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Performance of Combined Double Seasonal Univariate Time
Series Models for Forecasting Water Demand

Jorge Caiado1

Abstract: This paper examines the daily water demand forecasting performance of double seasonal univariate time series models
�Holt-Winters, ARIMA, and GARCH� based on multistep ahead forecast mean squared errors. A within-week seasonal cycle and a
within-year seasonal cycle are accommodated in the various model specifications to capture both seasonalities. The study investigates
whether combining forecasts from different methods could improve forecast accuracy. The results suggest that the combined forecasts
perform quite well, especially for short-term forecasting. On the other hand, the individual forecasts from Holt-Winters exponential
smoothing and GARCH models can improve forecast accuracy on specific days of the week.
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Introduction

Water demand forecasting is of great economic and environmen-
tal importance. Many factors can influence directly or indirectly
water consumption. These include rainfall, temperature, demog-
raphy, land use, pricing, and regulation. Weather conditions have
been widely used as inputs of multivariate statistical models for
hydrological time series modeling and forecasting.

Maidment and Miaou �1986�, Fildes et al. �1997�, Zhou et al.
�2000�, Jain et al. �2001�, and Bougadis et al. �2005� adopted
regression and time series models for water demand forecasting
by using climate effects as explanatory variables for their models.
Wong et al. �2007� used a nonparametric approach based on the
transfer function model to forecast a time series of riverflow. Such
methods are useful for assessing water demand under some sta-
bility conditions. However, their ability to project demand into
the future may be limited as a result of weather condition vari-
ability and changes in consumer behavior and technology. During
the last few decades, some researchers have also employed a va-
riety of black-box methods for hydrological forecasting, including
artificial neural networks models �Coulibaly and Baldwin 2005;
Chau 2006; Jain and Kumar 2007; Cheng et al. 2008� and support
vector regression �Sivapragasam et al. 2001; Yu et al. 2006; Wu et
al. 2008�.

Water demand is highly dominated by daily, weekly, and
yearly seasonal cycles. The univariate time series models based
on the historical data series can be quite useful for short-term
demand forecasting as we accommodate the various periodic and

seasonal cycles in the model specifications and forecasts. To
avoid their sensibility to changes in weather conditions and other
seasonal patterns, we may combine forecasts derived from the
most accurate forecasting methods for different forecast origins
and horizons. Combining forecasts can reduce errors by averaging
of individual forecasts �Clemen 1989; Armstrong 2001� and is
particularly useful when we are uncertain about which forecasting
method is better for future prediction. Some relevant works on
combined forecasts of univariate time series models were made
by Makridakis and Winkler �1983�, Sanders and Ritzman �1989�,
Lobo �1992�, and Makridakis et al. �1993�.

In this paper, I examined the water demand forecasting perfor-
mance of double seasonal univariate time series models based on
multistep ahead forecast mean squared errors �MSEs�. I investi-
gated whether combining forecasts from different methods could
improve forecast accuracy. Our interest in this problem arose
from the time series competition organized by Spanish IEEE
Computational Intelligence Society at the SICO 2007 Conference.

The remainder of the paper is organized as follows. The sec-
ond section gives a brief description of the data set used in this
study. The third section presents the methodology used in time
series modeling and forecasting. The fourth section reports the
empirical findings. Concluding remarks are provided in the last
section.

Data

I analyzed the daily water consumption series in Spain from Janu-
ary 1, 2001 to June 30, 2006 �2006 observations�. I dropped Feb-
ruary 29 in the leap year 2004 to maintain 365 days in each year.
This series is plotted in Fig. 1. The data set was obtained from the
Spanish IEEE Computational Intelligence Society �http://
www.congresocedi.es/2007/�.

I used the first 1976 observations from January 1, 2001 to May
31, 2006 as training sample for model estimation, and the remain-
ing 30 observations from June 1, 2006 to June 30, 2006 as post-
sample for forecast evaluation. The series exhibits periodic
behavior with a within-week seasonal cycle of seven periods and
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a within-year cycle of 365 periods. The observed increases �de-
creases� in demand in the summer �winter� days seem to be
caused by good �bad� weather. The analysis of weekly seasonality
shows a consumption drop in demand on Saturdays and Sundays
as a result of the shutdown of industry.

Fig. 1 shows also the sample autocorrelations and the sample
partial autocorrelations for the training sample. The autocorrela-
tion function �ACF� decays very slowly at regular lags and at
multiples of Seasonal Periods 7 and 365. The partial autocorrela-
tion function �PACF� has a large spike at Lag 1 and cutoff to 0
after Lag 2. This suggests both a weekly seasonal difference �1
−B7� and a yearly seasonal difference �1−B365� to achieve sta-
tionarity. Fig. 2 presents the double seasonal differenced series

�1−B7��1−B365�Yt and their estimated ACF and PACF.

Methodology

Forecast Evaluation

I denoted the actual observation for time period t by Yt and the
forecasted value for the same period by Ft. The MSE statistic for
the postsample period t=m+1,m+2, . . . ,n is defined as follows:

MSE =
1

n − m �
t=m+1

n

�Yt − Ft�2 �1�

This statistic is used to evaluate the out-of-sample forecast accu-
racy using a training sample of observations of size m�n �where
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Fig. 1. Daily water demand in Spain for the period January 1, 2001
to June 30, 2006; ACF and PACF
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Fig. 2. Water demand series after yearly seasonal differencing and
weekly seasonal differencing; ACF and PACF
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n is the sample size� to estimate the model, and then computing
recursively the one-step ahead forecasts for time periods m
+1, m+2, . . . , by increasing the training sample by one. For
k-step ahead forecasts, we begin at the start of the training sample
and we compute the forecast errors for time periods t=m+k , m
+k+1, . . . , using the same recursive procedure.

RW

The naive version of the random walk �RW� model is defined as

Ft+1 = Yt �2�

This purely deterministic method uses the most recent observa-
tion as a forecast, and is used as a basis for evaluating of time
series models described below.

Exponential Smoothing

Exponential smoothing is a simple but very useful technique of
adaptive time series forecasting. Standard seasonal methods of
exponential smoothing includes the Holt-Winters additive trend,
multiplicative trend, damped additive trend, and damped multipli-
cative trend �see Gardner, Jr. �2006��. I implemented the double
seasonal versions of the Holt-Winters exponential smoothing
�Taylor 2003� to take into account the two seasonal cycle periods
in the daily water consumption: a within-week cycle of 7 days
and a within-year cycle of 365 days. In an application to one-half
hourly electricity demand, Taylor �2003� used a within-day sea-
sonal cycle of 48 half hours and a within-week seasonal cycle of
336 half hours.

The double seasonal additive methods outperformed the
double seasonal multiplicative methods. Within the double sea-
sonal additive methods, the additive trend was found to be the
best for one-step ahead forecasting.

The forecasts for Taylor’s exponential smoothing for double
seasonal additive method with additive trend are determined by
the following expressions:

Lt = ��Yt − St−7 − Dt−365� + �1 − ���Lt−1 + Tt−1� �3�

Tt = ��Lt − Lt−1� + �1 − ��Tt−1 �4�

St = ��Yt − Lt − Dt−365� + �1 − ��St−7 �5�

Dt = ��Yt − Lt − St−7� + �1 − ��Dt−365 �6�

Ft+h = Lt + Tt � h + St+h−7 + Dt+h−365 + �h�Yt − �Lt−1 − Tt−1 − St−7

− Dt−365�� �7�

where Lt=smoothed level of the series; Tt=smoothed additive
trend; St=smoothed seasonal index for weekly period �s1=7�;
Dt=smoothed seasonal index for yearly period �s2=365�; � and
�=smoothing parameters for the level and trend; � and �
=seasonal smoothing parameters; �=adjustment for first-order
autocorrelation; and Ft+h=forecast for h periods ahead, with h
�7. We initialize the values for the level, trend and seasonal
periods as follows:

L7 =
1

7�
t=1

7

Yt, L365 =
1

365�
t=1

365

Yt

T7 =
1

72��
t=8

14

Yt − �
t=1

7

Yt�, T365 =
1

3652� �
t=366

730

Yt − �
t=1

365

Yt�
S1 = Y1 − L7, S2 = Y2 − L7, . . . , S7 = Y7 − L7

D1 = Y1 − L365, D2 = Y2 − L365, . . . , D365 = Y365 − L365

The smoothing parameters �, �, �, �, and � are chosen by mini-
mizing the MSE statistic for one-step-ahead in-sample forecasting
using a linear optimization algorithm.

ARIMA Model

I implemented a double seasonal multiplicative ARIMA model
�see Box et al. �1994�� of the form

�p�B�	P1
�Bs1�
P2

�Bs2��1 − B�d�1 − Bs1�D1�1 − Bs2�D2�Yt − c�

= �q�B��Q1
�Bs1�Q2

�Bs2��t �8�

where c=constant term; B=lag operator such that BkYt=Yt−k;
�p�B� and �q�B�=regular autoregressive and moving average
polynomials of orders p and q; 	P1

�Bs1�, 
P2
�Bs2�, �Q1

�Bs1�, and
Q2

�Bs2�=seasonal autoregressive and moving average polyno-
mials of orders P1, P2, Q1, and Q2, respectively; s1 and s1

=seasonal periods; d, D1, and D2=orders of integration; and �t

=white noise process with 0 mean and constant variance. The
roots of the polynomials �p�B�=0, �q�B�=0, 	P1

�Bs1�=0,

P2

�Bs2�=0, �Q1
�Bs1�=0, and Q2

�Bs2�=0 should lie outside the
unit circle. This model is often denoted as ARIMA�p , d , q�
� �P1 , D1 , Q1�s1

� �P2 , D2 , Q2�s2.
I examined the sample autocorrelations and the partial auto-

correlations of the differenced series to identify the integer values
p, q, P1, Q1, P2, and Q2. After identifying a tentative ARIMA
model, we estimate the parameters by Marquardt nonlinear least-
squares algorithm �for details, see Davison and MacKinnon
�1993��. I checked the adequacy of the model by using suitable
fitted residuals tests. I used the Schwarz Bayesian Criterion
�SBC� for model selection.

GARCH Model

In many practical applications to time series modeling and fore-
casting, the assumption of nonconstant variance may be not reli-
able. The models with nonconstant variance are referred to as
conditional heteroscedasticity or volatility models. To deal with
the problem of heteroscedasticity in the errors, Engle �1982� and
Bollerslev �1986� proposed the autoregressive conditional het-
eroskedasticity �ARCH� and the generalized ARCH �or GARCH�
to model and forecast the conditional variance �or volatility�. The
GARCH�p , q� model assumes the form

�t
2 = � + �

j=1

p

� j�t−j
2 + �

i=1

q

�i�t−i
2 �9�

where p=order of the GARCH terms and q=order of the ARCH
terms. The necessary conditions for the model �9� to be variance
and covariance stationary are: ��0; � j �0, j=1, . . . , p; �i�0,
i=1, . . . ,q; and � j=1

p � j +�i=1
q �i�1. The last summation quantifies

the shock persistence to volatility. A higher persistence indicates
that periods of high �slow� volatility in the process will last
longer. In most economical and financial applications, the simple
GARCH�1,1� model has been found to provide a good represen-
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tation of a wide variety of volatility processes as discussed by
Bollerslev et al. �1992�.

In order to capture seasonal and cyclical components in the
volatility dynamics, I implemented a seasonal-periodic GARCH
model of the form

�t
2 = � + �1�t−1

2 + �1�t−1
2 + �7�t−7

2 + �365�t−365
2

+ �
k=1

M ��k cos�2�kSt

7
� + �k sin�2�kSt

7
� + �k cos�2�kDt

365
�

+ �k sin�2�kDt

365
� + �k��t−7

2 cos�2�kSt

7
� + �k��t−7

2 sin�2�kSt

7
�

+ �k��t−365
2 cos�2�kDt

365
� + �k��t−365

2 sin�2�kDt

365
�	 �10�

where St and Dt=repeating step functions with the days numer-
ated from 1 to 7 within each week, and from 1 to 365 within each
year, respectively. A similar approach was used by Campbell and
Diebold �2005� to model conditional variance in daily average
temperature data, and by Taylor �2006� to forecast electricity con-
sumption. In the empirical study, I set M =3 for the Fourier series,
which the SBC criterion indicates is more than sufficient to cap-
ture cyclical dynamics. I estimated the model by the method of
maximum likelihood, assuming a generalized error distribution
�GED� for the innovations series �see Nelson �1991��.

Combining Forecasts

I examined whether combining forecasts from the various
univariate methods for different forecast origins and horizons
could provide more accurate forecasts than the individual meth-
ods being combined. The forecasts can be combined by using
simple and optimal weights.

I considered all possible combinations of the forecast methods
Holt-Winters �HW�, ARIMA �A�, and GARCH �G�, and I com-
puted the simple �unweighted� average of the forecasts for 1–7
days ahead

Ft
S =

Ft
�HW� + Ft

�A� + Ft
�G�

3
�11�

where Ft
�•�=forecasted value of method � • � in time period t. This

approach is simple and useful when we have no evidence about
which forecasting method is more accurate. I dropped the RW
�the worst method tested by the MSE statistic, as we will see in
the next section� of the combination.

I considered two approaches for computing optimal weights.
First, I computed the optimal combination of the forecasts using
weights by the inverse of the MSE of each of the individual
methods �see Makridakis and Winkler �1983�� as follows:

Ft
MSE

=
�M − MSE�HW��Ft

�HW� + �M − MSE�A��Ft
�A� + �M − MSE�G��Ft

�G�

2M

�12�

where MSE�•�=forecast MSE of method � • � as defined in Eq. �1�
and M =MSE�HW�+MSE�A�+MSE�G�=sum of the postsample fore-
cast MSE of the three methods. Second, I computed optimal com-
bination of the postsample forecasts using weights by the inverse
of each of the forecast squared errors �SE� of each of the indi-
vidual methods as follows:

Ft
SE =

�St − SEt
�HW��Ft

�HW� + �St − SEt
�A��Ft

�A� + �St − SEt
�G��Ft

�G�

2St

�13�

where SEt
�•�= �Yt−Ft

�•��2=forecast SE of method � • � and SEt
�•�

=SEt
�HW�+SEt

�A�+SEt
�G�=sum of the postsample forecast SEs of

the three methods for each time period t. If the performance of the
individual methods changes during the forecasting period, then
combining forecasts using inverse SE weights can result in more
accurate forecasts than the method that uses inverse MSE
weights.

Empirical Study

Estimation Results

The implementation of the double seasonal Holt-Winters method
to the water demand series Yt gives the values �=0.000, �
=0.755, �=0.303, �=0.294, and �=0.607. After evaluating dif-
ferent ARIMA formulations, I applied the following multiplica-
tive double seasonal ARIMA model:

�1 − �1B − �2B2 − �4B4��1 − 	1B7 − 	2B14��1 − B7��1 − B365��Yt

− c� = �1 − �9B9��1 − �3B21��1 − 1B365��t

This model can be represented as ARIMA�4,0 ,9�� �2,1 ,3�7

� �0,1 ,1�365, with �3=0, �1=�2= . . . =�8=0, and �1=�2=0. The
estimated results and diagnostic checks are shown in Table 1. All

Table 1. Seasonal ARIMA Model Estimates for Water Demand Series

Model: ARIMA�4, 0 , 9�� �2, 1 , 3�7� �0, 1 , 1�365 Residual ACF Residual PACF

Parameter Lag Estimate Standard error Lag Estimate Lag Estimate

c �0.004 0.007 1 0.004 1 0.004

�1 1 0.592 0.025 2 0.009 2 0.009

�2 2 0.134 0.027 3 �0.020 3 �0.020

�4 4 0.061 0.023 4 0.001 4 0.001

�9 9 �0.053 0.024 5 �0.026 5 �0.025

	1 7 �0.757 0.023 6 0.015 6 0.015

	2 14 �0.561 0.029 7 �0.010 7 �0.010

�3 21 �0.366 0.032

1 365 �0.644 0.023

R2 adjusted=0.662; Q�20�=18.31 �0.11�
Note: Q�20�=Ljung-Box statistic for serial correlation in the residuals up to order 20; p value in parentheses.

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

AQ:
#3

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

4 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH 2010

  PROOF COPY [HEENG-493] 008003QHE  



  PROOF COPY [HEENG-493] 008003QHE  

  PRO
O

F CO
PY [HEENG

-493] 008003Q
HE  

the parameter estimates are significant at the 5% significance
level. The residual ACF and PACF exhibit no patterns up to the
order of 7. The Ljung-Box statistic, Q=18.31, based on 20 re-
sidual autocorrelations is not significant at the conventional lev-
els. These results suggest that the model is appropriate for
modeling the water demand series.

I then fitted a significant parameter ARIMA-GARCH model of
the form

�1 − �1B − �2B2 − �4B4��1 − 	1B7 − 	2B14��1 − B7��1 − B365��Yt

− c� = �1 − �9B9��1 − �3B21��1 − 1B365��t

and

�t
2 = � + �1�t−1

2 + �1�t−1
2 + �365�t−365

2 + �1 sin�2�Dt

365
�

+ �3��t−365
2 sin�6�Dt

365
� .

The model estimates and diagnostic checks are given in Table 2.
The Ljung-Box test statistics show evidence of no serial correla-
tion in the residuals �mean equation� and no serial correlation in
the squared residuals �variance equation� up to order 20. Thus, I
conclude that this model is also adequate for the data.

Table 2. Seasonal-Periodic GARCH Model Estimates for Water Demand Series

Model: ARIMA�4, 0 , 9�� �2, 1 , 3�7� �0, 1 , 1�365–GARCH�1, 1�� �0, 1�365

Mean equation Residual ACF Residual PACF

Parameter Lag Estimate Standard error Lag Estimate Lag Estimate

c �0.011 0.008 1 �0.007 1 0.007

�1 1 0.502 0.029 2 0.023 2 0.023

�2 2 0.137 0.030 3 �0.028 3 �0.028

�4 4 0.075 0.024 4 �0.026 4 �0.026

�9 9 �0.064 0.023 5 �0.042 5 �0.040

	1 7 �0.747 0.023 6 0.026 6 0.027

	2 14 �0.534 0.028 7 �0.006 7 �0.006

�3 21 �0.346 0.031

1 365 �0.640 0.025

Variance equation Square residual ACF Square residual PACF

Parameter Lag Estimate Standard error Lag Estimate Lag Estimate

� 0.107 0.028 1 0.012 1 0.012

�1 1 0.103 0.037 2 �0.030 2 �0.031

�1 1 0.483 0.108 3 0.028 3 0.029

�365 365 0.109 0.032 4 0.018 4 0.016

�1 0.026 0.011 5 0.008 5 0.009

�3� 365 0.062 0.035 6 �0.023 6 �0.023

GED 1.361 0.055 7 0.015 7 0.015

R2 adjusted=0.657; Q�20�=19.20 �0.08�; Q2�20�=13.61 �0.33�
Note: Q�20� �Q2�20��=Ljung-Box statistic for serial correlation in the residuals �squared residuals� up to order 20; p value in parentheses.

Table 3. MSE for Multistep-Ahead Forecasts for Postsample Period

Horizon RW HW A G

Simple combination Optimal combination

HW-A HW-G A-G HW-A-G MSE SE

One-step 0.96 0.38 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.33

Two-step 1.55 0.51 0.45 0.45 0.46 0.45 0.45 0.45 0.45 0.41

Three-step 1.82 0.49 0.47 0.45 0.45 0.45 0.45 0.45 0.45 0.42

Four-step 2.09 0.48 0.45 0.46 0.46 0.46 0.46 0.46 0.46 0.44

Five-step 2.23 0.43 0.44 0.46 0.43 0.43 0.45 0.44 0.44 0.42

Six-step 1.91 0.42 0.45 0.47 0.43 0.43 0.46 0.44 0.44 0.42

Seven-step 1.33 0.40 0.44 0.46 0.41 0.42 0.45 0.43 0.42 0.41

Average 1.70 0.44 0.44 0.44 0.43 0.43 0.44 0.43 0.43 0.41

Note: RW=random walk; HW=Holt-Winters; A=ARIMA model; and G=GARCH model.
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Forecast Evaluation Results

The performance of the estimated univariate methods was evalu-
ated by computing MSE statistics for multistep forecasts from 1
to 7 days ahead. Table 3 and Fig. 3 give the forecasts results for
the postsample period from June 1, 2006 to June 30, 2006. An

initial interpretation of the results suggests that the ability to fore-
cast water demand did not decrease as the forecast horizon in-
creased, except from 1 to 2 days ahead.

The ARIMA and GARCH models appear to have the same
forecast performance especially for short-term forecasts �1–2 days
ahead�. For 1–4 day ahead forecasts, the ARIMA and GARCH
models performed better than the Holt-Winters method. In con-
trast, the Holt-Winters outperformed the ARIMA and GARCH
models in long horizons. The RW model ranked last for any of the
forecast horizons considered.

The optimal combination of Holt-Winters, ARIMA, and
GARCH weighted by inverse SEs is more accurate than the vari-
ous simple combinations, except for seven-step ahead forecasting
in which the Holt-Winters outperformed the optimal combined
forecasting. For 1 day ahead, the average MSE for the individual
forecasting methods �HW, ARIMA, and GARCH� was 0.36 while
it was 0.33 for the optimal combined forecasts—a error reduction
of 8.33%. For 2- and 3-day ahead forecasts, combining reduced
the MSE by 12.77 and 10.64%, respectively.

Table 4 and Fig. 4 give the forecast results for each of the 7
days of the week in the same period. The results suggest that the
Thursdays exhibit irregular demand patterns in the postsample
period used in this study. From the data, we found that the water
consumption decreased 10.37% on the first Thursday of the post-
sample period �June 1, 2006�, whereas it increased 4.22 and

Fig. 3. Comparison of multistep ahead forecasts for postsample pe-
riod

Table 4. MSE for Multistep-Ahead Forecasts for Each Day of the Week

Horizon Day RW HW A G

Simple combination Optimal combination

HW-A HW-G A-G HW-A-G MSE SE

One-step Mon 16.18 2.33 1.18 1.25 1.71 1.75 1.21 1.55 1.54 1.34

Tue 0.28 0.53 0.20 0.19 0.34 0.34 0.19 0.29 0.28 0.21

Wed 0.18 0.14 0.25 0.26 0.19 0.20 0.26 0.21 0.22 0.20

Thu 3.15 4.19 5.26 5.40 4.71 4.78 5.33 4.93 4.94 4.84

Fri 0.47 0.37 0.54 0.54 0.45 0.45 0.54 0.48 0.48 0.35

Sat 3.00 0.23 0.64 0.58 0.39 0.37 0.61 0.45 0.46 0.40

Sun 1.20 1.26 0.40 0.33 0.70 0.61 0.36 0.53 0.53 0.41

Four-step Mon 3.86 0.42 0.43 0.54 0.42 0.48 0.48 0.46 0.46 0.44

Tue 2.66 0.15 0.16 0.17 0.15 0.15 0.16 0.16 0.16 0.12

Wed 8.39 0.48 0.69 0.77 0.58 0.62 0.73 0.64 0.64 0.59

Thu 11.27 3.63 3.79 4.14 3.71 3.88 3.96 3.85 3.85 3.73

Fri 1.83 1.78 1.88 1.94 1.83 1.86 1.91 1.87 1.87 1.84

Sat 4.14 1.29 1.21 1.26 1.25 1.28 1.24 1.25 1.25 1.25

Sun 10.23 3.23 1.10 0.81 2.03 1.82 0.95 1.56 1.55 1.18

Seven-step Mon 0.30 0.19 0.24 0.38 0.21 0.28 0.30 0.26 0.26 0.25

Tue 0.15 0.07 0.06 0.08 0.06 0.06 0.06 0.06 0.06 0.04

Wed 1.09 0.27 0.39 0.29 0.33 0.28 0.34 0.31 0.31 0.29

Thu 13.60 2.54 3.33 3.42 2.92 2.96 3.38 3.08 3.07 2.99

Fri 7.91 2.14 2.25 2.38 2.19 2.26 2.32 2.26 2.25 2.17

Sat 4.19 1.43 1.48 1.59 1.46 1.51 1.54 1.50 1.50 1.49

Sun 0.70 1.14 0.29 0.22 0.63 0.51 0.26 0.42 0.44 0.31

Average Mon 4.79 0.61 0.55 0.65 0.57 0.62 0.59 0.59 0.59 0.53

Tue 4.13 0.44 0.16 0.17 0.25 0.26 0.16 0.21 0.21 0.14

Wed 4.89 0.43 0.46 0.48 0.41 0.41 0.47 0.42 0.42 0.39

Thu 7.52 3.01 3.71 3.91 3.33 3.43 3.80 3.51 3.51 3.41

Fri 5.21 1.99 2.25 2.32 2.12 2.15 2.28 2.18 2.18 2.11

Sat 4.02 1.06 1.24 1.26 1.13 1.14 1.25 1.17 1.17 1.13

Sun 6.10 2.35 0.68 0.50 1.38 1.22 0.59 1.02 1.02 0.75

Note: RW=random walk; HW=Holt-Winters; A=ARIMA model; and G=GARCH model.
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18.44% on the following Thursdays �June 8, 2006 and June 15,
2006, respectively�. Possible reasons for this unusual pattern are
weather changes and any restrictions on water demand.

In terms of the day of the week effect on forecasting perfor-
mance, the SE optimal combination HW-A-G appears to be most
useful for Monday, Tuesday, and Wednesday forecasts—
combining reduced the MSE of multistep ahead averaged fore-
casts by 12.1, 45.45, and 14.60%, respectively, when compared
with the average of the individual methods. The Holt-Winters
appears to be the most appropriate method for Thursday, Friday,
and Saturday forecasts and the GARCH model appears to be the
best method for Sunday forecasts. Fig. 5 shows the one-step
ahead and seven-step ahead forecasts of water demand in the
evaluation forecasting period June 1, 2006 to June 30, 2006, made
using the SE optimal combined method.

Conclusions

In this article, I compared the forecast accuracy of individual and
combined univariate time series models for multistep ahead daily
water demand forecasting in Spain. I implemented double sea-
sonal versions of the Holt-Winters, ARIMA, and GARCH models

to accommodate the two seasonal effects �within-week cycle of 7
days and within-year cycle of 365 days� on the variability of the
data.

The results suggest that the optimal combined forecasts can be
quite useful especially for short-term forecasting. However, the
forecasting performance of this approach is not consistent over
the 7 days of the week. The Holt-Winters method and the
GARCH model can be used independently to improve forecast
accuracy of water demand on Thursdays to Saturdays and Sun-
days, respectively.

In future research, it would be interesting to investigate
whether combining individual forecasts derived from different
univariate and multivariate methods for hydrological forecasting
�incorporating factors such as temperature, rainfall, land use, or
others� or different data sets �training and test sets� or both can
help to improve accuracy.
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