÑ (t ,dx) +
∫
|x|≥1

xN (t ,dx) .

When can EX (t) be written as exp (X1 (t)) for a certain Lévy process X1

and vice-versa?

By (4) and (5) we have EX (t) = eSX (t) with

SX (t) = σB (t) +

∫
|x|≥1

log (1 + x) N (t ,dx) +

∫
|x|<1

log (1 + x) Ñ (t ,dx)

+ t

[
b − 1

2
σ2 +

∫
|x|<1

(log (1 + x)− x) ν (dx)

]
. (6)
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Stochastic exponentials

Stochastic exponential

Comparing the Lévy-Itô decomposition with (6), we have

Theorem

If X is a Lévy process with each EX (t), then EX (t) = exp (X1 (t)) where X1 is a

Lévy process with characteristics (b1, σ1, ν1) given by:

ν1 = ν ◦ f−1, f (x) = log (1 + x) .

b1 = b − 1

2
σ2 +

∫
R−{0}

[
log (1 + x)χ

B̂
(log (1 + x))− xχ

B̂
(x)
]
ν (dx) ,

σ1 = σ.

Conversely, there exists a Lévy process X2 with characteristics (b2, σ2, ν2)
such that exp (X (t)) = EX2

(t) , where

ν1 = ν ◦ g−1, g (x) = ex − 1

b2 = b +
1

2
σ2 +

∫
R−{0}

[
(ex − 1)χ

B̂
(ex − 1)− xχ

B̂
(x)
]
ν (dx) ,

σ2 = σ.
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Exponential martingales

Exponential martingales

Lévy-type stochastic integral:

dY (t) = G (t) dt + F (t) dB (t) +

∫
|x|<1

H (t , x) Ñ (dt ,dx)

+

∫
|x|≥1

K (t , x) N (dt ,dx) .

When is Y a martingale?

Assumptions (stronger than necessary to avoid the local martingale

concept):

(M1) E
[∫ t

0

∫
|x|≥1

|K (s, x)|2 ν (dx) ds
]
<∞ for each t > 0

(M2)
∫ t

0
E [|G (s)|] ds <∞ for each t > 0.
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Exponential martingales

Exponential martingales

consequence of (M1) and Cauchy-Schwarz inequality:∫ t

0

∫
|x|≥1

|K (s, x)| ν (dx) ds <∞ a.s.and∫ t

0

∫
|x|≥1

K (s, x) N (ds,dx) =

∫ t

0

∫
|x|≥1

K (s, x) Ñ (ds,dx)+

∫ t

0

∫
|x|≥1

K (s, x) ν (dx) ds.

and the compensated integral is a martingale.

Theorem

With assumptions (M1) and (M2), Y is a martingale if and only if

G (t) +

∫
|x|≥1

K (t , x) ν (dx) = 0 (a.s.) for a.a. t ≥ 0.

(see the proof in Applebaum)
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Exponential martingales

Exponential martingales

Let us consider the process eY =
(
eY (t), t ≥ 0

)
.

By Itô’s formula, we have that

eY (t) = 1 +

∫ t

0

eY (s−)F (s) dB (s) +

∫ t

0

∫
|x|<1

eY (s−)
(

eH(s,x) − 1
)

Ñ (ds,dx)

+

∫ t

0

∫
|x|≥1

eY (s−)
(

eK (s,x) − 1
)

Ñ (ds,dx)

+

∫ t

0

eY (s−)

(
G (s) +

1

2
F (s)2 +

∫
|x|<1

(
eH(s,x) − 1− H(s, x)

)
ν (dx)

+

∫
|x|≥1

(
eK (s,x) − 1

)
ν (dx)

)
ds (7)

João Guerra (CEMAPRE and ISEG, UTL) Option pricing with Lévy processes 10 / 36

12

Exponential martingales

Exponential martingales

Theorem

eY is a martingale if and only if

G (s) +
1

2
F (s)2 +

∫
|x|<1

(
eH(s,x) − 1− H(s, x)

)
ν (dx)

+

∫
|x|≥1

(
eK (s,x) − 1

)
ν (dx) = 0 (8)

a.s. and for a.a. s ≥ 0.

Therefore, eY is a martingale if and only if

eY (t) = 1 +

∫ t

0

eY (s−)F (s) dB (s) +

∫ t

0

∫
|x|<1

eY (s−)
(

eH(s,x) − 1
)

Ñ (ds,dx)

+

∫ t

0

∫
|x|≥1

eY (s−)
(

eK (s,x) − 1
)

Ñ (ds,dx) .
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Exponential martingales

Exponential martingales

If eY is a martingale then E
[
eY (t)

]
= 1 for all t ≥ 0 and eY is called an

exponential martingale.

if Y is a Brownian integral: Y (t) =
∫ t

0
G (s) ds +

∫ t

0
F (s) dB (s) then (8) is

G (t) = − 1
2
F (t)2

and

eY (t) = exp

(∫ t

0

F (s) dB (s)− 1

2

∫ t

0

F (s)2
ds

)
.
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Change of Measure - Girsanov’s Theorem

Change of Measure - Girsanov’s Theorem

Let P and Q be two different probability measures. Qt and Pt are the

measures restricted to (Ω,Ft ).

Let eY be an exponential martingale and define Qt by

dQt

dPt

= eY (t).

Fix an interval [0,T ] and define P = PT and Q = QT .

Lemma

M = (M(t),0 ≤ t ≤ T ) is a Q-martingale if and only if

MeY = (M(t)eY (t),0 ≤ t ≤ T ) is a P-martingale.
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Change of Measure - Girsanov’s Theorem

Change of Measure - Girsanov’s Theorem

Let Y be a Brownian integral and

eY (t) = exp
(∫ t

0
F (s) dB (s)− 1

2

∫ t

0
F (s)2

ds
)
.

Define a new process

BQ (t) = B (t)−
∫ t

0

F (s) ds.

Theorem

(Girsanov): BQ is a Q-Brownian motion.

Generalization of Girsanov: Let M be a martingale of the form

M(t) =
∫ t

0

∫
A

L (x , s) Ñ (ds,dx), with L predictable, L ∈ P2. Then

N(t) = M(t)−
∫ t

0

∫
A

L (s, x)
(

eH(s,x) − 1
)
ν (dx) ds

is a Q-martingale.
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Lévy Processes in Option Pricing

Option pricing

Stock price: S = (S (t) , t ≥ 0) .

Contingent claims with maturity date T : Z is a non-negative FT

measurable r.v. representing the payoff of the option.

European call option: Z = max {S (T )− K ,0}
American call option: Z = sup

0≤τ≤T

max {S (τ)− K ,0}

Asian option: Z = max
{

1
T

∫ T

0
(S (t)− K ) dt ,0

}
We assume that the interest rate r is constant.

Discounted stock price process: S̃ =
(

S̃ (t) , t ≥ 0
)

with S̃ (t) = e−rtS(t).

Portfolio: (α (t) , β (t)) , α (t) is the number of stocks and β (t) the number

of riskless assets (bonds).

Portfolio value: V (t) = α (t) S (t) + β (t) A (t)

A portfolio is said to be replicating if V (T ) = Z .
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Lévy Processes in Option Pricing

Option pricing

Self-financing portfolio: dV (t) = α (t) dS (t) + rβ (t) A (t) dt .

A market is said to be complete if every contingent claim can be

replicated by a self-financing portfolio.

An arbitrage opportunity exists if the market allows risk-free profit. The

market is arbitrage free if there exists no self-financing strategy for which

V (0) = 0, V (T ) ≥ 0 and P(V (T ) > 0) > 0.

Theorem

(Fundamental Theorem of Asset Pricing 1 in discrete time) If the market is

free of arbitrage opportunities, then there exists a probability measure Q,

which is equivalent to P, with respect to which the discounted process S̃ is a

martingale.

A similar result holds in the continuous case but we need to make more

technical assumptions - instead of absence of arbitrage we need the

stronger NFLVR hypothesis ("no free lunch with vanishing risk").
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Lévy Processes in Option Pricing

Option pricing

Theorem

Fundamental Theorem of Asset Pricing 2) An arbitrage-free market is

complete if and only if there exists a unique probability measure Q, which is

equivalent to P, with respect to which the discounted process S̃ is a

martingale.

Such a Q is called a martingale measure or risk-neutral measure.

If Q exists, but is not unique, then the market is said to be incomplete.

In a complete market, it turns out that we have

V (t) = e−r(T−t)EQ [Z |Ft ]

and this is the arbitrage-free price of the claim Z at time t .
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Lévy Processes in Option Pricing

Stock price as a Lévy process

Return:
δS (t)

S (t)
= σδX (t) + µδt ,

where X = (X (t), t ≥ 0) is a semimartingale and σ > 0, µ are parameters

called the volatility and stock drift.

Itô calculus SDE:

dS (t) = σS (t−) dX (t) + µS (t−) dt

= S(t−)dZ (t) ,

where Z (t) = σX (t) + µt .

Then S(t) = EZ (t) is the stochastic exponential of the semimartingale Z .
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Lévy Processes in Option Pricing

Stock price as a Lévy process

When X is a standard Brownian motion B, we obtain geometric Brownian

motion

S(t) = exp

(
σB (t) +

(
µ− 1

2
σ2

)
t

)
idea: Let X be a Lévy process. In order for stock prices to be

non-negative, (3) yields ∆X (t) > −σ−1 (a.s.) for each t > 0. Denote

c = −σ−1.

We impose
∫

(c,−1]∪[1,+∞)
x2ν (dx) <∞. This means that each X (t) has

first and second moments (reasonable for stock returns).

By the Lévy-Itô decomposition,

X (t) = mt + kB(t) +

∫ ∞
c

xÑ (t ,dx) ,

where k ≥ 0 and m = b +
∫

(c,−1]∪[1,+∞)
xν (dx) (in terms of the earlier

parameters).
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Lévy Processes in Option Pricing

Stock price as a Lévy process

Representing S(t) as the stochastic exponential EZ (t), we obtain from (5)

that

d (log (S (t))) = kσdB(t) +

(
mσ + µ− 1

2
k2σ2

)
dt

+

∫ ∞
c

log (1 + σx) Ñ (dt ,dx) +

∫ ∞
c

(log (1 + σx)− σx) ν (dx) dt

There are a number of explicit mathematically tractable and realistic

models: variance-gamma, normal inverse Gaussian, hyperbolic, etc.
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Lévy Processes in Option Pricing

Change of measure

we seek to find measures Q, which are equivalent to P, with respect to

which the discounted stock process S̃ is a martingale.

Let Y be a Lévy-type stochastic integral of the form:

dY (t) = G (t) dt + F (t) dB (t) +

∫
R−{0}

H (t , x) Ñ (dt ,dx) .

Consider that eY is an exponential martingale (therefore, G is determined

by F and H).

Define Q by dQ
dP

= eY (T ). By Girsanov theorem and its generalization:

BQ (t) = B (t)−
∫ t

0

F (s) ds is a Q-BM

ÑQ(t ,A) = Ñ(t ,A)− νQ (t ,A) is a Q-martingale

νQ (t ,A) :=

∫ t

0

∫
A

(
eH(s,x) − 1

)
ν (dx) ds.
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Lévy Processes in Option Pricing

Change of measure

S̃ (t) = e−rtS(t) can be written in terms of these processes by:

d
(

log
(

S̃ (t)
))

= kσdBQ(t) +

(
mσ + µ− r − 1

2
k2σ2 + kσF (t)

+σ

∫
R−{0}

x
(

eH(t,x) − 1
)
ν (dx)

)
dt +

∫ ∞
c

log (1 + σx) ÑQ (dt ,dx)

+

∫ ∞
c

(log (1 + σx)− σx) νQ (dt ,dx) .

Put S̃ (t) = S̃1 (t) S̃2 (t), where

d
(

log
(

S̃1 (t)
))

= kσdBQ(t)− 1

2
k2σ2dt

+

∫ ∞
c

log (1 + σx) ÑQ (dt ,dx) +

∫ ∞
c

(log (1 + σx)− σx) νQ (dt ,dx) .
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Lévy Processes in Option Pricing

Change of measure

and

d
(

log
(

S̃2 (t)
))

= (mσ + µ− r + kσF (t) +

+σ

∫
R−{0}

x
(

eH(t,x) − 1
)
ν (dx)

)
dt .

Apllying Itô’s formula to S̃1 we obtain:

dS̃1 (t) = kσS̃1 (t−) dBQ(t) +

∫ ∞
c

σS̃1 (t−) xÑQ (dt ,dx) .

and S̃1 is a Q-martingale.

Therefore S̃ is a Q-martingale if and only if

mσ + µ− r + kσF (t) + σ

∫
R−{0}

x
(

eH(t,x) − 1
)
ν (dx) = 0 a.s. (9)
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Lévy Processes in Option Pricing

Change of measure

Equation (9) clearly has an infinite number of possible solution pairs

(F ,H).

There are an infinite number of possible measures Q with respect to

which S̃ is a martingale. So the general Lévy process model gives rise to

incomplete markets.

Example: the Brownian motion case: ν = 0 and k 6= 0. Then there is a

unique solution

F (t) =
r − µ−mσ

kσ
a.s.

and the market is complete (Black-Scholes model).
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Lévy Processes in Option Pricing

Incomplete markets and Esscher transform

Equivalent measures Q exist with respect to which S̃ will be a martingale,

but these will no longer be unique in general

We must follow a selection principle to reduce the class of all possible

measures Q to a subclass, within which a unique measure can be found.

Aditional assumption: ∫
|x|≥1

euxν (dx) <∞

for all u ∈ R.

In this case, we can analytically continue the Lévy- Khintchine formula to

obtain

E
[
e−uX(t)

]
= e−tψ(u)

where

ψ (u) = −η (iu) = bu − 1

2
k2u2 +

∫ ∞
c

(
1− e−u y − u yχ

B̂
(y)
)
ν (dy) .
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Lévy Processes in Option Pricing

Incomplete markets and Esscher transform

The processes

Mu (t) = exp (iuX (t)− tη (u)) ,

Nu (t) = Miu (t) = exp (−uX (t) + tψ (u))

are martingales and Nu is strictly positive.

Define a new probability measure by

dQu

dP
|Ft

= Nu (t) .

Qu is called the Esscher transform of P by Nu.
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Lévy Processes in Option Pricing

Incomplete markets and Esscher transform

Applying Itô formula to Nu, we have

dNu (t) = Nu (t−)
(
−kuB (t) +

(
e−ux − 1

)
Ñ (dt ,dx)

)
.

Comparing this with (7) for exponential martingales eY , we have that

F (t) = −ku,

H(t , x) = −ux

and the condition for Qu to be a martingale (9) is

mσ + µ− r − k2uσ + σ

∫ ∞
c

x
(
e−ux − 1

)
ν (dx) = 0 a.s.
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Lévy Processes in Option Pricing

Incomplete markets and Esscher transform

Let z(u) =
∫∞

c
x (e−ux − 1) ν (dx)− k2u. Then the martingale condition

is:

z(u) =
r − µ−mσ

σ
. (10)

Since z ′(u) < 0, z is strictly decrerasing, and therefore there is a unique

u (a unique measure Qu) that satisfies (10).
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Hyperbolic processes in finance

Hyperbolic processes in finance

Let A ∈ B (R) be measurable set and let (gθ, θ ∈ A) be a family of

probability density functions, and ρ a probability distribution on A (called

mixing measure).

The "probability mixture"

h (x) =

∫
A

gθ (x) ρ (dθ)

is a probability density function on R.

The hyperbolic distributions are "probability mixtures".

Bessel functions of the 3rd kind:

Kν (x) =
1

2

∫ ∞
0

uν−1 exp

(
−1

2
x

(
u +

1

u

))
du, x , ν ∈ R.

For each a,b > 0

f a,b
ν (x) =

(
a
b

) ν
2

2Kν

(√
ab
)xν−1 exp

(
−1

2

(
ax +

b

x

))
is a pdf on (0,∞) - called a Generalized Inverse Gaussian or

GIG (ν,a,b).
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Hyperbolic processes in finance

Hyperbolic processes in finance

Take ρ to be GIG (1,a,b) and A = (0,∞) and gσ2 the pdf of

N
(
µ+ bσ2, σ2

)
with µ,b ∈ R.

The resulting probability mixture is

h
α,β
δ,u (x) =

√
α2 − β2

2αδK1

(
δ
√
α2 − β2

) exp

(
−α
√
δ2 + (x − µ)2 + β (x − µ)

)
,

for all x ∈ R, where α2 = a + β2 and δ2 = b.

The corresponding law is called an hyperbolic distribution (log
(

h
α,β
δ,u

)
is a

hyperbola). Parameters: µ (location), α (tail), β (asymmetry), and δ
(scale).

These dist. are infinitely divisible and all their moments exist.
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Hyperbolic processes in finance

Hyperbolic processes in finance

Moment generating function: M
α,β
δ,u (u) =

∫
R euxh

α,β
δ,u (x) dx

It can be proved that

M
α,β
δ,u (u) = eµu

√
α2 − β2

K1

(
δ
√
α2 − β2

) K1

(
δ
√
α2 − (β + u2)

)
√
α2 − (β + u2)

The characteristic function is φ (u) = M (iu)

For simplicity, we restrict to the symmetric case (µ = β = 0) and with

ζ = δα,

hζ,δ (x) =
1

2δK1 (ζ)
exp

(
−ζ
√

1 +
(x

δ

)2
)
.

The corresponding Lévy process has no Gaussian part and it is:

Xζ,δ (t) =

∫ t

0

∫
R−{0}

x̃N (ds,dx) .
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Hyperbolic processes in finance

Option pricing with hyperbolic processes

Stock price:

dS (t) = S (t−) dXζ,δ (t) .

A drawback of this approach is that the jumps of Xζ,δ are not bounded

below (they can be < −1). That is why we model:

S (t) = S (0) eXζ,δ(t),

S̃ (t) = S (0) eXζ,δ(t)−rt .

Martingale measure Q such that S̃ is a Q martingale. Since the market is

incomplete, we can use the Esscher transform and

dQu

dP
|Ft

= Nu (t) = exp (−uXζ,δ (t)− t log (Mζ,δ (u))) .
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Option pricing with hyperbolic processes

By the Generalized Girsanov theorem, S̃ is a Q-martingale iff S̃Nu is a

P-martingale.

S̃ (t) Nu (t) = exp ((1− u) Xζ,δ (t)− t (log (Mζ,δ (u)) + r))) .

On the other hand, it can be proved that

exp ((1− u) Xζ,δ (t)− t log (Mζ,δ (1− u)))

is a martingale.

Therefore S̃ is a Q-martingale iff

r = log (Mζ,δ (1− u))− log (Mζ,δ (1− u)) =

= log

K1

√
ζ2 − δ2 (1− u)2

K1

(√
ζ2 − δ2u2

)
− 1

2
log

[
ζ2 − δ2 (1− u)2

ζ2 − δ2u2

]
.
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Option pricing with hyperbolic processes

The value of u can be determined from the previous expression by

numerical means.

We can now price an European call option by

V (0) = e−rTEQu

[(
seXζ,δ(T ) − K

)+
]

If f
(t)
ζ,δ is the pdf of Xζ,δ (t) with respect to P then the Esscher transform

can be used to show that Xζ,δ (t) has the pdf with respect to Qu

f
(t)
ζ,δ (x ; u) = f

(t)
ζ,δ (x) e−ux−t log(Mζ,δ(u)).

Then, the pricing formula is:

V (0) = s

∫ ∞
log( k

x )
f

(T )
ζ,δ (x ; 1− u) dx − e−rT K

∫ ∞
log( k

x )
f

(T )
ζ,δ (x ; u) dx .
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Option pricing with hyperbolic processes

Volatility: If we had S (t) = eZ (t) with Z (t) = σB (t) (where B is a B.M.)

then the volatility is σ2 = E
[
Z (1)2

]
.

By analogy, in the hyperbolic case the volatility is defined by

σ2 = E
[
Xζ,δ (1)2

]
and can be proved that (from the moment generating

function and Bessel functions properties):

σ2 =
δ2K2 (ζ)

ζK1 (ζ)
.
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