Cotação da 1º Parte: 8 Valores. As respostas são efectuadas no espaço a seguir disponível. A cotação das perguntas de Verdadeiro e Falso é feita sempre da mesma maneira. No decorrer da prova não serão prestados quaisquer esclarecimentos. Não pode utilizar calculadora nem qualquer meio de consulta. BOA SORTE!

Nome:_____Número:____

Formulário

Axiomática: P1. $P(A) \ge 0$ P2. $P(\Omega) = 1$ P3. Se $A \cap B = \emptyset$ então $P(A \cup B) = P(A) + P(B)$

$$Var(X) = E(X - \mu)^{2} = E(X^{2}) - \mu^{2}; \quad Cov(X, Y) = E\{(X - \mu_{X})(Y - \mu_{Y})\} = E(XY) - E(X)E(Y); \quad \rho_{X,Y} = \frac{Cov(X, Y)}{\sigma_{X}\sigma_{Y}}$$

E(aX + bY) = aE(X) + bE(Y); $Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$; $E(Y) = E_{X}[E(Y | X)]$;

Função geradora de momentos: $M_X(s) = E(e^{sX})$; $E(X^r) = M_X^{(r)}(0)$

$$X \sim Po(\lambda) \Rightarrow f(x) = \left(e^{-\lambda}\lambda^{x}\right)/x! \ (\lambda > 0, x = 0, 1, \cdots); \ X \sim B(n, \theta) \Rightarrow f(x) = \binom{n}{x}\theta^{x}(1-\theta)^{n-x}(n > 1, x = 0, 1, \cdots, n)$$

$$X \sim Ex(\lambda) \Rightarrow F(x) = 1 - e^{-\lambda x} \quad (x < 0); X \sim G(\alpha, \lambda) \Rightarrow cX \sim G(\alpha, \lambda/c) \quad c = cte; \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} \quad ; \quad (n-1)S^2 = n S^2$$

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n} = \frac{\sum_{i=1}^{n} X_{i}^{2}}{n} - \overline{X}^{2}; X \sim \chi_{(n)}^{2} \text{ então } E(X) = n; \text{ Var}(X) = 2n; M_{X}(s) = (1 - 2s)^{-n/2}, s < \frac{1}{2}$$

[Atenção: Cada resposta certa vale 2,5 cada resposta errada vale -2,5. A classificação desta questão variará entre um mínimo de zero e um máximo de 10

Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva

1. Sejam A e B acontecimentos com probabilidade positiva de um espaço de resultados Ω .

	V	F
O espaço de resultados associado à observação do rendimento anual das famílias é contínuo.	Х	
Se A e B são incompatíveis então $P(B) = P(B \cap \overline{A})$.	Х	
Seja $\{A_1,A_2,A_3\}$ uma partição de \varOmega e o acontecimento $B\subset \varOmega$.		
Se B é independente de qualquer dos acontecimentos A_1, A_2, A_3 , então $P(B) = P(B) \times P(\Omega)$	Х	
Se $\overline{A \cap B} = \Omega$, então $P(A \cap B) = 0$	Х	

2. Seja X uma variável aleatória com função probabilidade ou densidade de probabilidade $f_X(x)$ e D_X o conjunto de pontos de descontinuidade da função distribuição $F_X(x)$

	V	<u> </u>
Se X é uma v.a. contínua, $F_X'(x) = f_X(x)$ nos pontos $x \in \mathbb{R}$ em que existe derivada de $F_X(x)$.	Х	
Sejam $a < b$, números reais e $P(X < a) > 0$, $P(X > b) > 0$. Qualquer que seja X tem-se $P(X < a X > b) = 0$	Х	
$D_X = \emptyset$ não garante que X seja uma v.a. contínua	Х	
Se X é uma v.a. contínua, $f_X(x)$ pode assumir valores superiores a 1	Х	

3. Seja (X,Y) uma variável aleatória bidimensional contínua com função distribuição conjunta $F_{X,Y}(x,y)$. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	V	
Se $Y = \mu - X$ então $Var(Y) = \mu^2 Var(X)$		Х
$P(X < Y) + P(X \ge Y) = 1$	Х	
Se $Y = X/2$, então $P(Y \le y) = F_X(2y)$	Х	
Se X e Y são variáveis aleatórias independentes então $E(X Y=y)=E(Y)$		Х

	٧	F
Se X é uma variável aleatória contínua, a variável $Y = F_X(x) \sim U(a,b) \ \ \forall \ (a,b) \in \mathbb{R}$		X
Seja $X \sim N(\mu, \sigma^2)$ e $b = -2\sigma$ uma constante, então $P(X < \mu + b)$ não depende de μ e σ^2	Х	
Sejam X_1 e X_2 o número de ocorrências de um processo de Poisson com ritmo médio λ , por hora, respectivamente nos intervalos $\Delta t_1 = (0,3)$ e $\Delta t_2 = (0,6)$, então $X_1 + X_2 \sim Po(2\lambda)$		Х
Se $X \sim B(n, \theta)$, então $Y = n - X \sim B(n, 1 - \theta)$.	Х	

5. Considere uma amostra casual simples (X_1, X_2, \cdots, X_n) de dimensão n > 2 retirada de uma População X com parâmetros desconhecidos.

	V	<u> </u>
$Cov(X_i, X_j) = 0$ $i \neq j$ $(i, j = 1, 2, \dots, n)$	Х	
$Max\{X_i\}$ e $Min\{X_i\}$ são variáveis aleatórias dependentes	Х	
$(\bar{X}-n)^2/2S_X'^2$ é uma estatística.		
Se existir função geradora de momentos de $X\left(M_{X}(s)\right)$ então		
$E(X_1 + X_2) = 2M_X'(0)$		Х

6. Mostre que se A e B forem acontecimentos mutuamente exclusivos então se tem: [Cotação: 15]

$$P(A|A \cup B) = \frac{P(A)}{P(A) + P(B)}$$

$$P(A|A \cup B) = \frac{P[A \cap (A \cup B)]}{P(A \cup B)} = \frac{P[(A \cap A) \cup (A \cap B)]}{P(A) + P(B) - P(A \cap B)}$$
$$= \frac{P(A) + P(A \cap B) - P[A \cap (A \cap B)]}{P(A) + P(B) - P(A \cap B)} = \frac{P(A)}{P(A) + P(B)}$$

Porque se A e B forem acontecimentos mutuamente exclusivos então

$$A \cap B = \emptyset \Rightarrow P(A \cap B) = 0$$
 e

$$A \cap (A \cap B) = A \cap \emptyset = \emptyset \Rightarrow P[A \cap (A \cap B)] = 0$$

7. Se $X \sim U(\alpha, \beta)$ determine a distribuição de $Y = F_X(x)$. Justifique cuidadosamente todos os passos. [Cotação: 15]

$$Y = F_X(x)$$
 e por definição $0 < F_X(x) < 1$

A função distribuição de $Y = F_X(x)$ é dada por

$$P(Y \le y) = P(F_X(x) \le y) = P(X \le F_X^{-1}(y)) = F_X[F_X^{-1}(y)] = y \quad 0 < y < 1$$

então $Y \sim U(0,1)$

Cotação da 1º Parte: 8 Valores. As respostas são efectuadas no espaço a seguir disponível. Nas quest perguntas de Verdadeiro e Falso é feita sempre da mesma maneira. No decorrer da prova não serão prestados quaisquer esclarecimentos. Não pode utilizar calculadora nem qualquer meio de consulta. BOA SORTE!

Nome:	Número:
Formulário	
Axiomática: P1. $P(A) \ge 0$ P2. $P(\Omega) = 1$ P3. Se $A \cap B = 0$	\emptyset então $P(A \cup B) = P(A) + P(B)$
$Var(X) = E(X - \mu)^2 = E(X^2) - \mu^2; Cov(X, Y) = E\{(X - \mu_X)(Y - \mu_X)\}$	$\{\mu_Y\} = E(XY) - E(X)E(Y); \rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$
$E(aX + bY) = aE(X) + bE(Y) ; Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y)$	$(Y) + 2ab \operatorname{Cov}(X, Y); E(Y) = E_X [E(Y \mid X)];$
Função geradora de momentos: $M_X(s) = E(e^{sX})$; $E(X^r) = M_X^{(r)}(0)$:
$X \sim Po(\lambda) \Rightarrow f(x) = (e^{-\lambda}\lambda^x)/x! (\lambda > 0, x = 0, 1, \dots); X \sim B(n, \theta) \Rightarrow f(x) = (e^{-\lambda}\lambda^x)/x! (\lambda > 0, x = 0, 1, \dots); X \sim B(n, \theta) \Rightarrow f(x) = (e^{-\lambda}\lambda^x)/x! (\lambda > 0, x = 0, 1, \dots); X \sim B(n, \theta) \Rightarrow f(x) = (e^{-\lambda}\lambda^x)/x! (\lambda > 0, x = 0, 1, \dots); X \sim B(n, \theta) \Rightarrow f(x) = (e^{-\lambda}\lambda^x)/x! (\lambda > 0, x = 0, 1, \dots); X \sim B(n, \theta) \Rightarrow f(x) = (e^{-\lambda}\lambda^x)/x! (\lambda > 0, x = 0, 1, \dots); X \sim B(n, \theta) \Rightarrow f(x) = (e^{-\lambda}\lambda^x)/x! (\lambda > 0, x = 0, 1, \dots); X \sim B(n, \theta) \Rightarrow f(x) = (e^{-\lambda}\lambda^x)/x! (\lambda > 0, x = 0, 1, \dots); X \sim B(n, \theta) \Rightarrow f(x) = (e^{-\lambda}\lambda^x)/x! (\lambda > 0, x = 0, 1, \dots); X \sim B(n, \theta) \Rightarrow f(x) = (e^{-\lambda}\lambda^x)/x! (\lambda > 0, x = 0, 1, \dots); X \sim B(n, \theta) \Rightarrow f(x) = (e^{-\lambda}\lambda^x)/x! (\lambda > 0, x = 0, 1, \dots); X \sim B(n, \theta) \Rightarrow f(x) = (e^{-\lambda}\lambda^x)/x! (\lambda > 0, x = 0, 1, \dots); X \sim B(n, \theta)$	$f(x) = \binom{n}{x} \theta^{x} (1 - \theta)^{n - x} (n > 1, x = 0, 1, \dots, n)$
$X \sim Ex(\lambda) \Rightarrow F(x) = 1 - e^{-\lambda x} (x < 0); X \sim G(\alpha, \lambda) \Rightarrow cX \sim G(\alpha, \lambda/c)$	$c = cte; \overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}; (n-1)S^{2} = n S^{2}$
$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n} = \frac{\sum_{i=1}^{n} X_{i}^{2}}{n} - \overline{X}^{2}; X \sim \chi_{(n)}^{2} \text{ então } E(X) = n; V$	$Var(X) = 2n$; $M_X(s) = (1-2s)^{-n/2}$, $s < \frac{1}{2}$

[Atenção: Cada resposta certa vale 2,5 cada resposta errada vale –2,5. A classificação desta questão variará entre um mínimo de *zero* e um máximo de *10*] Indique as respostas verdadeiras (V) ou falsas (F), *assinalando com X na quadrícula respectiva*

1. Sejam A e B acontecimentos com probabilidade positiva de um espaco de resultados Ω .

	V	F
O espaço de resultados associado à observação da variação do preço de uma acção de uma empresa é contínua.	Х	
Se A e B são incompatíveis então $P(B \bar{A}) = P(B)/P(\bar{A})$.	Х	
Seja $\{A_1, A_2, A_3\}$ uma partição de Ω e o acontecimento $B \subset \Omega$. Se B é independente de qualquer dos acontecimentos A_1, A_2, A_3 , então $P(B) \neq P(B) \times P(\Omega)$		Х
Se $\overline{A \cap B} = \Omega$, então $P(A \cap B) \neq 0$		Х

2. Seja X uma variável aleatória com função probabilidade ou densidade de probabilidade $f_X(x)$ e D_X o conjunto de pontos de descontinuidade da função distribuição $F_X(x)$.

	V	F
$F_X'(x) = f_X(x)$ nos pontos $x \in \mathbb{R}$ em que existe derivada de $F_X(x)$ se e só se X é uma v.a. contínua.		Х
Sejam $a < b$, números reais e $P(X > a) > 0$, $P(X > b) > 0$. Qualquer que seja X tem-se $P(X > a X > b) = 1$	Х	
Se X é uma v.a. contínua então D_X é um intervalo não vazio de \Re .		Х
Se X for uma variável aleatória, $F_X(x)$ nunca pode assumir valores superiores a 1	Х	

3. Seja (X,Y) uma variável aleatória bidimensional contínua com função distribuição conjunta $F_{X,Y}(x,y)$.

	V	F
Se $Y = \mu - X$ então $Var(Y) = Var(X)$	X	
$P(X < Y) + P(X \ge Y) < 1$		Х
Se X e Y são variáveis aleatórias independentes então $E(X Y=y)=E(X)$	Х	
Se $Y = 2X$, então $P(Y \le y) = F_X(y/2)$	Х	

	V	F
Se X é uma variável aleatória contínua, a variável $Y = F_X(x) \sim U(0, 1)$	Х	
Seja $X \sim N(\mu, \sigma^2)$ e $b = -2\sigma$ uma constante, então $P(X < \mu + b)$ depende de μ e σ^2		Х
Sejam X_1 e X_2 o número de ocorrências de um processo de Poisson com ritmo médio λ , por hora, respectivamente nos intervalos $\Delta t_1 = (0,2]$ e $\Delta t_2 = (2,5]$, então $X_1 + X_2 \sim Po(\lambda_1 + \lambda_2)$	Х	
Se $X \sim B(n, \theta)$, então $Y = n - X \sim B(n - x, \theta)$.		Х

5. Considere uma amostra casual simples (X_1, X_2, \cdots, X_n) de dimensão n > 2 retirada de uma População X com parâmetros desconhecidos e variância positiva.

	V	F
$Cov(X_i, X_j) = \sigma_X^2$ $i = j$ $(i, j = 1, 2, \dots, n)$	Х	
$Max\{X_i\}$ e $Min\{X_i\}$ são variáveis aleatórias independentes		Х
$(\bar{X} - \mu_X)^2 / 2S^2$ é uma estatística.		Х
Se existir função geradora de momentos de $X(M_X(s))$ então		
$E(X_1 + X_2) = [M_X'(0)]^2$		

6. Mostre que se A e B forem acontecimentos mutuamente exclusivos então se tem:

$$P(A|A \cup B) = \frac{P(A)}{P(A) + P(B)}$$
 [Cotação: 15]

7. Se $X \sim U(\alpha, \beta)$ determine a distribuição de $Y = F_X(x)$. Justifique cuidadosamente todos os passos. [Cotação: 15]

Cotação da 1º Parte: 8 Valores. As respostas são efectuadas no espaço a seguir disponível. A cotação das perguntas de Verdadeiro e Falso é feita sempre da mesma maneira. No decorrer da prova não serão prestados quaisquer esclarecimentos. Não pode utilizar calculadora nem qualquer meio de consulta. BOA SORTE!

Nome:			Número:	_
Formulário				
Axiomática:	P1. $P(A) \ge 0$	P2. $P(\Omega) = 1$	P3. Se $A \cap B = \emptyset$ então $P(A \cup B) = P(A) + P(B)$	

$$Var(X) = E(X - \mu)^{2} = E(X^{2}) - \mu^{2}; \quad Cov(X, Y) = E\{(X - \mu_{X})(Y - \mu_{Y})\} = E(XY) - E(X)E(Y); \quad \rho_{X,Y} = \frac{Cov(X, Y)}{\sigma_{X}\sigma_{Y}}$$

$$E(aX + bY) = aE(X) + bE(Y)$$
; $Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$; $E(Y) = E_{X}[E(Y | X)]$;

Função geradora de momentos: $M_X(s) = E(e^{sX})$; $E(X^r) = M_X^{(r)}(0)$

$$X \sim Po(\lambda) \Rightarrow f(x) = \left(e^{-\lambda}\lambda^{x}\right)/x! \ (\lambda > 0, x = 0, 1, \cdots); \ X \sim B(n, \theta) \Rightarrow f(x) = \binom{n}{x}\theta^{x}(1 - \theta)^{n-x}(n > 1, x = 0, 1, \cdots, n)$$

$$X \sim Ex(\lambda) \Rightarrow F(x) = 1 - e^{-\lambda x} \quad (x < 0); X \sim G(\alpha, \lambda) \Rightarrow cX \sim G(\alpha, \lambda/c) \quad c = cte; \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} \quad ; \quad (n-1)S^2 = n S^2$$

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n} = \frac{\sum_{i=1}^{n} X_{i}^{2}}{n} - \overline{X}^{2}; X \sim \chi_{(n)}^{2} \text{ então } E(X) = n; \text{ Var}(X) = 2n; M_{X}(s) = (1 - 2s)^{-n/2}, s < \frac{1}{2}$$

[Atenção: Cada resposta certa vale 2,5 cada resposta errada vale –2,5. A classificação desta questão variará entre um mínimo de *zero* e um máximo de *10*]

Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva

1 Sejam A e B acontecimentos com probabilidade positiva de um espaço de resultados Ω .

	V	-
O espaço de resultados associado à observação do rendimento anual das famílias é discreto.		Х
Se A e B são incompatíveis então $P(A) = P(A \cap \overline{B})$.	Х	
Seja $\{A_1,A_2,A_3\}$ uma partição de \varOmega e o acontecimento $B\subset \varOmega$.	Х	
Se B é independente de qualquer dos acontecimentos A_1, A_2, A_3 , então $P(B) = P(B) \times P(\Omega)$		
Se $\overline{A \cap B} = \Omega$, então $P(A \cap B) = 0$	X	

2. Seja X uma variável aleatória com função probabilidade ou densidade de probabilidade $f_X(x)$ e D_X o conjunto de pontos de descontinuidade da função distribuição $F_X(x)$.

	V	F
Se X é uma v.a. discreta, $F_X'(x) = f_X(x)$ nos pontos $x \in D_X$		Х
Sejam $a < b$, números reais e $P(X < a) > 0$. $P(X > b) > 0$ Qualquer que seja X tem-se $P(X > b X < a) = 0$	Х	
Se $D_X \neq \emptyset$ e $\sum_{x \in D_X} P(X = x) = 1$ então X é uma v.a. mista.		Х
Se X é uma variável aleatória discreta, $f_X(x)$ não pode assumir valores superiores a 1	Х	

3. Seja (X,Y) uma variável aleatória bidimensional contínua com função distribuição conjunta $F_{X,Y}(x,y)$.

	V	F
Se $Y = \mu - X$ então $Var(Y) = \mu - Var(X)$		Х
$P(X \le Y) + P(X > Y) < 1$		Х
Se $Y = X/2$, então $P(Y \le y) = F_X(2y)$	Х	
Se X e Y são variáveis aleatórias independentes então $E(X Y=y)=E(Y)$		Х

	V	F
Se X é uma variável aleatória contínua, a variável $Y = F_X(x) \sim U(a,b) \forall \ (a,b) \in \mathbb{R}$		Х
Seja $X \sim N(\mu, \sigma^2)$ e $b=2\sigma$ uma constante, então $P(X<\mu+b)$ não depende de μ e σ^2	Х	
Sejam X_1 e X_2 o número de ocorrências de um processo de Poisson com ritmo médio λ , por hora, respectivamente nos intervalos $\Delta t_1 = (0,2)$ e $\Delta t_2 = (0,5)$, então $X_1 + X_2 \sim Po(\lambda_1 + \lambda_2)$		Х
Se $X \sim B(n, \theta)$, então $Y = n - X \sim B(n - x, 1 - \theta)$.		Х

5. Considere uma amostra casual simples (X_1, X_2, \cdots, X_n) de dimensão n > 2 retirada de uma População X com parâmetros desconhecidos e variância positiva.

		<u> </u>
$Cov(X_i, X_j) = 0$ $i \neq j$ $(i, j = 1, 2, \dots, n)$	Х	
$Max\{X_i\}$ e $Min\{X_i\}$ são variáveis aleatórias dependentes	Х	
\bar{X}^2/S^2 é uma estatística.	Х	
Se existir função geradora de momentos de $X\left(M_{X}(s)\right)$ então		
$E(X_1 + X_2) = 2M_X'(0)$		Х

6. Mostre que se A e B forem acontecimentos mutuamente exclusivos então se tem:

$$P(A|A \cup B) = \frac{P(A)}{P(A) + P(B)}$$
 [Cotação: 15]

7. Se $X \sim U(\alpha, \beta)$ determine a distribuição de $Y = F_X(x)$. Justifique cuidadosamente todos os passos. [Cotação: 15]

Cotação da 1º Parte: 8 Valores. As respostas são efectuadas no espaço a seguir disponível. A cotação das perguntas de Verdadeiro e Falso é feita sempre da mesma maneira. No decorrer da prova não serão prestados quaisquer esclarecimentos. Não pode utilizar calculadora nem qualquer meio de consulta. BOA SORTE!

Nome:			Númer	ro:
Formulário				
Axiomática:	P1. $P(A) \ge 0$	P2. $P(\Omega) = 1$	P3. Se $A \cap B = \emptyset$ então $P(A \cup B) = P(A) + P(B)$	
Var(X) = E(X)	$(X - \mu)^2 = E(X^2) - \mu$	μ^2 ; $\operatorname{Cov}(X,Y) =$	$E\{(X - \mu_X)(Y - \mu_Y)\} = E(XY) - E(X)E(Y); \ \rho_{X,Y} =$	$\frac{\operatorname{Cov}(X,Y)}{\sigma_X\sigma_Y}$
E(aX + bY) =	aE(X)+bE(Y);	Var(aX + bY) = a	2 Var(X) + b^{2} Var(Y) + $2ab$ Cov(X,Y); $E(Y) = E_{X}[E(X)]$	$[Y \mid X)];$
Função gerado	ora de momentos: A	$A_X(s) = E(e^{sX});$	$E(X^r) = M_X^{(r)}(0)$	
$X \sim Po(\lambda) \Rightarrow f$	$f(x) = (e^{-\lambda}\lambda^x)/x$!	$(\lambda > 0, x = 0, 1, \cdot)$	$\cdots); X \sim B(n, \theta) \Rightarrow f(x) = \binom{n}{x} \theta^x (1 - \theta)^{n - x} (n > 1, x)$	$c=0,1,\cdots,n$
$X \sim Ex(\lambda) \Rightarrow F$	$f(x) = 1 - e^{-\lambda x} (x)$	$(\alpha < 0); X \sim G(\alpha, \lambda)$	$\Rightarrow cX \sim G(\alpha, \lambda/c) \ c = cte; \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} \ ; \ (n-1)S^2$	$=n S^2$

[Atenção: Cada resposta certa vale 2,5 cada resposta errada vale –2,5. A classificação desta questão variará entre um mínimo de *zero* e um máximo de *10* Indique as respostas verdadeiras (V) ou falsas (F), *assinalando com X na quadrícula respectiva*

 $S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n} = \frac{\sum_{i=1}^{n} X_{i}^{2}}{n} - \overline{X}^{2}; X \sim \chi_{(n)}^{2} \text{ então } E(X) = n; \text{ Var}(X) = 2n; M_{X}(s) = (1 - 2s)^{-n/2}, s < \frac{1}{2}$

1. Sejam A e B acontecimentos com probabilidade positiva de um espaço de resultados Ω .

	V	F
O espaço de resultados associado à observação da variação do preço de uma acção de uma empresa é discreto.		Х
Se A e B são incompatíveis então $P(A \bar{B}) = P(A)/P(\bar{B})$.	Х	
Seja $\{A_1,A_2,A_3\}$ uma partição de Ω e o acontecimento $B\subset\Omega$. Se B é independente de qualquer dos acontecimentos A_1,A_2,A_3 , então $P(B)\neq P(B)\times P(\Omega)$		Х
Se $\overline{A \cap B} = \Omega$, então $P(A \cap B) \neq 0$		Х

2. Seja X uma variável aleatória com função probabilidade ou densidade de probabilidade $f_X(x)$ e D_X o conjunto de pontos de descontinuidade da função distribuição $F_X(x)$.

	V	F
Se X é uma variável aleatória mista e $D_X = \{a\}$, então $F_X'(x) = f_X(x)$ nos pontos $x \in \mathbb{R}_{-\{a\}}$ em que existe derivada de $F_X(x)$.	X	
Sejam $a < b$, números reais e $P(X < a) > 0$, $P(X < b) > 0$. Qualquer que seja X tem-se $P(X < b X < a) = 1$	Х	
Se X é uma v.a. discreta então D_X é um conjunto de pontos isolados de \Re .	Х	
Se X é uma variável aleatória, $F_X(x)$ nunca pode assumir valores inferiores a 0	Х	

3. Seja (X,Y) uma variável aleatória bidimensional discreta com função distribuição conjunta $F_{X,Y}(x,y)$.

	٧	F
Se $Y = \mu - X$ então $Var(Y) = \mu + Var(X)$		Х
Se $Y = 2X$, então $P(Y \le y) = F_X(y/2)$	Х	
Se X e Y são variáveis aleatórias independentes então $E(Y X=x)=E(Y)$	Х	
$P(X \le Y) + P(X > Y) < 1$		Х

	V	F
Se X é uma variável aleatória contínua, a variável $Y = F_X(x) \sim U(0, 1)$	Х	
Seja $X \sim N(\mu, \sigma^2)$ e $b=2\sigma$ uma constante, então $P(X<\mu+b)$ depende de μ e σ^2		Х
Seja X_1 e X_2 o número de ocorrências de um processo de Poisson com ritmo médio λ , por hora, respectivamente nos intervalos $\Delta t_1 = (2,5]$ e $\Delta t_2 = (5,10]$, então $X_1 + X_2 \sim Po(\lambda_1 + \lambda_2)$	Х	
Se $X \sim B(n, \theta)$, então $Y = n - X \sim B(n, 1 - \theta)$.	Х	

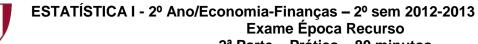
5. Considere uma amostra casual simples de dimensão n>2 retirada de uma População X com parâmetros desconhecidos.

	V	<u> </u>		
$Cov(X_i, X_j) = \sigma_X^2$ $i = j$ $(i, j = 1, 2, \dots, n)$	Х			
$Max\{X_i\}$ e $Min\{X_i\}$ são variáveis aleatórias independentes				
$ar{X}^2/2\sigma^2$ é uma estatística.		Х		
Se existir função geradora de momentos de $X\left(M_X(s)\right)$ então				
$E(X_1 + X_2) = [M_X'(0)]^2$	Х			

6. Mostre que se A e B forem acontecimentos mutuamente exclusivos então se tem:

$$P(A|A \cup B) = \frac{P(A)}{P(A) + P(B)}$$
 [Cotação: 15]

7. Se $X \sim U(\alpha, \beta)$ determine a distribuição de $Y = F_X(x)$. Justifique cuidadosamente todos os passos. [Cotação: 15]



01. 07. 13

•		2ª Parte –	Pratica – 80 minuto	S
Nome:				Número:
Espaço reservado	para classificaçõ	ies		
1a.(10)	2a.(10)	3a.(20)	4a.(10)	T:
1b.(15)	2b.(15)	3b.(20)	4b.(20)	P:
Atenção: Nas perç	guntas de respost	a múltipla, um	a resposta errada des	sconta 2.5 pontos.
jornal A. A p percentagem é de 10%.	ercentagem de l de leitores de ar	eitores de pel mbos os jornai	o menos um destes is. A percentagem d	da percentagem de leitores do jornais é, também, dupla da e leitores de ambos os jornais lidade de pelo menos 3 lerem
ambos os 0.8715 ☐	jornais.).1841 X	0.0556	·
•	probabilidade de compare-as. Jus	-		" e " um leitor do jornal B ler o
	P((B A)=1>	P(A B) = 0.5	
	mensagens que ção de Poisson co	•		ador utilizado como servidor,
a) Qual é	a probabilidade	de que chegue	em, quanto muito, 2	mensagens numa hora.
0.0149		0.0446 🗌	0.0174	0.0620 X

b) Determine o intervalo de tempo necessário para que a probabilidade de que não

 $y = ?: P(Y > t) = 0.045 \Leftrightarrow y = 31,011$

chegue nenhuma mensagem durante esse intervalo seja igual a 4,5%.

Y – tempo, em minutos, até chegada de uma mensagem $\sim Ex(0.1)$

$$f_X(x) = \begin{cases} 1+x & -1 < x < 0 \\ 1-x & 0 < x < 1 \end{cases}$$

a) Encontre a função distribuição de X e classifique a variável aleatória. Justifique devidamente a resposta.

$$F_X(x) = \begin{cases} 0 & x \le -1\\ \frac{x^2}{2} + x + \frac{1}{2} & -1 < x \le 0\\ -\frac{x^2}{2} + x + \frac{1}{2} & 0 < x < 1\\ 1 & x > 1 \end{cases}$$

X é uma variável aleatória contínua.

b) Seja $Y = \begin{cases} -1 & X \leq 0 \\ 0 & 0 < X < 1/2 \end{cases}$. Calcule o valor esperado da variável aleatória Y $X \geq 1/2$

Então $E(Y) = -\frac{3}{8}$;

- **4.** O tempo que uma pessoa gasta, diariamente, a aguardar pelo transporte público, tem distribuição uniforme no intervalo (0, 12).
 - a) Determine a probabilidade de, em certo dia, o tempo gasto a aguardar pelo transporte público seja inferior a 5 minutos.

0.6667 0.5833 0.4167 X 0.3333 0

b) Seleccionada uma amostra casual simples de 49 dias, determine a probabilidade de o tempo médio de espera a aguardar pelo transporte público, seja superior a 7 minutos.

$$P(\bar{X} > 7) = 0.0217$$

ESTATÍSTICA I - 2º Ano/Economia-Finanças - 2º sem 2012-2013 01. 07. 13 V2 Exame Época Recurso 2ª Parte - Prática - 80 minutos

No	me:				Número:			
Es	Espaço reservado para classificações							
	1a.(10)	2a.(10)	3a.(20)	4a.(10)	T:			
	1b.(15)	2b.(15)	3b.(20)	4b.(20)	P:			
Ate	enção: Nas pergun	tas de respos	ta múltipla, um	a resposta errada	desconta 2.5 pontos			
	jornal A. A percen	itagem de leit	ores de pelo m	enos um destes	da percentagem de leitores do jornais é, também, dupla da de leitores de ambos os jornais é			
a)	Se selecionarmo ambos os jornais 0.23	•		, qual é a probabi 0.9572 <u> </u>	lidade de pelo menos 5 lerem 0.0127 X			
b)	Calcule a probal jornal A" e comp		•	•	" e " um leitor do jornal B ler o			
	tem distribuição d	e Poisson co	m média igual (0,1.	utador utilizado como servidor, 			
a)	Qual é a probab	·		anto muito, 2 mer	nsagens em meia hora.			
	0.1991 🗌	0.1494	! 🗀	0.4232 X	0.2240 🗌			
b)		•	•	oara que a probat seja igual a 4,5%	oilidade de que não chegue o.			

$$f_X(x) = \begin{cases} 1+x & -1 < x < 0 \\ 1-x & 0 < x < 1/2 \end{cases}$$

a) Encontre a função distribuição de X e classifique a variável aleatória. Justifique devidamente a resposta.

b) Seja $Y = \begin{cases} -1 & X < 0 \\ 0 & 0 \le X < 1/2 \end{cases}$. Calcule o valor esperado e variância da variável aleatória Y. $X \ge 1/2$

	O tempo que uma pessoa gasta distribuição uniforme no interval		ar pelo transporte público,	tem
a)	Determine a probabilidade de, seja inferior a 10 minutos.	em certo dia, o tempo e	gasto a aguardar pelo tran	sporte público
	0.7500	0.8333 X	0.2500	0.1667
b)	Seleccionada uma amostra de espera a aguardar pelo transp	•	•	iédio de

ESTATÍSTICA I - 2º Ano/Economia-Finanças – 2º sem 2012-2013 Exame Época Recurso 2ª Parte – Prática – 80 minutos

01. 07. 13 V3

Nome:					Número:		
Espaço reservado para classificações							
1a.(10)	2a.(10)	3a.(20)	4a.(10)	T:		
1b.(15)	2b.(15)	3b.(20)	4b.(20)	P:		
Atenção: Nas	perguntas de	resposta i	múltipla, uma re	sposta errada descor	nta 2.5 pontos		
jornal A. percenta é de 10%	1. Em certa cidade, a percentagem de leitores do jornal B é dupla da percentagem de leitores de jornal A. A percentagem de leitores de pelo menos um destes jornais é, também, dupla da percentagem de leitores de ambos os jornais. A percentagem de leitores de ambos os jornais é de 10%.						
•	elecionarmos os os jornais.	15 pesso	as dessa cidade	e, qual é a probabilid	ade de no mínimo 4 lerem		
0.012	7 🗌	0.0556 >	<	0.8715	0.9572		
-	-		um leitor do jori istifique conven	•	e " um leitor do jornal B ler		
	O número de mensagens que chegam, por minuto, a um computador utilizado como servidor, tem distribuição de Poisson com média igual 0,1.						
a) Qual	a) Qual é a probabilidade de que cheguem, quanto muito, 3 mensagens numa hora.						
0.892	20 🗌	0.	0620 🗌	0.1512 X	0.0446		
•			•	ara que a probabilida seja igual a 4,5%.	ade de que não chegue		

$$f_X(x) = \begin{cases} 1+x & -1 < x < 0 \\ 1-x & 0 < x < 1/2 \end{cases}$$

a) Encontre a função distribuição de X e classifique a variável aleatória. Justifique devidamente a resposta.

b) Seja $Y = \begin{cases} -1 & X < 0 \\ 0 & 0 \le X < 1/2 \end{cases}$. Calcule o valor esperado e variância da variável aleatória Y. $X \ge 1/2$

4.	O tempo que uma pessoa gasta, diariamente, a aguardar pelo transporte público, tem distribuição uniforme no intervalo (0, 12).						
	a)	 a) Determine a probabilidade de, em certo dia, o tempo gasto a aguardar pelo transporte público seja inferior a 8 minutos. 					
		0.6667	X	0.5833	0.4167	0.3333	
	b) Seleccionada uma amostra de 49 dias, determine a probabilidade de o tempo méd espera a aguardar pelo transporte público, seja superior a 7 minutos.					•	

ESTATÍSTICA I - 2º Ano/Economia-Finanças - 2º sem 2012-2013 01. 07. 13 V4 Exame Época Recurso 2ª Parte - Prática - 80 minutos

Non	ne:				Número:			
Esp	Espaço reservado para classificações							
	1a.(10)	2a.(10)	3a.(20)	4a.(10)	T:			
	1b.(15)	2b.(15)	3b.(20)	4b.(20)	P:			
Ate	nção: Nas perguntas	s de resposta i	múltipla, uma r	esposta errada d	lesconta 2.5 pontos			
	jornal A. A percent percentagem de le é de 10%.	agem de leito itores de amb	res de pelo me os os jornais.	enos um destes A percentagem	a da percentagem de leitores do s jornais é, também, dupla da de leitores de ambos os jornais			
	 a) Se selecionarm ambos os jornal 		s dessa cidade	e, qual é a proba	bilidade de pelo menos 6 lerem			
	0.9981 🗌	0.9895		0.0003	0.0022 X			
	b) Calcule a proba jornal A" e comp			-	B" e " um leitor do jornal B ler o			
2.	 2. O número de mensagens que chegam, por minuto, a um computador utilizado como servidor, tem distribuição de Poisson com média igual 0,1. a) Qual é a probabilidade de que cheguem, quanto muito, 4 mensagens em meia hora. 							
	a) Qual e a propa	abilidade de q	ue cneguem, c	quanto muito, 4 i	mensagens em meia nora.			
	0.8153 X	0.6472		0.1680 🗌	0.2240			
	•		•	o para que a pro llo seja igual a 4	babilidade de que não chegue ,5%.			

$$f_X(x) = \begin{cases} 1+x & -1 < x < 0 \\ 1-x & 0 < x < 1/2 \end{cases}$$

a) Encontre a função distribuição de X e classifique a variável aleatória. Justifique devidamente a resposta.

b) Seja $Y = \begin{cases} -1 & X < 0 \\ 0 & 0 \le X < 1/2 \end{cases}$. Calcule o valor esperado e variância da variável aleatória Y. $X \ge 1/2$

4.		O tempo que uma pessoa gasta, diariamente, a aguardar pelo transporte público, tem distribuição uniforme no intervalo (0, 12).						
	a)	Determine a probabilidade de, em certo dia, o tempo gasto a aguardar pelo transporte público seja inferior a 9 minutos.						
		0.7500 X	0.6667	0.2500	0.3333 🗌			
	b) Seleccionada uma amostra de 49 dias, determine a probabilidade de o tempo médio o espera a aguardar pelo transporte público, seja superior a 7 minutos.							