I TrSBOA
 SCHOOL OF
 BCONOMICS \&
 MANAGEMENT
 Corporate Investment Appraisal
 Masters in Finance

2014-2015

Fall Semester

Clara C Raposo

Problem Set ${ }^{\circ}$ 1: Guideline to Solution

1.

- There are no Nash equilibria (NE) in pure strategies. Why? For instance, let's start with (Heads,Heads): If player "Column" believes that player "Row" plays Heads, player "Column" would prefer to choose "Tails"; hence, he wouldn't choose Heads. Therefore (Heads,Heads) cannot be a NE. The same logic applies to the 3 other cases - there is always someone with an incentive to deviate given what (s)he believes the other player is doing.
- However, there is an equilibrium in mixed strategies. Suppose that player "Row" believes that player "Column" plays Heads with probability Ph and plays Tails with probability (1-Ph). Row's expected payoff is:
- If she plays Heads: 1*Ph-1*(1-Ph)
- If she plays Tails: $-1 * \mathrm{Ph}+1 *(1-\mathrm{Ph})$
- She is indifferent between the two strategies if: $\mathrm{Ph}=1 / 2$.
- Conclusion: if Row believes that Column will play Heads with probability $1 / 2$, then Row is indifferent between playing Heads or Tails.
- Likewise, if player Column has the belief that player Row chooses Heads with probability Qh, Column's expected payoff will be:
- If he plays Heads: $-1 * Q h+1 *(1-Q h)$
- If he plays Tails: 1*Qh-1*(1-Qh)
- Column will be indifferent between the two strategies if: Qh=1/2.
- In equilibrium the expectations of all players cannot be violated. Thus, in equilibrium, player Row is indifferent between the two strategies and may well choose $\mathrm{Ph}=1 / 2$. If Row indeed plays $\mathrm{Ph}=1 / 2$ and Column forms that belief (in equilibrium he gets it right), Column is indifferent between playing Heads or Tails. In equilibrium, Column chooses $\mathrm{Qh}=1 / 2$, which would make Row indeed indifferent between Heads or Tails and possibly choosing $\mathrm{Ph}=1 / 2$, which shows the consistency of this mixed strategy equilibrium, with ($\mathrm{Ph}=1 / 2, \mathrm{Qh}=1 / 2$).

2.

This is a possible sequence to determine a DS equilibrium:

- From player A's perspective, since $3 \geq 3,1 \geq 0$, and $0 \geq 0$, strategy M dominates C regardless of the other player's action). Thus, we eliminate row "Top".
- Since $2 \geq 0$ and $0 \geq 0$, for player B strategy Center dominates Left. We can eliminate "Left".
- Because $1 \geq 1$ and $2 \geq 0$, for Player A's strategy Bottom dominates Middle. So, we eliminate "Middle".
- Finally, as $1 \geq 0$, for Player B strategy Right dominates Center. We can eliminate "Center".
- We are left with (Bottom,Right), which is the only equilibrium in dominated strategies (DSE).

3.

(a) NE in Pure strategies: (B,L) and (T,R). Explain...
(b) NE in mixed strategies: Bill chooses Top with probability $1 / 2$ and Ted chooses Left with probability $1 / 2$.
(c) When the solution is (B, R) both players have strictly positive payoffs.

If they play the mixed strategy equilibrium, the probability of (B, R) happening is
$1 / 2 * 1 / 2=1 / 4$.
In the case of pure strategies, the outcome (B, R) would not take place.

If we meant non-strictly positive payoffs, then the probability $1 / 4$ would be revised to 1-Probability $(\mathrm{T}, \mathrm{L})=1-1 / 2 * 1 / 2=3 / 4$.
4.
(a) NE in pure strategies: (T, L), (B, R).
(b) No strategy dominates any other.
(c) and (d)

The sub-game perfect equilibrium of this game is (T,L). Why? A plays first.
If A plays B, player B will choose $R(1>-1)$. Hence, A would get 1.
If A plays T, then player B will choose L (because $3>-1$). Hence A would get 3 .
Therefore, player A chooses T, then player B chooses L, and the SPE is (T,L), with payoffs $(3,3)$.
5.
(a) Extensive Form (assuming that player A plays first):

(b) Analysis of equilibrium:
(i) If player A believes that player B plays L with probability q and plays R with probability (1-q), player A knows that:

- If she plays T her expected payoff is $3 q-1(1-q)=4 q-1$
- If she plays B her expected payoff is $-q+(1-q)=1-2 q$
(ii) In equilibrium player A should choose (let's say p is the probability of player A choosing T):
- $p=1$ if $4 q-1>1-2 q$
- p in $[0,1]$ if $q=1 / 3$
- $p=0$ if $q<1 / 3$
(iii) If player B believes that player A chooses T with probability p, then he knows that:
- If he plays L his expected payoff is: $3 p-1(1-p)=4 p-1$
- If he plays R his expected is $-p+(1-p)=1-2 p$
(iv) Hence, Player B should choose according to (where q is the probability with which he plays L):
- $q=1$ if $p>1 / 3$
- q in $[0,1]$ if $p=1 / 3$
- $q=0$ if $p<1 / 3$
(v) Finally what will characterize na equilibrium:
- Start with the case in which A chooses $p>1 / 3$. If B guesses this right, B chooses $q=1$. But if $q=1$, and A guesses this right, then A would choose $p=1$, which is compatible with the initial conjecture of $p>1 / 3$. We found an equilibrium in which ($p=1, q=1$).
- If Player A chooses $p=1 / 3$, and B guesses this right, B is indifferent between L and R. He may choose any q in the interval $[0,1]$. In case B chooses $q=1 / 3$, that would be compatible with A "replying" $p=1 / 3$, since A would be indifferent. We found another PBE with ($p=1 / 3, q=1 / 3$).
- Finally, if A chooses $p<1 / 3$, and player B guesses this correctly, player B chooses $q=0$. But if B chooses $q=0$, and player A guesses this correctly, then player A should respond with $\mathrm{p}=0$ (which is compatible with the conjecture that $p<1 / 3)$. We found the third PBE of this game, with $(p=0, q=0)$.

