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Stochastic exponentials

Stochastic exponential

@ Letd = 1 and consider the process Z = (Z(t),t > 0) solution of the SDE:

dzZ(t) = Z (t—)dY (t), (1)

where Y is a Lévy-type stochastic integral.

@ The solution is the "stochastic exponential” or "Doléans-Dade
exponential:

Z (t) =&y (1) = exp {Y (t)—%[YC,YC] (t)} [] (@1+AY(s)e 270,
0<s<t

(2)

@ We require that (assumption):

inf{AY (t),t >0} > -1 a.s. (3)
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Stochastic exponentials

Stochastic exponential

Proposition

If Y is a Lévy-type stochastic integral and (3) holds, then each &y (t) is a.s.
finite.

o Exercise: Prove the previous proposition (see Applebaum)
@ Note that (3) also implies that &y (t) > 0 a.s.

@ The stochastic exponential Ey (t) is the unique solution of SDE (1) which
satisfies the initial condition Z (0) = 1 a.s.

o If (3) does not hold then &y (t) may take negative values.
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Stochastic exponentials

Stochastic exponential

o Alternative form of (2):
Ey (t) = eSO, (4)

where
1 2
dSy (t) = F (t)dB (t) + (G () - 5F ) ) dt
+/ Iog(1+K(t,x))N(dt,dx)+/ log (1 + H (t,x)) N (dt, dx)
Ix|>1 Ix|<1

+/|| (log (1 + H (t,x)) — H (t:x)) v (dx) dt (5)
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Stochastic exponentials

Stochastic exponential

Theorem
d&y (t) =&y (1) dY (t) J

o Exercise: Prove the previous theorem by applying the Itd6 formula to (5)
(see Applebaum).

Jodo Guerra (CEMAPRE and ISEG, UTL) Option pricing with Lévy processes 4/36

Stochastic exponentials

Stochastic exponential

o Example 1: If Y (t) = 0B (t), where ¢ > 0 and B is a BM, then

Ey (t) = exp {UB (t) — %Jzt} :

@ Example 2: If Y = (Y (t),t > 0) is a compound Poisson process:
Y(t)=Xi+---+ XN(t) then

N(t)

& (1) =]](@+X)

i=1
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Stochastic exponentials

Stochastic exponential

@ Let X be a Lévy process with characteristics (b, o, v) and Lévy-Itd
decomposition X (t) = bt + 0B (t) + [, XN (t,dx) + [, 5, XN (t, dx).

@ When can &x (t) be written as exp (X (t)) for a certain Lévy process X;
and vice-versa?

o By (4) and (5) we have &x (t) = eSx(\) with

Sx (t) =0B (t)+/ Iog(1+x)N(t,dx)+/ log (1 + x) N (t, dx)

Ix|>1 Ix|<1
1 2
+t|b— 0"+ (log (1 +x) —x)v(dx)| . (6)
2 [x]<1
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Stochastic exponentials

Stochastic exponential

@ Comparing the Lévy-Itd decomposition with (6), we have

Theorem

If X is a Lévy process with each Ex (t), then Ex (t) = exp (X1 (t)) where X; is a
Lévy process with characteristics (b1, 01, v1) given by:

v =vef™, f(x)=log(l+x).
1 2

b =b 507+ [ flog(1+x)xg (l0g (1 +x)) ~ xxg ()] v ().
R—{0}

g1 — 0.

Conversely, there exists a Lévy process X, with characteristics (b2, o2, 17)
such that exp (X (t)) = &, (t) , where

vp=vogl, g(x)=e" -1
1

b2=b+—02+/ (% — 1) xg (€ — 1) — xxg (¥)] v (dx).
2 R—{0}

02 = 0.
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Exponential martingales

Exponential martingales

o Leévy-type stochastic integral:

dY (t) = G (t)dt + F (t)dB(t)+/ H (t,x) N (dt, dx)

Ix|<1

+ /|x|21 K (t,x) N (dt, dx).

@ Whenis Y a martingale?

@ Assumptions (stronger than necessary to avoid the local martingale
concept):

o (M) E [fg f|x|>1 K (s,x)|2u(dx)ds} < oo foreacht >0
o (M2) [JE[|G(s)|]ds < oo for each t > 0.
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Exponential martingales

Exponential martingales

o consequence of (M1) and Cauchy-Schwarz inequality:
Jo Jixiz1 K (8,%)| v (dx) ds < oo a.s.and

/Ot /MZlK(s,x)N(ds.,dx):/ot /|X|21K(s,x)lq(ds,dx)+/ot ‘/|X|21K(s,x)u(d><

and the compensated integral is a martingale.

Theorem
With assumptions (M1) and (M2), Y is a martingale if and only if

G(t)+ /|X|>1 K(t,x)rv(dx)=0 (a.s.)fora.a.t>0.

(see the proof in Applebaum)
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Exponential martingales

Exponential martingales

o Let us consider the process e¥ = (e"),t > 0).
@ By It6’s formula, we have that

t
ev(t)_1+/ e¥ (5 E (s // Y(S> eH(sx) _ )N(ds,dx)
x| <1
// Y(S) ek(sx) )N(ds,dx)
[x|>1

+/O VG- >(G( )+ 2F (5) +/|X|<l ("6 — 1~ H(s,x)) v (dx)

+/| . (eK(S’X) -~ 1) u(dx)) ds (7)
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Exponential martingales

Exponential martingales

Theorem
e is a martingale if and only if

G(s) + %F (s)* + /| B (eH(S’X) —1- H(s,x)) v (dx)
+/|X|21 (eK(SaX) - 1) v(dx)=0 (8)

a.s. and fora.a. s > 0.

o Therefore, e is a martingale if and only if

t
eY(t)_1+/ Y(s—)F // Y(s) eH(sx) _ )N(ds,dx)
[x|<1
L[ e (e - 1) o).
[x|>1
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Exponential martingales

Exponential martingales

o IfeY is a martingale then E [e¥®] = 1forallt > 0 and e is called an
exponential martingale.

o if Y is a Brownian integral: Y (t) = f(; G(s)ds + f; F (s)dB (s) then (8) is
G(t) = —iF (t)* and

e’ = exp (/OtF(S)dB(S)%/OtF(S)st>.
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Change of Measure - Girsanov’s Theorem

Change of Measure - Girsanov’s Theorem

o Let P and Q be two different probability measures. Q; and P; are the
measures restricted to (Q2, 7).

o Let eY be an exponential martingale and define Q; by

th _ aY(t)
ap,

@ Fix an interval [0, T] and define P = P+ and Q = Qr.

M= (M(t),0 <t <T)isaQ-martingale if and only if
MeY = (M(t)e¥®, 0 <t < T)is aP-martingale.
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Change of Measure - Girsanov's Theorem

Change of Measure - Girsanov’s Theorem

o LetY be a Brownian integral and
e’ = exp (fg F(s)dB(s) — % [JF (s) ds) :
o Define a new process

Theorem
(Girsanov): Bq is a Q-Brownian motion. J

o Generalization of Gir§anov: Let M be a martingale of the form
M(t) = fé JaL(x,s)N (ds, dx), with L predictable, L € P,. Then

N(t):M(t)—/t/L(s,x)(eH(S’X)—l)u(dx)ds
0 JA

Is a Q-martingale.
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Lévy Processes in Option Pricing

Option pricing

@ Stock price: S = (S(t),t > 0).
@ Contingent claims with maturity date T: Z is a non-negative F+
measurable r.v. representing the payoff of the option.

@ European call option: Z = max{S(T) — K, 0}

@ American call option: Z = sup max{S (7) — K, 0}
0<7<T

o Asian option: Z = max {% Jy(s(t) - K)dt,O}
@ We assume that the interest rate r is constant.
@ Discounted stock price process: S = (S (t),t > O) with S (t) = e~ "S(t).

@ Portfolio: (« (t),5 (1)), a(t) is the number of stocks and g (t) the number
of riskless assets (bonds).

@ Portfolio value: V (t) = a(t) S (t) + 8 (t) A(t)

@ A portfolio is said to be replicating if V(T) = Z.
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LCVYy FTOCCsosEs 1T UpPUOn Fricing

Option pricing

o Self-financing portfolio: dV (t) = « (t)dS (t) +r3 (t) A(t) dt.
@ A market is said to be complete if every contingent claim can be
replicated by a self-financing portfolio.

@ An arbitrage opportunity exists if the market allows risk-free profit. The
market is arbitrage free if there exists no self-financing strategy for which
V(0)=0,V(T)>0and P(V(T) >0) > 0.

Theorem
(Fundamental Theorem of Asset Pricing 1 in discrete time) If the market is
free of arbitrage opportunities, then there exists a probability measure Q,

which is equivalent to P, with respect to which the discounted process S is a
martingale.

@ A similar result holds in the continuous case but we need to make more
technical assumptions - instead of absence of arbitrage we need the
stronger NFLVR hypothesis ("no free lunch with vanishing risk").
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Lévy Processes in Option Pricing

Option pricing

Theorem
Fundamental Theorem of Asset Pricing 2) An arbitrage-free market is
complete if and only if there exists a unique probability measure Q, which is

equivalent to P, with respect to which the discounted process S is a
martingale.

@ Such a Q is called a martingale measure or risk-neutral measure.
o If Q exists, but is not unique, then the market is said to be incomplete.
@ In a complete market, it turns out that we have

V(t) =e " VEq [Z|A]

and this is the arbitrage-free price of the claim Z at time t.
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LCVYy FTOCCsosEs 1T UpPUOn Fricing

Stock price as a Levy process

o Return: 55 (1)
— = 00X (t ot
where X = (X (t),t > 0) is a semimartingale and ¢ > 0, . are parameters
called the volatility and stock drift.

@ It6 calculus SDE:

dS (t) = oS (t=) dX (t) + uS (t—)dt
— S(t-)dZ (1),

where Z (t) = oX (t) + pt.
@ Then S(t) = &y is the stochastic exponential of the semimartingale Z.
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Lévy Processes in Option Pricing

Stock price as a Levy process

@ When X is a standard Brownian motion B, we obtain geometric Brownian

motion
S(t) = exp (08 (t) + (u - %02> t)

o idea: Let X be a Lévy process. In order for stock prices to be
non-negative, (3) yields AX (t) > —o~1 (a.s.) for each t > 0. Denote
c=—-01

o We impose [, 1 1,00 X7 (dX) < co. This means that each X(t) has
first and second moments (reasonable for stock returns).

o By the Lévy-Itd decomposition,
X (t) = mt+kB(t)+/ xN (t, dx)
C

wherek > 0andm =b + f(c UL +00) xv (dx) (in terms of the earlier
parameters).
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LCVYy FTOCCsosEs 1T UpPUOn Fricing

Stock price as a Levy process

© Representing S(t) as the stochastic exponential £7(;), we obtain from (5)
that

d (log (S (t))) = kodB(t) + (ma + - %kzol) dt
+/oo |og(1+o—x)|§|’(dt,dx)+/oo (log (1 4 ox) — ox) v (dx) dt

o There are a number of explicit mathematically tractable and realistic
models: variance-gamma, normal inverse Gaussian, hyperbolic, etc.
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Lévy Processes in Option Pricing

Change of measure

o we seek to find measures Q, which are equivalent to P, with respect to
which the discounted stock process S is a martingale.

o LetY be a Lévy-type stochastic integral of the form:

dY (t) = G (t)dt + F (t)dB(t)+/ { }H (t,x) N (dt,dx).
R—{0

o Consider that e is an exponential martingale (therefore, G is determined
by F and H).

o Define Q by {2 = eY(T). By Girsanov theorem and its generalization:

BQ(t):B(t)—/OtF(s)ds isa Q-BM

NQ(t,A) — N(t,A) — 1o (t,A) is a Q-martingale

vo (t,A) == /t/ (eH(S’X)—1>z/(dx)ds.
0 JA
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LCVYy FTOCCsosEs 1T UpPUOn Fricing

Change of measure

~

@ S(t) = e "S(t) can be written in terms of these processes by:

d (log (é (t)>) — kodBq(t) + (ma b -t — TK262 4 KoF (1)

2
—|—a/ X (eH(t,X) _ 1) z/(dx)) dt +/ log (1 + oX) NQ (dt, dx)
R—{0} c
+ / (log (1 4 ox) — oX) g (dt, dx).
C

o PutS(t) = Sy (t)S, (), where

d (log (él (t))) = kodBo(t) — %kzazdt

+/ Iog(1+ax)NQ(dt,dx)+/ (log (1 4 ox) — oX) vg (dt,dx).
c c
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Lévy Processes in Option Pricing

Change of measure

o and

d (log (52 (t))) = (Mo + p — 1 +koF (1) +

—l—a/ X (eH(t’X) — 1) I/(dX)) dt.
R—{0}

o Apllying Ité’s formula to §1 we obtain:
dS: (1) = koS (t—) dBof(t) +/ 051 (t—) xNo (dt, dx) .
Cc

and §1 Is a Q-martingale.
o Therefore S is a Q-martingale if and only if

ma—i—,LL—r+k0F(t)+0/

X <eH("X) — 1) v(dx) =0 as. (9)
R—{0}

Jodo Guerra (CEMAPRE and ISEG, UTL) Option pricing with Lévy processes 23/36



LCVYy FTOCCsosEs 1T UpPUOn Fricing

Change of measure

@ Equation (9) clearly has an infinite number of possible solution pairs
(F.H).

@ There are an infinite number of possible measures Q with respect to
which S is a martingale. So the general Lévy process model gives rise to
incomplete markets.

o Example: the Brownian motion case: » = 0 and k # 0. Then there is a

unique solution
r—u—mo
F(t)= —— a.s.
(t) ko

and the market is complete (Black-Scholes model).
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Lévy Processes in Option Pricing

Incomplete markets and Esscher transform

o Equivalent measures Q exist with respect to which S will be a martingale,
but these will no longer be unique in general

@ We must follow a selection principle to reduce the class of all possible
measures Q to a subclass, within which a unique measure can be found.

o Aditional assumption:
/ e v (dx) < o
x|>1

for allu € R.
@ In this case, we can analytically continue the Lévy- Khintchine formula to
obtain
E {e—ux(t)} _ e—tv(u)
where

¥ (u) = —n (iu) = bu — %kzu2 +/OO (1—e™™ —uyxg(y)) v(dy).
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LCVYy FTOCCsosEs 1T UpPUOn Fricing

Incomplete markets and Esscher transform

@ The processes
My (1) = exp (iuX (t) -ty (u)),
Ny (t) = Miu (t) = exp (~uX (t) +t (u))

are martingales and Ny is strictly positive.
o Define a new probability measure by

dQu
dP

|ft =Ny (t)

@ Qu is called the Esscher transform of P by N,.
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Lévy Processes in Option Pricing

Incomplete markets and Esscher transform

@ Applying It6 formula to Ny, we have
dNy (t) = Ny (t-) (—kuB (t)+ (e —1)N (dt,dx)) .

o Comparing this with (7) for exponential martingales eY, we have that

F(t) = —ku,
H(t,x) = —ux

and the condition for Q, to be a martingale (9) is

ma—l—,u—l‘—kZUJ—i—a/ x (™™ —-1)v(dx) =0 as.
C
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LCVYy FTOCCsosEs 1T UpPUOn Fricing

Incomplete markets and Esscher transform

o Letz(u) = 7" x (e™™ — 1) v (dx) — k?u. Then the martingale condition
is:
! r—p—mo

z(u) = (10)

o

@ Since z'(u) < 0, z is strictly decrerasing, and therefore there is a unique
u (a unique measure Q) that satisfies (10).
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Hyperbolic processes in finance

Hyperbolic processes in finance

o Let A € B(R) be measurable set and let (gg, 6 € A) be a family of
probability density functions, and p a probability distribution on A (called
mixing measure).

@ The "probability mixture"

h(X)Z/Age (x) p(d6)

is a probability density function on R.
The hyperbolic distributions are "probability mixtures".
o Bessel functions of the 3rd kind:

K, (x):%/0 u’~texp <—%x <u+é>>du, X,v € R.

@ Foreacha,b >0

- o)

is a pdf on (0, co) - called a Generalized Inverse Gaussian or
GIG (v,a,b).
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Hyperbolic processes in finance

Hyperbolic processes in finance

o Take ptobe GIG(1,a,b) and A = (0, ) and g, the pdf of
N (,u + baz,az) with i, b € R.

@ The resulting probability mixture is

i 09 = 200K, (0;2\ /_a—fz_ 5‘2) o (_a\/52 Hoo WS )> ’

for all x € R, where o? = a + 3% and §% = b.

@ The corresponding law is called an hyperbolic distribution (log (hg’f) Is a

hyperbola). Parameters: p (location), « (tail), 5 (asymmetry), and ¢
(scale).

@ These dist. are infinitely divisible and all their moments exist.
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Hyperbolic processes in finance

Hyperbolic processes in finance

o Moment generating function: M3’ (u) = [, €**h$:7 (x) dx
@ It can be proved that

M (u) = e Vo2 -5z <5\/a2 —(B+ u2)>
s.u Ky ((5\/m> VaZ — (B + )

@ The characteristic function is ¢ (u) = M (iu)

@ For simplicity, we restrict to the symmetric case (i = S = 0) and with
( =da,

hes (X) = 25K11 @ exp (—g‘ 1+ (§>2> :

The corresponding Lévy process has no Gaussian part and it is:

t
X5 (1) :/O /R_{O} XN (ds, dx) .
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Hyperbolic processes in finance

Option pricing with hyperbolic processes

o Stock price:
dS(t) =S (t—)dX¢ 5 (t).

o A drawback of this approach is that the jumps of X 5 are not bounded
below (they can be < —1). That is why we model:

S(t) = S(0)eXs®),
S (t) = S (0)eXes -1t

@ Martingale measure Q such that Sisa Q martingale. Since the market is
incomplete, we can use the Esscher transform and

dQ
dpu 7 = Ny (t) = exp (—uX¢,s (t) — tlog (Mc 5 (u))) -
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Hyperbolic processes in finance

Option pricing with hyperbolic processes

o By the Generalized Girsanov theorem, Sisa Q-martingale iff §Nu is a
P-martingale.

S ()N (1) = exp (1 — u) X5 (t) — t (log (M 5 () +1))).
@ On the other hand, it can be proved that
exp ((1 —u) X5 (1) —tlog (Mcs (1 —u)))

is a martingale.
o Therefore S is a Q-martingale iff

r=log(Mc;s (1 —u)) —log (Mc¢s(1—u)) =

e Kl\/g2—52(1—u)2
G
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Hyperbolic processes in finance

Option pricing with hyperbolic processes

o The value of u can be determined from the previous expression by
numerical means.

@ We can now price an European call option by
_|_
V (0) = e T Eq, [(seXw(T) - K) ]

o If fC(t()s is the pdf of X; 5 (t) with respect to P then the Esscher transform
can be used to show that X. s (t) has the pdf with respect to Q,

£ (x;u) = fc(t()S (x) @~ —t1og(Me,s(u))

(
¢
@ Then, the pricing formula is:

V(O):sﬂ;o(k)

X

fC(Té) (x;l—u)dx—e_rTK/ fC(T(S) (x;u)dx.
’ log(¥) ™
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Hyperbolic processes in finance

Option pricing with hyperbolic processes

o Volatility: If we had S (t) = e?®) with Z (t) = 0B (t) (where B is a B.M.)
then the volatility is 02 = E {Z (1)2] :
@ By analogy, in the hyperbolic case the volatility is defined by

0?2 =E [Xc,g (1)2} and can be proved that (from the moment generating
function and Bessel functions properties):

2 _ %K (Q)
(Ka (¢)
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Hyperbolic processes in finance
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