1. Consider a motor insurance portfolio where the population is classified into categories A, B and C, respectively, where A is Good drivers, B is Bad drivers and C is Sports drivers. The population of drivers is split as follows: 70% is in category $A, 25 \%$ in B and 5% in C. For each driver in category A, there is a probability of 0.75 of having no claims in a year, a probability of 0.2 of having one claim and a probability of 0.05 of having two or more claims in a year. For each driver in category B these probabilities are $0.25,0.4$ and 0.35 , respectively. For each driver in category C these probabilities are $0.3,0.4$ and 0.3 , respectively.
Risk parameter representing the kind of driver is denoted by θ, which is a realization of the random variable Θ. The insurer does not know the value of that parameter. Let X be the (observable) number of claims per year for a risk taken out at random from the whole portfolio. For a given $\Theta=\theta$ yearly observations X_{1}, X_{2}, \ldots, make a random sample from risk X. The insurer finds crucial that the annual premium for a given risk might be adjusted by its claim record.
(a) Consider a risk X taken out at random from the portfolio.

	A	B	C
	$\pi(A)=0.7$	$\pi(B)=0.25$	$\pi(C)=0.05$
X	$\operatorname{Pr}(X=i \mid \theta=A)$	$\operatorname{Pr}(X=i \mid \theta=B)$	$\operatorname{Pr}(X=i \mid \theta=C)$
0	0.75	0.25	0.3
1	0.20	0.40	0.4
2	0.05	0.35	0.3

i. Calculate the mean and variance of X. ($\mathbf{1 5}$ Marks out of 200)

$$
\begin{aligned}
E(X) & =\mu=E(E(X \mid \theta))=0.7(0.3)+0.25(1.1)+0.05(1)=0.535 \\
v(A) & =V(X \mid A)=0.2+4(0.05)-0.09=0.31 \\
v(B) & =V(X \mid B)=0.4+4(0.35)-1.1^{2}=0.59 \\
v(C) & =V(X \mid C)=0.4+4(0.3)-1.0^{2}=0.6 \\
v & =E(V(X \mid \theta))=0.7(0.31)+0.25(0.59)+0.05(0.6)=0.3945 \\
a & =V(E(X \mid \theta))=V(\mu(\theta))=E\left(\mu(\theta)^{2}\right)-[E(\mu(\theta))]^{2} \\
& =0.3^{2}(0.7)+1.1^{2}(0.25)+1(0.05)-0.535^{2} \\
& =0.4155-0.535^{2}=0.129275 \\
V(X) & =a+v=0.3945+0.12928=0.52378
\end{aligned}
$$

ii. Compute the probability function of X. ($\mathbf{1 0}$ Marks/200)

$$
\begin{aligned}
\operatorname{Pr}(X=0) & =0.75(0.7)+0.25(0.25)+0.3(0.05)=0.6025 \\
\operatorname{Pr}(X=1) & =0.2(0.7)+0.4(0.25)+0.4(0.05)=0.26 \\
\operatorname{Pr}(X=2) & =0.05(0.7)+0.35(0.25)+0.3(0.05)=0.1375 \\
1.0 & =0.6025+0.26+0.137
\end{aligned}
$$

(b) For a particular risk of the portfolio we observed in the last two years $X_{1}=x_{1}=0$ and $X_{2}=x_{2}=2$.
i. For a given $\Theta=\theta$ of risk X observations, X_{1}, X_{2}, \ldots, are a random sample but X_{1} and X_{2} are not independent. Comment briefly. (10/200)
Conditional independence does not imply indepencence (unconditional). In the first instance we can work like in classical statistics sampling theory. See next.
ii. Compute $\operatorname{Cov}\left[X_{1}, X_{2}\right]$. (10/200)

$$
\begin{aligned}
\operatorname{Cov}\left[X_{1}, X_{2}\right] & =E\left[\operatorname{Cov}\left[X_{1}, X_{2} \mid \theta\right]\right]+\operatorname{Cov}\left[E\left[X_{1} \mid \theta\right] ; E\left[X_{2} \mid \theta\right]\right]=0.129275 \\
\operatorname{Cov}\left[X_{1}, X_{2} \mid \theta\right] & =0 \text { and } E\left[X_{1} \mid \theta\right]=E\left[X_{2} \mid \theta\right] \Rightarrow \\
\operatorname{Cov}\left[E\left[X_{1} \mid \theta\right] ; E\left[X_{2} \mid \theta\right]\right] & =V\left[E\left[X_{1} \mid \theta\right]\right]=0.129275
\end{aligned}
$$

iii. Compute the posterior probability function of Θ given $\left(X_{1}=0, X_{2}=2\right)$.

$$
\begin{aligned}
f((0,2) \mid A) & =0.75(0.05)=0.0375 \\
f((0,2) \mid B) & =0.25(0.35)=0.0875 \\
f((0,2) \mid C) & =0.3(0.3)=0.09 \\
f((0,2)) & =0.0375(0.7)+0.0875(0.25)+0.09(0.05)=5.2625 \times 10^{-2} \\
\pi(A \mid(0,2)) & =\frac{0.0375(0.70)}{5.2625 \times 10^{-2}}=0.49881 \\
\pi(B \mid(0,2)) & =\frac{0.0875(0.25)}{5.2625 \times 10^{-2}}=0.41568 \\
\pi(C \mid(0,2)) & =\frac{0.09(0.05)}{5.2625 \times 10^{-2}}=8.5511 \times 10^{-2} \\
1.0 & =0.49881+0.41568+8.5511 \times 10^{-2}
\end{aligned}
$$

iv. You do not know from which risk category the above sample comes. Carry out appropriate calculations to determine from which category the sample is most likely to have come. (10/200)
We can compare the probabilities $\left.\operatorname{Pr}\left(X_{1}=0, X_{2}=2\right) \mid \theta=i\right), i=A, B, C$ and see that the sample is more likely to come from category C.
v . We need to compute a (pure) premium for the next year:
A. Compute the collective pure premium. $(\mathbf{5} / \mathbf{2 0 0})$
$\mathrm{R}: E(X)=0.535$, already calculated, above. $(\mathbf{1 0} / \mathbf{2 0 0})$
B. Compute the Bayes premium $E\left[X_{3} \mid \mathbf{X}=(0,2)\right]=E(\mu(\Theta) \mid \mathbf{X})=$

$$
0.3(0.49881)+1.1(0.41568)+1\left(8.5511 \times 10^{-2}\right)=0.6924
$$

C. Compute Bühlmann's credibility premium, say, $\tilde{E}\left(X_{3} \mid \theta\right)$. (15/200)

$$
\begin{aligned}
k & =\frac{v}{a}=\frac{0.3945}{0.129275}=3.051634 \\
z & =\frac{2}{2+3.051634}=0.3959115 ; \quad \bar{x}=1 \\
\tilde{E}\left(X_{3} \mid \theta\right) & =0.3959115(1)+(1-0.3959115)(0.535)=0.7190988
\end{aligned}
$$

D. Can we talk here on Exact Credibility? Comment appropriately. (10/200)

$$
\text { No, } \tilde{E}\left(X_{3} \mid \theta\right) \neq E(\mu(\Theta) \mid \mathbf{X}=(\mathbf{0}, \mathbf{2}))
$$

2. Retrieve the problem and data of Exercise 1 above. Suppose now that the insurer uses a Bonus-malus system based on the claims frequency to rate the risks of that portfolio. The system has simply three classes, numbered 1, 2 and 3 and ranked increasingly from low to higher risk. Transition rules are the following: A policy with no claims in one year goes to the previous lower class in the next year unless it is already Class 1 , where it stays. In the case of a claim goes to Class 3, if it is already there no change is made.
Let $\alpha(\theta)$ be the probability of not having any claim in one year for a policy in with risk parameter θ. Entry class is Class 2 and premia vector is $\mathbf{b}=(70,100,150)$.
(a) Consider a policy with risk parameter θ.
i. Write the transition rules matrix and compute the one year transition probability. (10/200)

$$
T=\left[\begin{array}{ccc}
\{0\} & & \{1,2, \ldots\} \\
\{0\} & & \{1,2, \ldots\} \\
& \{0\} & \{1,2, \ldots\}
\end{array}\right] ; P=\left[\begin{array}{lll}
\alpha & & 1-\alpha \\
\alpha & & 1-\alpha \\
& \alpha & 1-\alpha
\end{array}\right]
$$

ii. Comment on the existence of the stationary distribution. (10/200)

R: It has stationary distribution, state space is finite and $P_{i i}^{(n)}>0$ for some $n=1,2, \ldots$
iii. Calculate the probability of a policy being ranked in Class 1 two years after entering the system. (10/200)
Let Y_{i} be the state of the process in year i, then

$$
\begin{aligned}
\operatorname{Pr}\left[Y_{2}=1\right] & =\sum_{1}^{3} \operatorname{Pr}\left[Y_{2}=1 \mid Y_{1}=i\right] \operatorname{Pr}\left[Y_{1}=i\right] \\
& =\sum_{1}^{3} \operatorname{Pr}\left[Y_{2}=1 \mid Y_{1}=i\right] \operatorname{Pr}\left[Y_{1}=i \mid Y_{0}=2\right] \\
& =\alpha^{2}=\alpha(\theta)^{2},(\text { depends on } \theta) .
\end{aligned}
$$

iv. Calculate the probability function of the premium for a type A driver after two years of stay in the portfolio. Compute the average premium. (10/200)
Let P^{*} be the premium

$$
\begin{aligned}
\operatorname{Pr}\left[P^{*}=70 \mid \theta=A\right] & =\alpha^{2}=0.75^{2}=0.5625 \\
\operatorname{Pr}\left[P^{*}=100 \mid \theta=A\right] & =0.75(0.25)=0.1875 \\
\operatorname{Pr}\left[P^{*}=1300 \mid \theta=A\right] & =0.75(0.25)+0.25^{2}=0.25 \\
1.0 & =0.5625+0.1875+0.25 \\
E\left[P^{*} \mid \theta=A\right] & =70(0.5625)+100(0.1875)+150(0.25)=95.625
\end{aligned}
$$

v. After some time the insurer's chief actuary concluded that for ratemaking purposes it didn't make much difference to keep categories B and C apart, and merged them into, say, category B^{*}. For a driver in this new class, compute the probability function of the premium after one year of staying in the system (since his entry). (10/200)
New category B^{*} with $\pi\left(B^{*}\right)=0.3$

$$
\begin{aligned}
& \alpha\left(B^{*}\right)=\operatorname{Pr}\left[X=0 \mid B^{*}\right]=\left(0.25^{2}+0.3(0.05)\right) / 0.3=0.25833 \\
& \operatorname{Pr}\left[X=1 \mid B^{*}\right]=(0.4(0.25)+0.4(0.05)) / 0.3=0.4 \\
& \operatorname{Pr}\left[X=2 \mid B^{*}\right]=(0.35(0.25)+0.3(0.05)) / 0.3=0.34167 \\
& 1.0=0.25833+0.4+0.34167 \\
& \operatorname{Pr}\left[Y_{1}=1 \mid Y_{0}=2\right]=\operatorname{Pr}\left[P^{*}=70\right]=\alpha=0.25833 \\
& \operatorname{Pr}\left[Y_{1}=2 \mid Y_{0}=2\right]=\operatorname{Pr}\left[P^{*}=100\right]=0 \\
& \operatorname{Pr}\left[Y_{1}=3 \mid Y_{0}=2\right]=\operatorname{Pr}\left[P^{*}=150\right]=1-\alpha=0.74167
\end{aligned}
$$

(b) Stationary distribution for a given θ is given by vector $\left(\alpha(\theta)^{2} ;[1-\alpha(\theta)] \alpha(\theta) ; 1-\alpha(\theta)\right)$. Compute the probability function of the premium for a policy taken out at random from the portfolio. Calculate the average premium. (10/200)

$$
\begin{aligned}
E[\alpha(\theta)] & =0.75(0.7)+0.25(0.25)+0.3(0.05)=0.6025 \\
E\left[\alpha(\theta)^{2}\right] & =0.75^{2}(0.7)+0.25^{2}(0.25)+0.3^{2}(0.05)=0.41388 \\
\operatorname{Pr}\left[P^{*}=70\right] & =E\left[\alpha(\theta)^{2}\right]=0.41388 \\
\operatorname{Pr}\left[P^{*}=100\right] & =E[(1-\alpha(\theta)) \alpha(\theta)]=0.6025-0.41388=0.18862 \\
\operatorname{Pr}\left[P^{*}=150\right] & =E[(1-\alpha(\theta))]=1-0.6025=0.3975 \\
1.0 & =0.41388+0.18862+0.3975 \\
\text { Mean Premium } & =0.41388(70)+0.18862(100)+0.3975(150)=107.46
\end{aligned}
$$

3. For tariff modelling purposes, we studied different factors with impact in the claim frequency mean and have found the model showed in the Annex, where

TVeic - 3 classes, in increasing power order of the vehicle
TProp -2 classes ($1=$ Private, $2=$ Company)
TUtil - 3 classes ($1=$ "male", $2=$ "female", $3=$ "retired")
Comb - 2 classes ($1=$ petrol, $2=$ diesel)

Inexp -3 classes ($0=$ driver's licence aged five plus, $1=$ from 2-5 years, $2=$ less than 2)
idSeg - "Dummy" variable valued 1 when policyholder is less than 25 years old
idveic - "Dummy" variable valued 1 when vehicle is aged more than 10 years
zona - Usual circulation geographical zone (4 zones in the country)
Expo - time period of the year the policy was in force (LExpo is the logarithm of Expo).
All the items below are based on the model presented. You can use an $\alpha=0.05$ in all testes you make.
(a) Is it statistically acceptable to set a 30% aggravation for a type 2 vehicle (TVeic=2) when compared to the one of a type $1(\mathrm{TVeic}=1)$ (ceteris paribus)? $(\mathbf{7 . 5} / \mathbf{2 0 0})$
R: Yes, corresponding $p-$ value ≈ 0, and relative estimated aggravation is

$$
\frac{\exp \{-2.354489+0.28325\}}{\exp \{-2.354489\}}=1.327437
$$

(b) Test if it is acceptable to consider the same rating factor for "female" and "retired". (10/200) R : Test $H_{0}: \beta_{\text {TUtil2 }}=\beta_{\text {TUtil3 }} \Leftrightarrow \beta_{\text {TUtil2 }}-\beta_{\text {TUtil3 }}=0 \ldots$ We need the value for $\hat{\operatorname{Var}}\left(\hat{\beta}_{\text {TUtil2 }}-\hat{\beta}_{\text {TUtil3 }}\right)$, this can be calculated from values in the Var/Covar matrix attached.
(c) Set the situations that make the less and the greater claim frequency mean. $(\mathbf{7 . 5} / \mathbf{2 0 0})$

Min : Tveic1"+"TProp1" + "TUtil3" + "Comb1" + " (Inexp0) "+" (idSeg0)" + "idVeic" +"Zona4
Max : Tveic3"+"TProp2"+"TUtil0"+"Comb2"+"Inexp2"+"idSeg" +" (idVeic0)" +" (Zona0)
(d) In the case you have chosen a Poisson model with logarithm link, what would be the effect in the output?
(2.5/200)

R: Quasi-Poisson models allow to study over dispersion $\operatorname{Var}\left(Y_{i}\right)=\phi E\left(Y_{i}\right)$.
(e) Why is the variable LExpo considered as "offset"? (2.5/200)

R : To consider risks with time exposure...

