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The pricing P.I.D.E. for exponential Lévy models

The pricing P.I.D.E.

In general, for European and Barrier Options, the pricing P.I.D.E. is (after

introducing the new variables τ = T − t , x = ln (S/S0) and defining

h (x) = H (S0ex ) and u (τ, x) = erτC (T − τ,S0ex ), where H is the payoff

and C is the price of the option):{
∂u
∂τ = LX u + r ∂u

∂x
= Lu if (τ, x) ∈ ]0,T ]×O,

u(0, x) = h(x) if x ∈ O,
(1)

where O = R for an European option, or O = ]a,b[ for a Barrier option (in

the case of a barrier option, appropriate boundary conditions should also

be imposed outside O).

LX is the infinitesimal generator associated to the Lévy process X (where

St = exp (rt + Xt ), under the risk neutral measure) and L = LX + r ∂
∂x

is

Lu =
σ2

2

∂2u

∂x2
−
(
σ2

2
− r

)
∂u

∂x
+

+

∫
R

[
u (τ, x + y)− u(τ, x)− (ey − 1)

∂u

∂x

]
ν (dy) (2)
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Numerical scheme

Numerical scheme (for finite activity processes):

1 Truncation of large jumps
2 Localization
3 Discretization

1. Truncation of large jumps: the domain ]−∞,+∞[ is truncated to a

bounded interval ]Bl ,Br [- this removes large jumps.

Usually, the tails of ν decrease exponentially =⇒ the probability of large

jumps is very small =⇒ we can truncate these jumps.
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Localization

2. Localization: for barrier options (when O = ]a,b[), the barrier levels a

and b are the natural limits for the domain definition.

Localization for European options: in the absence of barriers, choose

artificial bounds ]−Al ,Ar [ and impose artificial boundary conditions

u(τ, x) = g(τ, x), ∀x /∈ ]−Al ,Ar [ , τ ∈ [0,T ] .

For instance, g(τ, x) = h (x + rτ), where h is the modified payoff function.

Example: for a put option, we have h(x) = (K − S0ex )+
and therefore,

we can assume the boundary conditions

u(τ, x) = g(τ, x) = h (x + rτ) =
(
K − S0ex+rτ

)+
if x /∈ ]−Al ,Ar [ .
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Discretization

We consider the localized problem on ]−Al ,Ar [:
∂u
∂τ = Lu if (τ, x) ∈ ]0,T ]× ]−Al ,Ar [ ,

u(0, x) = h(x) if x ∈ ]−Al ,Ar [ ,
u(τ, x) = g(τ, x), if x /∈ ]−Al ,Ar [ .

(3)
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Discretization

In the finite activity case, we can write the localized version of (2) as

Lu =
σ2

2

∂2u

∂x2
−
(
σ2

2
− r

)
∂u

∂x
+

+

∫ Br

Bl

u (τ, x + y) ν (dy)− λu − α∂u

∂x
,

where λ := ν (R) <∞ (in the finite activity case) and

α :=
∫ Br

Bl
(ey − 1) ν (dy).

Uniform grid on [0,T ]× [−Al ,Ar ]:

τn = n∆t , n = 0,1, ...,M and ∆t =
T

M
,

xi = −Al + i∆x , i = 0,1, ...,N and ∆x =
(Al + Ar )

N
.
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Discretization

Discrete values: un
i := u (τn, xi ) .

Finite difference approximations:(
∂u

∂x

)
i

≈ ui+1 − ui

∆x
or

ui − ui−1

∆x
, (4)(

∂2u

∂x2

)
i

≈ ui+1 − 2ui + ui−1

(∆x)2
(5)

∫ Br

Bl

u (τ, xi + y) ν (dy) ≈
Kr∑

j=Kl

νjui+j , (6)

where

νj :=

∫ (j+ 1
2 )∆x

(j− 1
2 )∆x

ν (dy) .
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Discretization

The limits Kl and Kr are integers such that

[Bl ,Br ] ⊂
[(

Kl − 1
2

)
∆x ,

(
Kr + 1

2

)
∆x
]
.

Using Eqs. (4), (5) and (6), we obtain

Lu ≈ D∆u + J∆u,

where

(D∆u)i =
σ2

2

(
ui+1 − 2ui + ui+1

(∆x)2

)
−
(
σ2

2
− r

)(
ui+1 − ui

∆x

)
,

(J∆u)i =

Kr∑
j=Kl

νjui+j − λui − α
(

ui+1 − ui

∆x

)
.
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Explicit scheme

Explicit scheme:

un+1 − un

∆t
= D∆un + J∆un

or

un+1 = [I + ∆t (D∆ + J∆)] un.

In order for this scheme to be stable, one must impose conditions on ∆t .

A sufficient condition for stability is

∆t ≤ inf

{
1

λ
,

(∆x)2

σ2

}
.

The term
(∆x)2

σ2 forces ∆t to be very small and increases computation

time.
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Implicit scheme

Implicit scheme:

un+1 − un

∆t
= D∆un+1 + J∆un+1

or

[I −∆t (D∆ + J∆)] un+1 = un.

This scheme is stable but we have to solve a linear system at each

iteration.

In the case of diffusion models (J = 0), the matrix I −∆tD∆ is tridiagonal

and the linear system is easy to solve.

However, in the presence of jumps (J 6= 0), the matrix J∆ is a dense

matrix (in general, all the terms of J∆ can be nonzero) and in order to

solve the linear system we need O
(
N2
)

operations.
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General scheme

General θ scheme

un+1 − un

∆t
= θ (D∆un + J∆un) + (1− θ)

(
D∆un+1 + J∆un+1

)
.

For θ = 1, we recover the explicit scheme, but for θ 6= 1, the

computational complexity is the same as for the implicit scheme.

If J = 0 (diffusion model) then an implicit scheme is a good choice.

If D = 0 (pure jump model) then an explicit scheme should be chosen.

What if J 6= 0 and D 6= 0, like in the jump-diffusion case? Explicit-implicit

scheme.
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Explicit-implicit scheme

Explicit-implicit scheme:

un+1 − un

∆t
= D∆un+1 + J∆un, τn = n∆t , n = 0,1, ...,M.

This leads to the tridiagonal linear system:

[I −∆tD∆] un+1 = [I + ∆tJ∆] un.

Algorithm:
1 Initialization:

u
0
i = h(xi ) if i ∈ {0, ...,N − 1} ,

u
0
i = g(0, xi ) otherwise.

2 For n = 0, ...,M − 1,

un+1
i − un

i

∆t
=
(

D∆u
n+1
)

i
+
(
J∆u

n
)

i
, if i ∈ {0, 1, ...,N − 1} , (7)

u
n+1
i = g((n + 1) ∆t , xi ), otherwise.
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Explicit-implicit scheme

The non-local operator J is treated explicitly to avoid the inversion of the

dense matrix J∆, while the differential part D is treated implicitly.

At each time step, we first evaluate vector J∆un where un is known from

the previous iteration, and then solve the tridiagonal system (7) for

un+1 =
(

un+1
0 ,un+1

1 , ...,un+1
N−1

)
.

The explicit-implicit scheme is stable if

∆t <
∆x

|α|+ λ∆x

See Cont and Voltchkova (2005) or Tankov and Voltchkova (2009).
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Explicit-implicit scheme

Consistence: The explicit-implicit scheme is consistent with the P.I.D.E.

(3).

Monotony and stability: The explicit-implicit scheme is monotone and

stable if ∆t < ∆x
|α|+λ∆x

.

One can prove that the explicit-implicit scheme is also convergent and

that the approximate solution converges uniformly to the unique solution

of (1)- See Cont and Voltchkova (2005) or Cont and Tankov (2004).
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Stability, consistency and monotonicity

A scheme is stable is for any bounded initial condition, the solution un
i is

uniformly bounded at all points of the grid, independently of ∆t and ∆x :

∃C > 0 : ∀∆t > 0,∆x > 0, i ,n, |un
i | ≤ C.

Stability ensures that the numerical solution at a given point does not

blow up when (∆t ,∆x)→ 0.

A numerical scheme is consistent with the P.I.D.E. (3) if the discretized

operator converges to its continuous version when applied to any test

function v ∈ C∞ ([0,T ]× R), when (∆t ,∆x)→ 0.

A scheme is monotone if u0 ≥ v0 =⇒ ∀n ≥ 1, un ≥ vn.
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Numerical Examples

We illustrate the performance of the scheme proposed above in two

examples. (See Cont and Tankov (2004) or Cont and Voltchkova (2005)).

Model 1: Variance Gamma model with Lévy density

ν (x) = a
exp (−η± |x |)

|x | ,

and two sets of parameters a = 6.25, η− = 14.4, η+ = 60.2 (VG1) and

a = 0.5, η− = 2.7, η+ = 7.9.

Model 2: Merton model (jump-diffusion) with Gaussian jumps and

log-price with Lévy density (the intensity of the standard Poisson proc. is

λ = 0.1):

ν (x) = 0.1
e−x2/2

√
2π

and volatility σ = 15%.

Option: put option with maturity 1 year such that h(x) = (1− ex )+
.
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Numerical Examples

Performance of the scheme when compared to the FFT method (of Carr

and Madan).

Errors computed in terms of Black-Scholes implied volatility

ε (τ, x) =
∣∣ΣPIDE (τ, x)− ΣFFT (τ, x)

∣∣ ,
where Σ denotes the Black-Scholes implied volatility computed by

inverting the Black-Scholes formula with respect to the volatility

parameter and applying it to the computed option price.

We have computed both pointwise errors at x = 0 (i.e. forward

at-themoney options) and uniform errors on the computational range

x ∈ [log(2/3), log(2)]. This range contains all options prices quoted on

the market.
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Numerical Examples
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Numerical Examples
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Numerical Examples
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Numerical Examples

The localization error is shown in Figure 1: domain size A is represented

in terms of its ratio to the standard deviation of XT . An acceptable level is

obtained for values of order 5.

Figure 2 illustrates the decay of numerical error when ∆t ,∆x → 0.

Figure 4 confirms that, for a given ∆x > 0, the minimal error is obtained

for a finite ε which in this case is larger than ∆x . The optimal choice of ε
depends on the growth of the Lévy density near zero.

In the Table, some examples of option values obtained with the numerical

scheme are listed
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