Finite differences scheme for Option pricing with P.I.D.E's

João Guerra

CEMAPRE and ISEG, UTL

December 3, 2014

João Guerra (CEMAPRE and ISEG, UTL)

Finite differences scheme for Option pricing with P.I.D.E

December 3, 2014 1 / 22

The pricing P.I.D.E. for exponential Lévy models

The pricing P.I.D.E.

In general, for European and Barrier Options, the pricing P.I.D.E. is (after introducing the new variables τ = T − t, x = ln (S/S₀) and defining h(x) = H(S₀e^x) and u(τ, x) = e^{rτ}C(T − τ, S₀e^x), where H is the payoff and C is the price of the option):

$$\begin{cases} \frac{\partial u}{\partial \tau} = L^{X} u + r \frac{\partial u}{\partial x} = L u & \text{if } (\tau, x) \in]0, T] \times O, \\ u(0, x) = h(x) & \text{if } x \in O, \end{cases}$$
(1)

where $O = \mathbb{R}$ for an European option, or O =]a, b[for a Barrier option (in the case of a barrier option, appropriate boundary conditions should also be imposed outside O).

• L^X is the infinitesimal generator associated to the Lévy process X (where $S_t = \exp(rt + X_t)$, under the risk neutral measure) and $L = L^X + r \frac{\partial}{\partial x}$ is

$$Lu = \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2} - \left(\frac{\sigma^2}{2} - r\right) \frac{\partial u}{\partial x} + \int_{\mathbb{R}} \left[u(\tau, x + y) - u(\tau, x) - (e^y - 1) \frac{\partial u}{\partial x} \right] \nu(dy)$$
(2)

Numerical scheme

- Numerical scheme (for finite activity processes):
 - 1 Truncation of large jumps
 - Localization
 - Oiscretization
- I. Truncation of large jumps: the domain]−∞, +∞[is truncated to a bounded interval]B_I, B_r[- this removes large jumps.
- Usually, the tails of
 ν decrease exponentially ⇒ the probability of large
 jumps is very small ⇒ we can truncate these jumps.

João Guerra (CEMAPRE and ISEG, UTL) Finite differences scheme for Option pricing with P.I.D.E

December 3, 2014 3 / 22

The pricing P.I.D.E. for exponential Lévy models

Localization

- 2. Localization: for barrier options (when O =]a, b[), the barrier levels a and b are the natural limits for the domain definition.
- Localization for European options: in the absence of barriers, choose artificial bounds]-A_I, A_r[and impose artificial boundary conditions

$$u(\tau, \mathbf{x}) = g(\tau, \mathbf{x}), \quad \forall \mathbf{x} \notin]-A_I, A_r[, \tau \in [0, T].$$

For instance, $g(\tau, x) = h(x + r\tau)$, where *h* is the modified payoff function.

• Example: for a put option, we have $h(x) = (K - S_0 e^x)^+$ and therefore, we can assume the boundary conditions

$$u(\tau, \mathbf{x}) = g(\tau, \mathbf{x}) = h(\mathbf{x} + r\tau) = \left(\mathbf{K} - \mathbf{S}_0 \mathbf{e}^{\mathbf{x} + r\tau}\right)^+ \quad \text{if } \mathbf{x} \notin \left] - \mathbf{A}_I, \mathbf{A}_r \right[.$$

Discretization

• We consider the localized problem on $]-A_I, A_r[:$

$$\begin{cases} \frac{\partial u}{\partial \tau} = Lu \quad \text{if} \quad (\tau, \mathbf{x}) \in]0, \ T] \times]-A_l, A_r[, \\ u(0, \mathbf{x}) = h(\mathbf{x}) \quad \text{if} \quad \mathbf{x} \in]-A_l, A_r[, \\ u(\tau, \mathbf{x}) = g(\tau, \mathbf{x}), \quad \text{if} \quad \mathbf{x} \notin]-A_l, A_r[. \end{cases}$$
(3)

• In the finite activity case, we can write the localized version of (2) as

$$Lu = \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2} - \left(\frac{\sigma^2}{2} - r\right) \frac{\partial u}{\partial x} + \int_{B_l}^{B_r} u(\tau, x + y) \nu(dy) - \lambda u - \alpha \frac{\partial u}{\partial x}$$

where $\lambda := \nu(\mathbb{R}) < \infty$ (in the finite activity case) and $\alpha := \int_{B_l}^{B_r} (e^y - 1) \nu(dy).$

• Uniform grid on $[0, T] \times [-A_l, A_r]$:

$$au_n = n\Delta t, \quad n = 0, 1, ..., M \text{ and } \Delta t = rac{T}{M},$$

 $x_i = -A_i + i\Delta x, \quad i = 0, 1, ..., N \text{ and } \Delta x = rac{(A_i + A_r)}{N}.$

Discretization

- Discrete values: $u_i^n := u(\tau_n, x_i)$.
- Finite difference approximations:

$$\left(\frac{\partial u}{\partial x}\right)_i \approx \frac{u_{i+1} - u_i}{\Delta x} \text{ or } \frac{u_i - u_{i-1}}{\Delta x},$$
 (4)

$$\left(\frac{\partial^2 u}{\partial x^2}\right)_i \approx \frac{u_{i+1} - 2u_i + u_{i-1}}{\left(\Delta x\right)^2}$$
(5)

$$\int_{B_l}^{B_r} u(\tau, \mathbf{x}_i + \mathbf{y}) \nu(d\mathbf{y}) \approx \sum_{j=K_l}^{K_r} \nu_j u_{i+j}, \tag{6}$$

where

$$\nu_j := \int_{\left(j-\frac{1}{2}\right)\Delta x}^{\left(j+\frac{1}{2}\right)\Delta x} \nu\left(dy\right).$$

João Guerra (CEMAPRE and ISEG, UTL) Finite differences scheme for Option pricing with P.I.D.E

December 3, 2014 7 / 22

The pricing P.I.D.E. for exponential Lévy models

Discretization

- The limits K_l and K_r are integers such that $[B_l, B_r] \subset \left[\left(K_l \frac{1}{2} \right) \Delta x, \left(K_r + \frac{1}{2} \right) \Delta x \right].$
- Using Eqs. (4), (5) and (6), we obtain

$$Lu \approx D_{\Delta}u + J_{\Delta}u$$
,

where

$$(D_{\Delta}u)_{i} = \frac{\sigma^{2}}{2} \left(\frac{u_{i+1} - 2u_{i} + u_{i+1}}{\left(\Delta x\right)^{2}} \right) - \left(\frac{\sigma^{2}}{2} - r \right) \left(\frac{u_{i+1} - u_{i}}{\Delta x} \right),$$
$$(J_{\Delta}u)_{i} = \sum_{j=K_{i}}^{K_{r}} \nu_{j} u_{i+j} - \lambda u_{i} - \alpha \left(\frac{u_{i+1} - u_{i}}{\Delta x} \right).$$

Explicit scheme

• Explicit scheme:

 $\frac{u^{n+1}-u^n}{\Delta t}=D_{\Delta}u^n+J_{\Delta}u^n$

or

$$u^{n+1} = \left[I + \Delta t \left(D_{\Delta} + J_{\Delta}\right)\right] u^n.$$

• In order for this scheme to be stable, one must impose conditions on Δt .

• A sufficient condition for stability is

$$\Delta t \leq \inf\left\{\frac{1}{\lambda}, \frac{\left(\Delta x\right)^2}{\sigma^2}\right\}.$$

The term $\frac{(\Delta x)^2}{\sigma^2}$ forces Δt to be very small and increases computation time.

João Guerra (CEMAPRE and ISEG, UTL) Finite diffe

Finite differences scheme for Option pricing with P.I.D.E

December 3, 2014 9 / 22

The pricing PI.D.E. for exponential Lévy models

Implicit scheme

Implicit scheme:

$$\frac{u^{n+1}-u^n}{\Delta t} = D_{\Delta}u^{n+1} + J_{\Delta}u^{n+1}$$
$$[I - \Delta t (D_{\Delta} + J_{\Delta})] u^{n+1} = u^n.$$

or

- This scheme is stable but we have to solve a linear system at each iteration.
- In the case of diffusion models (J = 0), the matrix I ΔtD_Δ is tridiagonal and the linear system is easy to solve.
- However, in the presence of jumps ($J \neq 0$), the matrix J_{Δ} is a dense matrix (in general, all the terms of J_{Δ} can be nonzero) and in order to solve the linear system we need $O(N^2)$ operations.

General scheme

• General θ scheme

$$\frac{u^{n+1}-u^n}{\Delta t}=\theta\left(D_{\Delta}u^n+J_{\Delta}u^n\right)+\left(1-\theta\right)\left(D_{\Delta}u^{n+1}+J_{\Delta}u^{n+1}\right).$$

- For θ = 1, we recover the explicit scheme, but for θ ≠ 1, the computational complexity is the same as for the implicit scheme.
- If J = 0 (diffusion model) then an implicit scheme is a good choice.
- If D = 0 (pure jump model) then an explicit scheme should be chosen.
- What if J ≠ 0 and D ≠ 0, like in the jump-diffusion case? Explicit-implicit scheme.

João Guerra (CEMAPRE and ISEG, UTL) Finite differences scheme for Option pricing with P.I.D.E December 3, 2014 11 / 22

The pricing PI.D.E. for exponential Lévy models

Explicit-implicit scheme

• Explicit-implicit scheme:

$$\frac{u^{n+1}-u^n}{\Delta t}=D_{\Delta}u^{n+1}+J_{\Delta}u^n,\ \tau_n=n\Delta t,\ n=0,1,...,M.$$

This leads to the tridiagonal linear system:

$$[I - \Delta t D_{\Delta}] u^{n+1} = [I + \Delta t J_{\Delta}] u^n.$$

• Algorithm:

Initialization:

$$u_i^0 = h(x_i)$$
 if $i \in \{0, ..., N-1\}$,
 $u_i^0 = g(0, x_i)$ otherwise.

2 For
$$n = 0, ..., M - 1$$
,
$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = \left(D_\Delta u^{n+1} \right)_i + \left(J_\Delta u^n \right)_i, \quad \text{if } i \in \{0, 1, ..., N - 1\}, \quad (7)$$

$$u_i^{n+1} = g((n+1) \Delta t, x_i), \quad \text{otherwise.}$$

- The non-local operator *J* is treated explicitly to avoid the inversion of the dense matrix J_{Δ} , while the differential part *D* is treated implicitly.
- At each time step, we first evaluate vector $J_{\Delta}u^n$ where u^n is known from the previous iteration, and then solve the tridiagonal system (7) for $u^{n+1} = \left(u_0^{n+1}, u_1^{n+1}, ..., u_{N-1}^{n+1}\right)$.
- The explicit-implicit scheme is stable if

$$\Delta t < \frac{\Delta x}{|\alpha| + \lambda \Delta x}$$

• See Cont and Voltchkova (2005) or Tankov and Voltchkova (2009).

The pricing PI.D.E. for exponential Lévy models

Explicit-implicit scheme

- Consistence: The explicit-implicit scheme is consistent with the P.I.D.E. (3).
- Monotony and stability: The explicit-implicit scheme is monotone and stable if Δt < Δx/|α|+λΔx.
- One can prove that the explicit-implicit scheme is also convergent and that the approximate solution converges uniformly to the unique solution of (1)- See Cont and Voltchkova (2005) or Cont and Tankov (2004).

 A scheme is stable is for any bounded initial condition, the solution uⁿ_i is uniformly bounded at all points of the grid, independently of Δt and Δx :

$$\exists C > 0 : \forall \Delta t > 0, \Delta x > 0, i, n, |u_i^n| \le C.$$

- Stability ensures that the numerical solution at a given point does not blow up when (Δt, Δx) → 0.
- A numerical scheme is consistent with the P.I.D.E. (3) if the discretized operator converges to its continuous version when applied to any test function v ∈ C[∞] ([0, T] × ℝ), when (Δt, Δx) → 0.
- A scheme is monotone if $u^0 \ge v^0 \Longrightarrow \forall n \ge 1$, $u^n \ge v^n$.

			5
João Guerra (CEMAPRE and ISEG, UTL)	Finite differences scheme for Option pricing with P.I.D.E	December 3, 2014 15 / 22	2

The pricing P.I.D.E. for exponential Lévy models

Numerical Examples

- We illustrate the performance of the scheme proposed above in two examples. (See Cont and Tankov (2004) or Cont and Voltchkova (2005)).
- Model 1: Variance Gamma model with Lévy density

$$\nu\left(\mathbf{x}\right) = \mathbf{a} \frac{\exp\left(-\eta_{\pm} \left|\mathbf{x}\right|\right)}{\left|\mathbf{x}\right|},$$

and two sets of parameters *a* = 6.25, η_- = 14.4, η_+ = 60.2 (VG1) and *a* = 0.5, η_- = 2.7, η_+ = 7.9.

 Model 2: Merton model (jump-diffusion) with Gaussian jumps and log-price with Lévy density (the intensity of the standard Poisson proc. is \overline{\lambda} = 0.1):

$$\nu\left(\boldsymbol{x}\right) = 0.1 \frac{\mathrm{e}^{-x^{2}/2}}{\sqrt{2\pi}}$$

and volatility $\sigma = 15\%$.

• Option: put option with maturity 1 year such that $h(x) = (1 - e^x)^+$.

- Performance of the scheme when compared to the FFT method (of Carr and Madan).
- Errors computed in terms of Black-Scholes implied volatility

$$\varepsilon(\tau, \mathbf{x}) = \left| \Sigma^{\text{PIDE}}(\tau, \mathbf{x}) - \Sigma^{\text{FFT}}(\tau, \mathbf{x}) \right|,$$

where Σ denotes the Black-Scholes implied volatility computed by inverting the Black-Scholes formula with respect to the volatility parameter and applying it to the computed option price.

We have computed both pointwise errors at x = 0 (i.e. forward at-themoney options) and uniform errors on the computational range x ∈ [log(2/3), log(2)]. This range contains all options prices quoted on the market.

The pricing P.I.D.E. for exponential Lévy models
Numerical Examples

Figure 1: Influence of domain size on localization error for the explicit-implicit finite difference scheme. Left: Merton jump-diffusion model. Right: Variance Gamma model.

Numerical Examples

Figure 2: Numerical accuracy for a put option in the Merton model. Left: Influence of number of time steps M. $\Delta x = 0.05$, $\Delta t = T/M$. Right: influence of number of space steps N. $\Delta x = 2A/N$, $\Delta t = 0.02$.

João Guerra (CEMAPRE and ISEG, UTL)

Finite differences scheme for Option pricing with P.I.D.E

19 December 3, 2014 19 / 22

The pricing P.I.D.E. for exponential Lévy models
Numerical Examples

Figure 4: Influence of truncation of small jumps on numerical error in various Variance Gamma models. Put option.

- The localization error is shown in Figure 1: domain size A is represented in terms of its ratio to the standard deviation of X_T. An acceptable level is obtained for values of order 5.
- Figure 2 illustrates the decay of numerical error when $\Delta t, \Delta x \rightarrow 0$.
- Figure 4 confirms that, for a given Δx > 0, the minimal error is obtained for a finite ε which in this case is larger than Δx. The optimal choice of ε depends on the growth of the Lévy density near zero.
- In the Table, some examples of option values obtained with the numerical scheme are listed

Model	Put	t	Up-and-out call	t	Double-barrier put	t
		sec.	H = 120	sec.	L = 80, H = 120	sec.
VG1	6.72	0.5	2.73	0.2	2.42	0.1
VG2	8.38	0.9	3.34	0.5	1.68	0.1
Merton	11.04	1.2	1.17	0.5	3.35	4

21 December 3, 2014 21 / 22

The pricing P.I.D.E. for exponential Lévy models

- Cont, R. and P. Tankov (2004). Financial modelling with jump processes. Chapman and Hall/CRC Press, Chapter 12.
- Cont, R. and Voltchkova, E. (2005). Finite difference methods for option pricing in jump-diffusion and exponential Lévy models, SIAM Journal on Numerical Analysis 43(4), 1596–1626.
- Tankov, P. and Voltchkova, E. (2009). Jump-diffusion models: a practitioner's guide, Banque et Marchés, No. 99, March-April 2009. Available in http://www.proba.jussieu.fr/pageperso/tankov/tankov_voltchkova.pdf