INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística II - Licenciatura em Gestão - 27 Junho 2011

Parte teórica

lsa (F). Uma resposta certa vale 0.25 e uma resposta errada penaliza em idêntico valor.	V	F
Num teste de dimensão $\alpha = 0.05$ em que o valor- $p=0.07$, rejeita-se H_0 .		
No modelo de regressão $y_t = \beta_1 + \beta_2 x_t + u_t$, $t = 1, 2, \dots, n$, em que $R^2 > 0.95$ pode-se		
afirmar que $\beta_2 > 0$.		
Quando, num modelo de regressão linear, se introduz uma restrição linear nos		
parâmetros, a soma dos quadrados dos resíduos não pode diminuir.		_
Com base numa amostra casual simples de dimensão $n = 4$, propôs-se, como estimador		
para $\mu = E(X)$, $\hat{\mu} = 0.1X_1 + 0.4X_2 + 0.4X_3 + 0.1X_4$. Este estimador é centrado.		_
A potência de um teste é a probabilidade de rejeitar a hipótese nula quando ela é falsa. Num teste de independência do qui-quadrado a frequência esperada de observações em	1	1
cada célula não é relevante.		
Para que um estimador seja consistente ele tem de ser centrado		
Utilizando o procedimento habitual, os intervalos de confiança para a variância de uma		
variável normal são simétricos em torno de s'2		
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores.	pótes	
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores. Seja $W = \{(x_1, x_2, \dots, x_n) : F_{obs} > 9.48773\}$ a região crítica de um determinado teste de hip baseado numa estatística de teste com distribuição F de Snedecor. Observada uma amos	pótes	
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores. Seja $W = \{(x_1, x_2, \cdots, x_n) : F_{obs} > 9.48773\}$ a região crítica de um determinado teste de hij baseado numa estatística de teste com distribuição F de Snedecor. Observada uma amos verificou-se que $F_{obs} = 0.86$. Então $ \Box H_0 \text{ deve ser rejeitada} $	pótes	
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores. Seja $W = \{(x_1, x_2, \cdots, x_n) : F_{obs} > 9.48773\}$ a região crítica de um determinado teste de hij baseado numa estatística de teste com distribuição F de Snedecor. Observada uma amos verificou-se que $F_{obs} = 0.86$. Então $ \Box \ H_0 \ \text{deve ser rejeitada} $ $ \Box \ A \ \text{região de aceitação \'e dada por } \overline{W} = \{(x_1, x_2, \cdots, x_n) : F_{obs} > 1/9.48773\} $	pótes stra ca	asu
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores. Seja $W = \{(x_1, x_2, \dots, x_n) : F_{obs} > 9.48773\}$ a região crítica de um determinado teste de hij baseado numa estatística de teste com distribuição F de Snedecor. Observada uma amos verificou-se que $F_{obs} = 0.86$. Então	pótes stra ca	asu
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores. Seja $W = \{(x_1, x_2, \dots, x_n) : F_{obs} > 9.48773\}$ a região crítica de um determinado teste de hij baseado numa estatística de teste com distribuição F de Snedecor. Observada uma amos verificou-se que $F_{obs} = 0.86$. Então	pótes stra ca	asu
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores. Seja $W = \{(x_1, x_2, \dots, x_n) : F_{obs} > 9.48773\}$ a região crítica de um determinado teste de hij baseado numa estatística de teste com distribuição F de Snedecor. Observada uma amos verificou-se que $F_{obs} = 0.86$. Então $\Box H_0$ deve ser rejeitada \Box A região de aceitação é dada por $\overline{W} = \{(x_1, x_2, \dots, x_n) : F_{obs} > 1/9.48773\}$ \Box A dimensão do teste é dada pela área por baixo da função de densidade da F e à 9.48773 \Box Nenhuma das alternativas anteriores é verdadeira. O método da variável fulcral é um resultado particularmente importante	pótes stra ca	asu
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores. Seja $W = \{(x_1, x_2, \dots, x_n) : F_{obs} > 9.48773\}$ a região crítica de um determinado teste de hip baseado numa estatística de teste com distribuição F de Snedecor. Observada uma amos verificou-se que $F_{obs} = 0.86$. Então	pótes stra ca	asu
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores. Seja $W = \{(x_1, x_2, \dots, x_n) : F_{obs} > 9.48773\}$ a região crítica de um determinado teste de hij baseado numa estatística de teste com distribuição F de Snedecor. Observada uma amos verificou-se que $F_{obs} = 0.86$. Então	pótes stra ca	asu
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores. Seja $W = \{(x_1, x_2, \dots, x_n) : F_{obs} > 9.48773\}$ a região crítica de um determinado teste de hij baseado numa estatística de teste com distribuição F de Snedecor. Observada uma amos verificou-se que $F_{obs} = 0.86$. Então	pótes stra ca	asu
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores. Seja $W = \{(x_1, x_2, \dots, x_n) : F_{obs} > 9.48773\}$ a região crítica de um determinado teste de hip baseado numa estatística de teste com distribuição F de Snedecor. Observada uma amos verificou-se que $F_{obs} = 0.86$. Então \square H_0 deve ser rejeitada \square A região de aceitação é dada por $\overline{W} = \{(x_1, x_2, \dots, x_n) : F_{obs} > 1/9.48773\}$ \square A dimensão do teste é dada pela área por baixo da função de densidade da F e à 9.48773 \square Nenhuma das alternativas anteriores é verdadeira. O método da variável fulcral é um resultado particularmente importante \square Na estimação por intervalos \square Nos testes de hipóteses \square Na estimação por pontos \square Para qualquer das alternativas	pótes stra ca	asu
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores. Seja $W = \{(x_1, x_2, \dots, x_n) : F_{obs} > 9.48773\}$ a região crítica de um determinado teste de hip baseado numa estatística de teste com distribuição F de Snedecor. Observada uma amos verificou-se que $F_{obs} = 0.86$. Então \square H_0 deve ser rejeitada \square A região de aceitação é dada por $\overline{W} = \{(x_1, x_2, \dots, x_n) : F_{obs} > 1/9.48773\}$ \square A dimensão do teste é dada pela área por baixo da função de densidade da F e à 9.48773 \square Nenhuma das alternativas anteriores é verdadeira. O método da variável fulcral é um resultado particularmente importante \square Na estimação por intervalos \square Nos testes de hipóteses \square Na estimação por pontos \square Para qualquer das alternativas Considere o seguinte quadro ANOVA decorrente da estimação de um modelo de regres	pótes stra ca	asu
sposta certa vale 0.5 valores e uma resposta errada penaliza em 0.17 valores. Seja $W = \{(x_1, x_2, \dots, x_n) : F_{obs} > 9.48773\}$ a região crítica de um determinado teste de hip baseado numa estatística de teste com distribuição F de Snedecor. Observada uma amos verificou-se que $F_{obs} = 0.86$. Então \square H_0 deve ser rejeitada \square A região de aceitação é dada por $\overline{W} = \{(x_1, x_2, \dots, x_n) : F_{obs} > 1/9.48773\}$ \square A dimensão do teste é dada pela área por baixo da função de densidade da F e à 9.48773 \square Nenhuma das alternativas anteriores é verdadeira. O método da variável fulcral é um resultado particularmente importante \square Na estimação por intervalos \square Nos testes de hipóteses \square Na estimação por pontos \square Para qualquer das alternativas Considere o seguinte quadro ANOVA decorrente da estimação de um modelo de regres $\frac{ANOVA}{df} \frac{SS MS F}{I}$	pótes stra ca	asu
verificou-se que $F_{obs} = 0.86$. Então \square H_0 deve ser rejeitada \square A região de aceitação é dada por $\overline{W} = \{(x_1, x_2, \cdots, x_n) : F_{obs} > 1/9.48773\}$ \square A dimensão do teste é dada pela área por baixo da função de densidade da F e à 9.48773 \square Nenhuma das alternativas anteriores é verdadeira. O método da variável fulcral é um resultado particularmente importante \square Na estimação por intervalos \square Nos testes de hipóteses \square Na estimação por pontos \square Para qualquer das alternativas Considere o seguinte quadro ANOVA decorrente da estimação de um modelo de regres ANOVA	pótes stra ca	asu

d.	Seja o modelo de regressão linear $y_t = \beta_1 + \beta_2 x_{t2} + \beta_3 x_{t3} + u_t \text{ com } t = 1, 2,, n$. Quando se refere que
	o modelo não sofre de autocorrelação está-se a dizer que, para t , $s = 1, 2, \dots, n$.

- \square cov $(u_t, u_s \mid X) = 0$ para $t \neq s$
- $\square \quad \text{cov}(x_{t2}, x_{s3}) = 0$
- \square $cov(u_t, u_s \mid X) = \sigma^2$ para $t \neq s$ e $cov(u_t, u_s \mid X) = 0$ para t = s
- ☐ Todas as afirmações anteriores são falsas

3. Perguntas de desenvolvimento (2 valores) – Cada resposta certa vale 1 valor.

a. Defina o conceito de amostra emparelhada e explique o seu interesse.

b. Considere que, com base no modelo $y_t = \beta_1 + \beta_2 x_{t2} + \beta_3 x_{t3} + \beta_4 x_{t4} + \beta_5 x_{t5} + u_t$, queria testar $H_0: \beta_2 = \beta_3 \land \beta_4 = 1 + \beta_5$. Explique como efectuar este teste apresentando eventuais modelos auxiliares que seja necessário estimar.

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística II - Licenciatura em Gestão - 27 de Junho 2011

Nome:	_ N°

Alínea	1a	1b	1c	2	3a	3b	3c	3d	3e1	3e2	Т:
Cotação	15	15	15	15	20	10	15	15	10	10	P:
Classificaçã o											TOTAL:

Em todos os testes de hipóteses que fizer formule as hipóteses, indique a estatística de teste e sua distribuição e assuma por defeito uma dimensão $\alpha = 0.05$.

1. Para a instalação de um parque eólico numa determinada região pretende-se estudar a velocidade mínima diária do vento nessa região (em km/h), X, que se admite ser uma variável aleatória com $\mu = E(X) = 3\theta/2$,

$$Var(X) = 3\theta^2/4$$
 e função densidade $f_X(x|\theta) = \frac{3\theta^3}{x^4}$ para $x > \theta$, em que $\theta > 0$ é um parâmetro desconhecido.

Observada uma amostra casual de 200 dias obtiveram-se os seguintes resultados para a velocidade mínima diária do vento,

Média	Variância corrigida	Mediana	Mínimo	Máximo
5.19	51.81	3.78	3.05	64.40

a) Deduza o estimador de θ pelo método dos momentos. Calcule a respectiva estimativa e comente o resultado obtido.

b) Obtenha um intervalo de confiança, a aproximadamente 95%, para μ .

c) Efectue um teste de hipóteses que lhe permita averiguar se a função distribuição para a variável aleatória X, dada por

$$F_X(x) = \begin{cases} 0 & x < 3 \\ 1 - \frac{27}{x^3} & x \ge 3 \end{cases}$$

se adequa aos dados recolhidos, apresentados no quadro abaixo

Velocidade mínima diária (km/h)	Até 4	4 a 5	5 a 6	6 a 8	+ de 8
Nº dias	107	50	23	16	4

2.	Pretende-se saber se as expectativas positivas da evolução da economia portuguesa, são similares para os residentes em zonas urbanas e em zonas rurais. Com base num inquérito realizado junto a amostras casuais
	seleccionadas em cada uma das zonas obtiveram-se os seguintes resultados: nas zonas urbanas das 300 pessoas inquiridas, 111 declararam ter expectativas positivas, nas zonas rurais das 200 pessoas interrogadas, 87
	declararam ter expectativas positivas. Efectuando o teste de hipóteses adequado o que pode concluir.

3. Para estudar os determinantes da capacidade pulmonar vital (*CPV*) nos jovens foi estimado o seguinte modelo de regressão linear múltipla:

$$LnCPV_t = \beta_1 + \beta_2 ID_t + \beta_3 LnALT_t + \beta_4 MASC_t + \beta_5 FUM_t + U_t$$

em que, para o $t-\acute{e}simo$ elemento da amostra, LnCPV representa o logaritmo natural da capacidade pulmonar vital (volume máximo de ar expirado após uma inspiração forçada, em centímetros cúbicos), ID a sua idade, LnALT o logaritmo natural da sua altura (em centímetros), MASC variável que assume o valor 1 se for rapaz e 0 se for rapariga e FUM assume o valor 1 se for fumador e 0 no caso contrário.

Em todas as regressões apresentadas o regressando é *LnCPV* .

Supondo satisfeitas as hipóteses do modelo de regressão linear e considerando os dados relativos a uma amostra de 643 jovens entre os 5 e os 19 anos de idade obtiveram-se os seguintes resultados:

Regression Statistics					
Multiple R	0.89392626				
R Square	0.79910417				
Adjusted R Square	0.79784463				
Standard Error	0.14435868				
Observations	643				
ANOVA					

	df	SS	MS	F	Significance F
Regression	4	52.8857872	13.2214468	634.44379146	1.1372E-220
Residual	638	13.2955562	0.0208394		
Total	642	66.1813433			_
		Standard			•

		Standard		
	Coefficients	Error	t Stat	P-value
Intercept	-5.21783509	0.48406579	-10.7791857	5.28616E-25
ID	0.02386441	0.00334117	7.14252829	2.50738E-12
LnALT	2.53678577	0.10109562	25.09293508	3.39653E-97
MASC	0.03940252	0.01166033	3.37919515	0.00077127
FUM	-0.04064906	0.02080769	-1.95355987	0.05118994

$$Cov(b|X) = \begin{bmatrix} 0.2343197 & 0.0011792 & -0.0488847 & 0.0010223 & -0.0003880 \\ 0.0011792 & 0.0000112 & -0.0002560 & 0.0000042 & -0.0000213 \\ -0.0488847 & -0.0002560 & 0.0102203 & -0.0002254 & 0.0001086 \\ 0.0010223 & 0.0000042 & -0.0002254 & 0.0001360 & 0.0000200 \\ -0.0003880 & -0.0000213 & 0.0001086 & 0.0000200 & 0.0004330 \end{bmatrix}$$

a) Poder-se-á concluir que as variáveis incluídas no modelo são no seu conjunto estatisticamente significativas? Interprete o valor das estimativas obtidas para β_2 e β_4 .

b)	Comente, justificando, a seguinte frase: "Com uma dimensão de 0.05 não existe evidência estatística para afirmar que fumar faz diminuir, em média, a capacidade pulmonar vital".

c) Calcule o intervalo de confiança a 95% para β_3 . Face ao resultado obtido diga se é aceitável concluir, com uma confiança de 95%, que um acréscimo relativo de 1% na altura de uma pessoa pode induzir, em média, um acréscimo superior a 2% na sua capacidade pulmonar vital, mantendo-se tudo o resto inalterado.

d) Efectue o teste estatístico $H_o: \beta_4+\beta_5=0$ contra $H_1:\beta_4+\beta_5\neq 0$. Interprete o seu significado.

e)	Com o objectivo de prever a capacidade pulmonar vital das raparigas não fumadoras, com 15 anos de idade e
	uma altura de 160 centímetros estimou-se o modelo:

$$LnCPV = \beta_1 + \beta_2 \ ID0 + \beta_3 \ LnALT0 + \beta_4 \ MASC0 + \beta_5 \ FUM0 + U$$

e1) Defina ID0, LnALT0, MASC0 e FUM0 em termos dos regressores do modelo inicial.

e2) Calcule o intervalo de previsão a 95% para a capacidade pulmonar vital média dessas raparigas.

ANEXO

Regression Statistics		•			
Multiple R	0.89178954				
R Square	0.79528858				
Adjusted R Square	0.79432749				
Standard Error	0.14560906				
Observations	643				
ANOVA					
	Df	SS	MS	F	Significance F
Regression	3	52.63326627	17.54442209	827.4890739	1.464E-219
Residual	639	13.54807703	0.021201998		
Total	642	66.1813433			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	-5.431313204	0.484324348	-11.2142064	9.1024E-27	
ID	0.019993339	0.003177967	6.291235966	5.84545E-10	
LnALT	2.587347192	0.100913307	25.6393063	3.062E-100	
MASC+FUM	0.021855006	0.010605458	2.060731839	0.039732797	

Regression Statistics					
Multiple R	0.893926264				
R Square	0.799104166				
Adjusted R Square	0.797844631				
Standard Error	0.144358684				
Observations	643				
ANOVA					
	Df	SS	MS	F	Significance F
Regression	4	52.88578716	13.22144679	634.4437915	1.1372E-220
Residual	638	13.29555615	0.02083943		
Total	642	66.1813433			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	8.014759819	0.016986610	471.8280816	0	
ID0	0.023864414	0.003341172	7.142528291	2.50738E-12	
LnALT0	2.536785768	0.101095618	25.09293508	3.39653E-97	
MASC0	0.039402518	0.011660326	3.379195152	0.000771273	
FUM0	-0.040649059	0.020807685	-1.953559871	0.051189940	