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E f r o n’ s  b o o t s t r a p

Bootstrap basics

A fundamental problem in statistics is assess-
ing the variability of an estimate derived from 
sample data. Consider, for example, a simple 
survey in which a newspaper with a circulation 
of 300 000 (the population) randomly samples 
100 of its subscribers (the sample) and asks 
their preference as to whether front-page sto-
ries should continue on the second page or on 
the back page of the section. Suppose that in 
the sample of 100 readers 64% favoured the 
back page. If this study were repeated with a 
new random sample of 100 readers, then the 
results would be unlikely to be 64% again, but 
would probably be something else, say 59%. 
And if the study were repeated over and over, 
the results would be a large set of percentages, 

say {64, 59, 65, 70, 52, …}. This hypotheti-
cal set of possible study results represents the 
sampling distribution of the sample proportion 
statistic. With it one can assess the variabil-
ity in the real-sample estimate (e.g., attach 
a margin of error to it, say 64% ± 9%), and 
rigorously address questions such as whether 
more than half the readers prefer stories to 
continue on the back page.

The catch is, of course, that it is impractical 
to repeat studies, and thus the set of possible 
percentages described above is never more than 
hypothetical. The solution to this dilemma, 
before the widespread availability of fast com-
puting, was to derive the sampling distribution 
mathematically. This is easy to do for simple es-
timates such as the sample proportion, but not 
so easy for more complicated statistics.

Fast computing opened a new door to the 
problem of determining the sampling distribution 
of a statistic. On the other side of that door was 
Efron’s bootstrap, or what is now known simply 
as the bootstrap. In broad strokes, the bootstrap 
substitutes computing power for mathematical 
prowess in determining the sampling distribu-
tion of a statistic.

In practice, the bootstrap is a computer-
based technique that mimics the core concept 

of random sampling from a set of numbers and 
thereby estimates the sampling distribution of 
virtually any statistic computed from the sample. 
The only way it differs from the hypothetical re-
sampling described above is that the repeated 
samples are not drawn from the population, but 
rather from the sample itself because the popu-
lation is not accessible. 

Examples

To illustrate these ideas we use two simple ex-
amples where the statistics are the sample mean 
and median. Consider the data set in Table 1 of 
n = 25 adult male yearly incomes (in thousands 
of dollars) collected from a fictitious county in 
North Carolina.

The sample mean

The sample mean of the Table 1 data is Y = 47.76. 
Statistical theory tells us that if these values 
were independently drawn from a population of 
incomes having mean µ and variance s2, then the 
sampling distribution of Y has mean µ, variance 
s2/n (here n = 25), and standard deviation s/√n. 

The bootstrap was introduced by Brad Efron in the late 1970s. It is a computer-intensive method for approximating 

the sampling distribution of any statistic derived from a random sample. Here Dennis Boos and Leonard Stefanski 
give simple examples to show how the bootstrap is used and help to explain its enormous success as a tool of 

statistical inference.

Table 1. Random sample of 25 yearly incomes in thousands of dollars 
(ordered from lowest to highest)

1 4 6 12 13 14 18 19 20 22 23 24 26
31 34 37 46 47 56 61 63 65 70 97 385
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The sampling distribution of a statistic computed 
from a random sample is the distribution of the 
statistic in repeated sampling from that popula-
tion. Usually we do not know the population and 
cannot repeatedly sample, and thus we estimate 
µ with Y and also estimate the sampling standard 
deviation of Y (often called the standard error) by 
sn–1/√n, where s2

n–1 = (n – 1)–1Sn

i=1(Yi – Y)2 is the 
unbiased version of the sample variance. Statis-
tical inference proceeds by relying on the fact 
that Y is approximately normally distributed due 
to the central limit theorem.

So that we know what the bootstrap should 
be estimating, we generated the data in Table 
1 as Yi = 30 exp(Zi) (×$1000), i = 1, …, 25, 
where Z1, …, Z25 are independently distributed 
standard normal random variables. Thus our ficti-
tious sample is known to come from a lognormal 
population or distribution. Since we know the 
population distribution, we can also generate 
the true sampling distribution of Y by creating 
independent random samples in the same man-
ner, and then computing Y for each one. We 
did this for 1000 random samples and plotted 
a histogram of the Y values in the left panel of 
Figure 1.

The bootstrap can be used to approximate 
the sampling distribution of Y when we do not 
know the population from which the sample was 
obtained (always the case with real data). The 
nonparametric bootstrap proceeds by treating 
the data in Table 1 as a population and draw-
ing random samples from it. A bootstrap random 
sample (also called a resample) is drawn from the 
Table 1 pseudo-population by randomly choosing 
25 values with replacement from the values in 
Table 1. Table 2 displays two such samples.

Note that repeated values of the original data 
appear within each resample because the sam-
pling is with replacement (as opposed to without 
replacement). The only sample of size n = 25 that 
could be drawn without replacement is the origi-
nal sample itself. The right panel in Figure 1 is a 
histogram of the 1000 sample means computed 
from 1000 resamples. It is the bootstrap estimate 
of the distribution in the left panel. Remember 
that we have the left panel in this case only 
because we generated the sample from a known 
probability distribution. In any real application 
we cannot produce the left panel, but the boot-
strap can always produce the right panel. The 
two panels are similar, but there are differences 
resulting from the bootstrap step that uses the 
sample as if it were the population.

An important use of the bootstrap is calcula-
tion of the standard error of an estimate (the 
essential component of the margin of error as-
sociated with a statistical estimate). For our 
toy example, the bootstrap standard error of the 
mean estimate, 47.76, is
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In this case we can also use the theoretically 
derived formula to get the non-bootstrap stan-
dard error estimate sn–1/√n = 14.8 for the Table 
1 data. The difference between the two esti-
mated standard errors (13.8 versus 14.8) has 
two components. The random component is due 
to the fact that the bootstrap estimate is based 
on 1000 resamples. Had we used a much larger 
number of resamples, then the bootstrap stan-
dard error would approximate sn/√n = 14.5. The 

second component is due to the difference in 
the denominators between sn and sn–1. These are 
relatively minor discrepancies, and most analysts 
are usually willing to accept a small amount of 
variation in bootstrap standard errors due to 
the Monte Carlo simulation, that is, using 1000 
resamples rather than say 1 million resamples. 
(And of course the fact that means from even 
1000 resamples are calculated implies the boot-

strap’s practical need for a computer. Happily, it 
was developed just as computing power became 
widely available.)

In some situations, we might feel comfortable 
making a guess at the type of distribution that 
the data came from, that is, the basic shape of 
the underlying population. For example, the data 
in Table 1 is actually from a normal distribution 
and then exponentiated to get lognormal data. 
Another way to do bootstrap sampling is to esti-
mate the parameters of the assumed distribution 
and then generate bootstrap samples from the 
estimated population. This is called parametric 
bootstrapping, and is best used when the distri-
bution type is reasonably well known.

The sample median

A histogram of the Table 1 data (not displayed) 
reveals that it is quite skewed to the right. 
This skewness is also clear from the fact that 
the sample mean 47.8 is much larger than the 
sample median, 26. In situations with such 
skewness it is typical to use the median to mea-
sure central tendency instead of the mean. Not 

samples in the same manner, and then computing Y for each one. We did this for 1000

random samples and plotted a histogram of the Y values in the left panel of Figure 1.
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Figure 1: (Left) Histogram of 1000 sample means from repeated sampling of a theoretical

lognormal population. (Right) Histogram of 1000 bootstrap sample means from randomly

sampling with replacement from Table 1 data.

The bootstrap can be used to approximate the sampling distribution of Y when we do not

know the population from which the sample was obtained (always the case with real data).

The nonparametric bootstrap proceeds by treating the data in Table 1 as a population and

drawing random samples from it. A bootstrap random sample (also called a resample) is

drawn from the Table 1 pseudo-population by randomly choosing 25 values with replacement

from the values in Table 1. Table 2 displays two such samples.

Table 2: Bootstrap resamples from Table 1.

# 1 1 4 4 6 18 22 22 23 23 23 24 26 31

37 46 47 47 56 56 61 61 63 65 65 65

# 2 1 4 6 13 14 14 18 19 22 23 23 23 24

26 26 37 46 46 47 47 63 63 70 70 97

Note that repeated values of the original data appear within each resample because the

sampling is with replacement (as opposed to without replacement). The only sample of size
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Figure 1. (Left) Histogram of 1000 sample means from repeated sampling of a theoretical lognormal population. (Right) Histogram of 1000 bootstrap sample means from 
randomly sampling with replacement from Table 1 data

Table 2. Bootstrap resamples from Table 1

Sample 1 1 4 4 6 18 22 22 23 23 23 24 26 31
37 46 47 47 56 56 61 61 63 65 65 65

Sample 2 1 4 6 13 14 14 18 19 22 23 23 23 24
26 26 37 46 46 47 47 63 63 70 70 97

Bootstrapping needs computing 
power.  Happily it was devised just as 
computers became common
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only is the median more representative of typical 
data values, but the sampling distribution stan-
dard deviation is much smaller for the sample 
median than for the sample mean (small is good 
for standard deviations of estimators!). Thus, for 
example, the US Census Bureau routinely uses 
medians to summarize income data.

Unfortunately the sampling distribution of 
the sample median is difficult to analyse theo-
retically. In fact, there is no simple expression 
for the standard deviation of the sample median 
like the expression s/√n for the sample mean. 
We can of course study the distribution by Monte 
Carlo sampling from a true population when it 
is known.

The left panel of Figure 2 gives a histogram 
of sample median values from the same 1000 
lognormal samples as in the left panel of Fig-
ure 1. This histogram of medians approximates 
the true sampling distribution of the sample 
median. However, in real life we only know the 
sample, not the population. Thus the right panel 
of Figure 2 gives the histogram of 1000 sample 
medians computed from the same resamples as 
used in the right panel of Figure 1.

Note that the vertical scales are different 
in Figure 2. Because of the discreteness of the 
bootstrap pseudo-population and the nature of 
the median, the estimated sampling distribu-
tion is very discrete, with most of the sample 
medians concentrated on the Table 1 central 
values 22, 23, 24, 26, 31 and 34. For most 
purposes this discreteness is not a problem. 
Comparing Figures 1 and 2 visually suggests 
that the bootstrap distribution for the sample 
mean is a better estimate of the true sampling 
distribution of the sample mean than it is for 
the sample median. This reflects the fact that 
the sampling distribution of the median is 
more difficult to estimate than the sampling 
distribution of the mean. However, the boot-
strap still estimates the sampling distribution 
well enough, and in particular provides a valid 
standard error estimate for the median, whereas 
the best-known other computationally-based 
method for estimating standard errors, the jack-
knife, does not.

Using the 1000 bootstrap medians depicted 
in the right panel of Figure 2, the bootstrap stan-
dard error (of the median estimate 26) is
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Comparing this bootstrap standard error, 7.3, to 
that for the sample mean, 13.8, empirically sup-
ports the claim that the median is a less variable 
statistic than the mean for skewed data.

The 1000 bootstrap median values are com-
monly used for other purposes as well. The plots 
in Figure 2 suggest that the sampling distribution 

of the median is mildly skewed to the right. (In 
large samples the sampling distribution approxi-
mates a normal distribution.) Thus, we might 
be interested in the bias in the sample median, 
that is, the difference between the mean of the 
sampling distribution and the true population 
median. The bootstrap estimate of that bias is 
(1000)–1Si

1

=1

000M̂i – 26 = 28.4 – 26 = 2.4, leading 
to the bootstrap bias-adjusted median estimate 
26 – 2.4 = 23.6.

Another important statistical technique 
amenable to the bootstrap is confidence interval 
construction. The simplest bootstrap approach 
to confidence intervals is first to order the 
1000 bootstrap medians displayed in the right 
panel of Figure 2, say M̂(1) ≤ M̂(2) … ≤ M̂(1000). 
Then (M̂(25), M̂(975)) = (19, 46) is called the 95% 
bootstrap percentile interval. In this case, an 
exact nonparametric confidence interval for the 
median is available, given by (19, 47) with ex-

act coverage probability 0.957. Efron1 pointed 
out the close similarity between the bootstrap 
percentile interval and this nonparametric con-
fidence interval.

Conclusion

The power of the bootstrap lies in the fact that 
the method applies to (almost) any estimator, no 
matter how complicated. The only requirement is 
a computer program to calculate the estimator 
from a sample and a method to draw resamples. 
We have described only the case of simple random 
sampling. However, the bootstrap method applies 
to any type of probability-based data collection, 
provided that it can be imitated via a computer 
program to generate resamples that relate statis-
tically to the real sample in the same way that 
the real sample relates to the population from 
which it was selected. For example, economic 
data is often in the form of time series where 
all the sample data are correlated. A parametric 
bootstrap would assume a specific model such as 
a normal autoregressive process. After estimating 
the unknown parameters of the model, many in-
dependent bootstrap time series would be gener-
ated from the estimated autoregressive process.

There are literally thousands of articles on 
the bootstrap and many expository reviews. For 
starters, though, the book by Efron and Tibshi-
rani2 is a good introduction, and those by Efron1 
and Shao and Tu3 can be consulted for more 
technical accounts.

References
1.	 Efron, B. (1982) The Jackknife, the 

Bootstrap, and Other Resampling Plans. Philadelphia: 
Society for Industrial and Applied Mathematics.

2.	 Efron, B. and Tibshirani, R. J. (1993) An 
Introduction to the Bootstrap. New York: Chapman and 
Hall.

3.	 Shao, J., and Tu, D. (1996) The Jackknife 
and Bootstrap. New York: Springer.

Dennis Boos and Leonard Stefanski are at the Depart-
ment of Statistics, North Carolina State University.

Medians of Lognormal Samples of Size n=25

D
en

si
ty

0 10 20 30 40 50 60 70

0.
00

0.
02

0.
04

Medians of Bootstrap Samples of Size n=25

D
en

si
ty

0 10 20 30 40 50 60 70

0.
00

0.
04

0.
08

0.
12

Figure 2: (Left) Histogram of 1000 sample medians from repeated sampling of a theoretical

lognormal population. (Right) Histogram of 1000 bootstrap sample medians from Table 1

data.

difficult to estimate than the sampling distribution of the mean. However, the bootstrap still

estimates the sampling distribution well enough, and in particular provides a valid standard

error estimate for the median, whereas the best-known other computationally-based method

for estimating standard errors, the jackknife, does not.

Using the 1000 bootstrap medians depicted in the right panel of Figure 2, the bootstrap

standard error (of the median estimate 26) is
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= 7.3.

Comparing this bootstrap standard error, 7.3, to that for the sample mean, 13.8, empirically

supports the claim that the median is a less variable statistic than the mean for skewed data.

The 1000 bootstrap median values are commonly used for other purposes as well. The

plots in Figure 2 suggest that the sampling distribution of the median is mildly skewed

to the right. (In large samples the sampling distribution actual approximates a normal

distribution.) Thus, we might be interested in the bias in the sample median, that is, the

difference between the mean of the sampling distribution and the true population median.

The bootstrap estimate of that bias is (1000)−1
1000

i=1
Mi − 26 = 28.4− 26 = 2.4, leading to
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Figure 2. (Left) Histogram of 1000 sample medians from repeated sampling of a theoretical lognormal population. (Right) Histogram of 1000 bootstrap sample medians 
from Table 1 data

The only requirement for a 
bootstrap is a computer program 
and a method to draw resamples


