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1. (a) By Itô’s lemma (or Itô’s formula) applied to g(t, x) (it is a C1,2

function):

dg(t, St) =
∂g

∂t
(t, St)dt+

∂g

∂x
(t, St)dSt +

1

2

∂2g

∂x2
(t, St) (dSt)

2

=

[
∂g

∂t
(t, St) + α(t, St)

∂g

∂x
(t, St) +

1

2
(σ(t, St))

2 ∂
2g

∂x2
(t, St)

]
dt

+ σ(t, St)
∂g

∂x
(t, St)dBt

= 0 + σ(t, St)
∂g

∂x
(t, St)dBt

where we have used (dBt)
2 = dt.

(b) We have
dSt = 0.05Stdt+ 0.15StdBt,

which is the SDE of a geometric Brownian motion with α = 0.05
and σ = 0.15. The solution is (it can be obtained by applying
the Itô formula to f(x) = log(1/x))

St = S0 exp

[(
α− 1

2
σ2
)
t+ σBt

]
= S0 exp

[(
0.05− 1

2
(0.15)2

)
t+ 0.15Bt

]
Therefore

St = S0 exp [0.03875t+ 0.15Bt] .

SinceBt ∼ N (0; t), then log (St) ∼ N (log (S0) + 0.03875t; 0.0225t).

P

(
S5
S0

> 1.2

)
= P (exp [0.03875× 5 + 0.15B5] > 1.2)

= 1− P (Z ≤ log (1.2)) .
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where Z = 0.19375 + 0.15B5 ∼ N (0.19375; 0, 1125) .

Therefore: P
(
S5
S0
> 1.2

)
= 10, 4864 = 0, 5136.

2. (a) QMU is the long-run mean for the force of inflation.
QA is the autoregressive parameter: its value should be such that
0 < QA < 1 in order to have a mean reverting inflation.
QSD.QZT represents the random component of the process or
"the random shock to the system" part of the equation. QSD
dictates the typical size of this "shock"

(b) I(t− 1) = 0.08

I(t) = 0.04 + 0.5× [0.06− 0.04] + 0.045QZ(t)

= 0.05 + 0.045QZ(t),

where QZ(t) ∼ N(0, 1). In order to obtain the 90% confidence
interval, from the percentage points table for the standard normal
distribution, we have that for the upper level:

I(t)max = 0.05 + 0.045× 1.6449 = 0.1240,

and for the lower level

I(t)min = 0.05− 0.045× 1.6449 = −0.0240.

and the 90% confidence interval is [−0.0240, 0.1240] .

(c) Four examples of financial/economical variables that should be
modelled by auto-regressive models, with a mean-reversion effect:
interest rates, dividend yields, rate of inflation, annual rate of
growth in dividends.
A random walk process can be expected to grow arbitrarily large
with time. If share prices follow a random walk, with positive
drift, then those share prices would be expected to tend to infin-
ity for large time horizons. However, there are many quantities
which should not behave like this. For example, we do not expect
interest rates to jump off to infinity, or to collapse to zero. In-
stead, we would expect some mean reverting force to pull interest
rates back to some normal range. In the same way, while divi-
dend yields can change substantially over time, we would expect
them, over the long run, to form some stationary distribution,
and not run off to infinity. Similar considerations apply to the
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annual rate of growth in prices or in dividends. In each case, these
quantities are not independent from one year to the next; times
of high interest rates or high inflation tend to bunch together i.e.
the models are autoregressive.

3. (a) At time t, consider the portfolio: one European put + Share St
and a cash account with valueKe−r(T−t). At time T , the portfolio
value is 0 + ST = ST > K if ST > K. If ST < K then the
payoff from portfolio is K − ST + ST = K. The cash account
at time T has a value of K. Therefore the portfolio payoff ≥ K
=⇒ pt + St ≥ Ke−r(T−t) and we have the lower bound for the
price of European put:

pt ≥ Ke−r(T−t) − St.

(b) By the put-call parity:

ct +Ke−r(T−t) = pt + St.

Therefore:

Ke−r(T−t) = pt + St − ct

(T − t) = −1

r
log

(
pt + St − ct

K

)
and

(T − t) = − 1

0.04
log

(
0.9 + 16.5− 1.2

17

)
= 1.2051

and the time to expiry is T − t = 1.2051 years.

(c) It is never optimal to exercise an american call on a non-dividend
paying share early because if we exercise early, the payoff is St−K,
but if we do not exercise, the value of the American call must be
at least that of the European call, i.e., by the lower bound for
an European call option, Ct ≥ St −Ke−r(T−t) > St −K. So, we
would receive more by selling the option than by exercising it.

4. (a) St+1
St

= 1.10 or St+1
St

= 0.92. Therefore u = 1.10 and d = 0.92.

er = e0.05 = 1.0513 and we have d < er < u and therefore the
model is arbitrage free.
Binomial tree:
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(b) The risk neutral probability of an up-movement is

q =
er − d
u− d =

e0.05 − 0.92

1.1− 0.92
= 0.7293.

Payoff of the derivative: C3 = max
{

(S3)
2 −K, 0

}
with K = 130.

Using the usual backward procedure:

C3
(
u3
)

= max
{(
S0u

3
)2 − 130, 0

}
= 47.1561, C3(u2d) = max

{(
S0u

2d
)2 − 130, 0

}
=

0, C3
(
d2u
)

= max
{(
S0d

2u
)2 − 130, 0

}
= 0 and C3

(
d3
)

= max
{(
S0d

3
)2 − 130, 0

}
=

0.

At time 2: C2
(
u2
)

= exp(−r)
[
qC3

(
u3
)

+ (1− q)C3
(
u2d
)]

=
32.7137, C2 (ud) = 0, C2

(
d2
)

= 0.

At time 1: C1 (u) = exp(−r)
[
qC2

(
u2
)

+ (1− q)C2 (ud)
]

= 22.6946,
C1 (d) = 0

At time 0, the price is C0 = exp(−r) [qC1 (u) + (1− q)C1 (d)] =
15.7439.
Or, we can calculate by C0 = e−3rq3C3

(
u3
)

= 15.7439.

5. (a) 1.Establish the equivalent martingale measure Q under which
Dt = e−rtSt is a martingale.
2. Propose Vt = e−r(T−t)EQ [X|Ft] as the "fair" price of the
derivative.
3. Show that Et = e−rtVt = e−rTEQ [X|Ft] is a martingale under
Q.

4. Use the Martingale representation theorem to construct a
hedging strategy (portfolio) (φt, ψt).
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5. Show that the hedging strategy (φt, ψt) replicates the deriv-
ative payoff at maturity and therefore Vt is the fair price of the
derivative at time t.

(b) A portfolio with zero delta means that: (number of put options)×(delta
of one put) + number of shares (N) = 0, since the delta of a share
is 1. Therefore: 20000×(−0.20)+N = 0 and therefore N = 4000
shares.

(c) The option price is given by:

pt = Ke−r(T−t)Φ (−d2)− Ste−q(T−t)Φ (−d1) .

with:

d1 =
ln
(
St
K

)
+
(
r − q + σ2

2

)
(T − t)

σ
√
T − t

=
ln
(
45
50

)
+
(

0.04 + 0.152

2

)
× 0.75

0.15
√

0.75
,

d2 = d1 − σ
√
T − t.

Therefore, d1 = −0.51517, d2 = −0.64507 and

pt = 50e−0.06×0.75Φ (0.64507)− 45e−0.02×0.75Φ (0.51517)

= 4.5102.

6. (a) Desirable characteristics of term structure models:
1. The model should be arbitrage free.
2. Interest rates should be positive.
3. r(t) and other interest rates should be mean-reverting.
4. Computational effi ciency: we aim for models which either give
rise to simple formulae for bond and option prices or which make
it straightforward to compute prices using numerical techniques.
5. The model should reproduce realistic dynamics for the interest
rates and bond prices.
6. The model, with appropriate parameter estimates, should fit
historical interest-rate data.
7. The model should be easily and accurately calibrated to cur-
rent market data.
8. The model should be flexible enough to cope properly with a
range of derivative contracts.
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(b) Spot rate: R(t, T ) = −1
T−t logB(t, T ), instantaneous forward rate:

f(t, T ) = − ∂
∂T logB (t, T ).

Therefore:

R(t, T ) = r (t)− σ2

6
(T − t)3 ,

f(t, T ) = − ∂

∂T

[
−(T − t)r(t) +

σ2

6
(T − t)3

]
= r(t)− σ2

2
(T − t)2 .

For the market price of risk, γ (t, T ) = m(t,T )−r(t)
S(t,T ) , where dB(t, T ) =

B(t, T ) [m(t, T )dt+ S(t, T )dZt] .

By Itô’s formula, we have that

dB(t, T ) =
∂B(t, T )

∂t
dt+

∂B(t, T )

∂rt
dr(t) +

1

2

∂2B(t, T )

∂r2t
(dr(t))2

= B(t, T ) [(r(t)− α(T − t)r(t)) dt− σ(T − t)dZt] .

Therefore, S(t, T ) = −σ(T − t), m(t, T ) = r(t)−α(T − t)r(t) and

γ (t, T ) =
r(t)− α(T − t)r(t)− r(t)

−σ(T − t) =
α

σ
r(t).
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