2.4 Integração de funções complexas e espaço $\mathcal{L}^1(\mu)$

Seja μ uma medida no espaço mensurável (X, \mathcal{F}) . A teoria de integração para funções complexas é uma generalização imediata da teoria de integração de funções não negativas.

Definição 2.4. Define-se $\mathcal{L}^1(\mu)$ o conjunto de todas as funções complexas mensuráveis $f: X \to \mathbb{C}$ tais que

$$\int_X |f| < \infty.$$

Observação 2.27. Segue da Proposição 2.7 que $|f|: X \to [0, \infty[$ é uma função mensurável. Logo, faz sentido $\int_X |f|$.

Uma função $f \in \mathcal{L}^1(\mu)$ diz-se uma função integrável em X no sentido de Lebesgue, relativamente à medida μ . Neste caso, tomando f = u + iv, onde $u, v : X \to \mathbb{R}$ são funções mensuráveis, define-se o integral de Lebesgue da função complexa f em E, relativo à medida μ como sendo o número

$$\int_{E} f \, d\mu = \int_{E} u^{+} \, d\mu - \int_{E} u^{-} \, d\mu + i \int_{E} v^{+} \, d\mu - i \int_{E} v^{-} \, d\mu$$

onde u^+, v^+ e u^-, v^- são a parte positiva e negativa de u, v respectivamente. Note-se que f é integrável em E sse $\int_E u^\pm \, d\mu$ e $\int_E v^\pm \, d\mu$ são finitos.

Teorema 2.28 (Propriedades). Sejam $f, g \in \mathcal{L}^1(\mu)$ e $\alpha, \beta \in \mathbb{C}$. Então

- 1. $\alpha f + \beta g \in \mathcal{L}^1(\mu)$.
- 2. $\int_X (\alpha f + \beta g) d\mu = \alpha \int_X f d\mu + \beta \int_X g d\mu$.
- 3. $\left| \int_X f \, d\mu \right| \le \int_X |f| \, d\mu$.

Demonstração. Deixa-se como exercício.

Observação 2.29. $\mathcal{L}^1(\mu)$ é um espaço linear.

Exemplo 2.30. Tome-se o espaço de medida $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ onde μ é a medida de contagem. Considere-se o Boreliano $E = \{-2, -1, 1, 2\}$ e $g : \mathbb{R} \to \mathbb{R}$ a função mensurável g(x) = x. Então, pela definição de integral de Lebesgue

$$\int_E g \, d\mu = \int_E g^+ \, d\mu - \int_E g^- \, d\mu$$
$$= \int_X \chi_E \cdot g^+ \, d\mu - \int_X \chi_E \cdot g^- \, d\mu.$$

Note-se que $\chi_E \cdot g^+$ é uma função simples, de facto

$$\chi_E \cdot g^+ = g^+(-2)\chi_{\{-2\}} + g^+(-1)\chi_{\{-1\}} + g^+(1)\chi_{\{1\}} + g^+(2)\chi_{\{2\}}$$
.
Logo,

$$\int_X \chi_E \cdot g^+ d\mu = g^+(1)\mu(\{1\}) + g^+(2)\mu(\{2\}) = 1 \times 1 + 2 \times 1 = 3.$$

De maneira análoga tem-se $\int_X \chi_E \cdot g^- d\mu = 3$. Logo, $\int_E g d\mu = 0$.

Como já mencionado anteriormente, do ponto de vista da teoria da medida e integração, os conjuntos de medida nula são desprezáveis. De facto, se f=g excepto num conjunto de medida nula N então

$$\int_X f \, d\mu = \int_X g \, d\mu \, .$$

Portanto, diz-se que uma função f satisfaz a propriedade (P) **quase** certamente (q.c.) em E se f satisfizer essa propriedade para todos os pontos em E à excepção de um conjunto de medida nula.

Teorema 2.31. Seja (X, \mathcal{F}, μ) um espaço de medida. Então

- 1. Se $f: X \to [0, \infty]$ é mensurável e $\int_E f \, d\mu = 0$ para algum $E \in \mathcal{F}$ então f = 0 q.c. em E.
- 2. Se $f \in \mathcal{L}^1(\mu)$ e $\int_E f \, d\mu = 0$ para todo $E \in \mathcal{F}$ então f = 0 q.c. em X

Demonstração.

- 1. Tome-se o conjunto mensurável $E_n = \{x \in E : f(x) \ge 1/n\}$. Então $0 = \int_E f d\mu \ge \int_{E_n} f d\mu \ge \int_{E_n} 1/n d\mu = \mu(E_n)/n$. Logo $\mu(E_n) = 0$. Uma vez que $\mu(\bigcup_n E_n) = 0$, segue que f > 0 para um conjunto de medida nula, ou seja, f = 0 q.c.
- 2. Deixa-se como exercício.

2.5 Integral de Lebesgue-Stieltjes

Numa secção anterior, construiriam-se medidas de Lebesgue-Stieltjes em \mathbb{R} , isto é, dada uma função de distribuição F existe um espaço de medida completo $(\mathbb{R}, \mathcal{M}_F, m_F)$ onde m_F é designada por medida de Lebesgue-Stieltjes. Tome-se uma função $g: \mathbb{R} \to \mathbb{R}$ mensurável relativamente à σ -álgebra \mathcal{M}_F . Ao integral de g relativamente à medida g designa-se por **integral de Lebesgue-Stieltjes** e é usual escrever-se

$$\int g \, dm_F = \int g \, dF \, .$$

2.6 Teorema da convergência dominada

No contexto das funções mensuráveis não negativas o teorema da convergência monótona garante que para uma sucessão de funções que convergem monotonamente para uma função então o integral da função limite é igual ao limite dos integrais das respectivas funções.

Nesta secção enunciamos um teorema semelhante ao da convergência monótona. O teorema que se segue, estabelece um conjunto de condições suficientes para se proceder à troca de limites com integral quando as funções a integrar tomam valores complexos.

Teorema 2.32 (da convergência dominada). Seja $f_n: X \to \mathbb{C}$ uma sucessão de funções mensuráveis e $g: X \to [0, \infty)$ uma função integrável, isto é $g \in \mathcal{L}^1(\mu)$, tal que para todo $n \ge 1$ se tem $|f_n| \le g$.

Se
$$f = \lim_n f_n$$
 então $f \in \mathcal{L}^1(\mu)$ e

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu \, .$$

Demonstração. Tomando parte real e imaginária, pode-se supor que f_n e f são funções reais. Logo $-g \le f_n \le g$. Como $f = \lim_n f_n$ temos que f é mensurável e $-g \le f \le g$. Aplicando o lema de Fatou à sucessão $f_n + g \ge 0$ obtém-se

$$\int_X f + g \, d\mu \le \liminf_{n \to \infty} \int_X f_n + g \, d\mu.$$

Segue do facto de q ser integrável que

$$\int_X f \, d\mu \le \liminf_{n \to \infty} \int_X f_n \, d\mu \, .$$

Aplicando mais uma vez o lema de Fatou, mas agora à sucessão $g-f_n \geq 0$, obtém-se

$$\int_X g - f \, d\mu \le \liminf_{n \to \infty} \int_X g - f_n \, d\mu \,,$$

ou escrito de forma equivalente

$$\limsup_{n \to \infty} \int_X f_n \, d\mu \le \int_X f \, d\mu \, .$$

Exercício 34. Considere-se o espaço mensurável $(X, \mathcal{P}(X))$. Seja $A = \{x_1, x_2, x_3, \ldots\}$ um subconjunto numerável de $X \in \mu : \mathcal{P}(X) \to [0, \infty]$ a seguinte função

$$\mu(E) = \sum_{x_i \in E} \alpha_i \,,$$

onde α_i , $i=1,2,\ldots$ são números reais não negativos. Mostre que

- 1. μ é uma medida, designada por **medida discreta**.
- 2. $\mu = \sum_{i=1}^{\infty} \alpha_i \delta_{x_i}$ onde δ_{x_i} é a medida de Dirac.
- 3. Dada uma função mensurável $f: X \to [0, \infty]$,

$$\int_{E} f \, d\mu = \sum_{x_i \in E} f(x_i) \alpha_i \, .$$

2.7 Relação com integral de Riemann

Nesta secção relacionamos o integral de Riemann com o recém definido integral de Lebesgue. Relembremos o conceito de integral de Riemann. Seja $f:[a,b] \to \mathbb{R}$ uma função real limitada onde a < b. Uma **partição** do intervalo [a,b] é um conjunto finito $P = \{a_0, a_1, \ldots, a_n\}$ onde

$$a = a_0 < a_1 < \ldots < a_n = b$$
.

Dada uma partição P pode-se definir as **somas inferior e superior** de Riemann da função f relativas à partição P,

$$\underline{\Sigma}(f, P) = \sum_{i=1}^{n} m_i (a_i - a_{i-1})$$
 e $\overline{\Sigma}(f, P) = \sum_{i=1}^{n} M_i (a_i - a_{i-1})$,

onde $m_i = \inf \{ f(x) : a_{i-1} < x < a_i \}$ e $M_i = \sup \{ f(x) : a_{i-1} < x < a_i \}$. Uma vez que f é limitada estes números existem. Por fim define-se

$$\begin{split} \overline{\int_a^b} f &= \inf \left\{ \overline{\Sigma}(f,P) : P \text{ \'e uma partição de } [a,b] \right\} \,, \\ \int_a^b f &= \sup \left\{ \underline{\Sigma}(f,P) : P \text{ \'e uma partição de } [a,b] \right\} \,. \end{split}$$

Finalmente, diz-se que f é **integrável à Riemann** sse $\underline{\int_a^b} f = \overline{\int_a^b} f$ e é comum denotar-se este número por

$$\int_a^b f(x) \, dx \, .$$

O seguinte teorema permite relacionar o integral de Riemann com o integral de Lebesgue.

Teorema 2.33. Seja $f:[a,b] \to \mathbb{R}$ uma função limitada. Se f for integrável à Riemann então f é integrável relativamente à medida de Lebesgue e os integrais coincidem,

$$\int_a^b f(x) dx = \int_{[a,b]} f dm.$$

Exemplo 2.34. 1. Se $f:[a,b] \to \mathbb{R}$ é contínua então é integrável à Riemann. Para além disso, se tiver uma **primitiva**, isto é, existir uma função $F:[a,b] \to \mathbb{R}$ tal que F'=f então

$$F(b) - F(a) = \int_a^b f(x) dx.$$

2. Há funções simples que não são integráveis à Riemann, como é o caso da função característica $\chi_{\mathbb{Q}}:[0,1]\to\mathbb{R}$. De facto, $\underline{\underline{\Sigma}}(\chi_{\mathbb{Q}},P)=0$ e $\overline{\underline{\Sigma}}(\chi_{\mathbb{Q}},P)=1$ para toda a partição P. Logo $\overline{\int_0^1}\chi_{Q}q\neq\int_0^1\chi_{\mathbb{Q}}$.

Exemplo 2.35. Considere-se a medida de Borel m no espaço mensurável $([0,1],\mathcal{B}([0,1])$ e a seguinte sucessão de funções reais

$$f_n(x) = \frac{n \sin x}{1 + n^2 x^{1/2}}$$
 $n = 1, 2, \dots$

para $x \in [0,1]$. É claro que $\lim_n f_n = 0$. Para concluir que $\lim_n \int_{[0,1]} f_n \, dm = 0$ basta, usando o teorema da convergência dominada, encontrar uma função integrável $g \geq 0$ tal que $|f_n| \leq g$. Majorando f_n obtém-se

$$\left| \frac{n \sin x}{1 + n^2 x^{1/2}} \right| \le \frac{n}{1 + n^2 x^{1/2}} \le \frac{1}{n x^{1/2}} \le \frac{1}{x^{1/2}} .$$

Por outro lado, $\frac{1}{x^{1/2}}$ é integrável à Riemann no intervalo [0,1]. Logo $|f_n|$ é majorada por uma função integrável (no sentido de Lebesgue). Segue do teorema da convergência dominada que $\lim_{n} \int_{[0,1]} f_n \, dm = 0$.

Exercício 35. Use o teorema da convergência dominada para calcular

$$\lim_{n\to\infty}\int_1^\infty \frac{\sqrt{x}}{1+nx^3} \, dx \, .$$

2.8 Continuidade absoluta e Teorema de Radon-Nikodym

Seja (X, \mathcal{F}, μ) um espaço de medida e $f: X \to [0, \infty]$ uma função mensurável. Como foi visto, a função $\nu: \mathcal{F} \to [0, \infty]$ definida por

$$\nu(E) = \int_E f \, d\mu \,,$$

é uma medida no espaço mensurável (X, \mathcal{F}) . A medida ν tem a seguinte propriedade: se $\mu(E)=0$ então $\nu(E)=0$. Esta propriedade é de fundamental importância para teoria de probabilidades como veremos adiante.

Definição 2.5. Seja (X, \mathcal{F}) um espaço mensurável e μ , λ duas medidas definidas neste espaço. Diz-se que λ é **absolutamente contínua relativamente a** μ e escreve-se $\lambda \ll \mu$ sse para todo $E \in \mathcal{F}$ tal que $\mu(E) = 0$ então $\lambda(E) = 0$.

A definição anterior diz que $\lambda \ll \mu$ sse todos os conjuntos de medida nula de μ forem também conjuntos de medida nula para λ . No entanto, λ pode ter mais conjuntos de medida nula que μ .

Acabámos de ver que todas a medidas ν construídas através do integral $\int_E f \, d\mu$ são absolutamente contínuas relativamente a μ . A questão que se coloca é: será que todas a medidas absolutamente contínuas relativamente a μ podem ser obtidas dessa maneira? A resposta a esta questão é dada pelo teorema de Radon-Nikodym.

Teorema 2.36 (de Radon-Nikodym). Sejam λ e μ duas medidas finitas definidas em (X, \mathcal{F}) tal que $\lambda \ll \mu$. Então existe uma única função $h \in \mathcal{L}^1(\mu)$ tal que

$$\lambda(E) = \int_E h \, d\mu, \quad \forall E \in \mathcal{F}.$$

Demonstração. A demonstração pode ser encontrada em [1].

A função h designa-se por derivada no sentido de Radon-Nikodym de λ e escreve-se formalmente

$$h = \frac{d\lambda}{d\mu} \,.$$

Observação 2.37. A unicidade de h no teorema de Radon-Nikodym deve ser entendida no seguinte sentido: se f é outra função em $\mathcal{L}^1(\mu)$ tal que $\lambda(E) = \int_E f \, d\mu$ então f = h q.c.

Observação 2.38. O teorema de Radon-Nikodym é válido para o caso mais geral de λ e μ serem duas medidas σ -finitas, como é o caso da medida de Lebesgue. Uma medida μ de (X, \mathcal{F}) diz-se σ -finita see existirem conjuntos mensuráveis $A_n \in \mathcal{F}, n = 1, 2, \ldots$ tal que $\bigcup_{n=1}^{\infty} A_n = X$ e $\mu(A_n) < \infty$ para todo $n = 1, 2, \ldots$

Definição 2.6. Seja (X, \mathcal{F}, μ) um espaço de medida e $A \in \mathcal{F}$. Diz-se que μ está **concentrada em** A sse

$$\mu(E) = \mu(E \cap A), \quad \forall E \in \mathcal{F}.$$

Definição 2.7. Duas medidas μ e λ definidas em (X, \mathcal{F}) dizem-se **mutuamente singulares** e escreve-se $\mu \perp \lambda$ sse existem dois conjuntos disjuntos $A, B \in \mathcal{F}$ tal que μ está concentrada em A e λ está concentrada em B.