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Solutions

1. (a) Define Zt = ln (Yt). By Itô’s lemma (or Itô’s formula) applied to
f(x) = ln (x):

dZt =
∂f

∂x
(Yt)dYt +

1

2

∂2f

∂x2
(t, Yt) (dYt)

2

= e−tdt+ σdBt −
1

2
σ2dt

=

(
e−t − 1

2
σ2
)
dt+ σdBt.

where we have used (dBt)
2 = dt. Therefore

Zt = ln (Y0) +

∫ t

0

(
e−s − 1

2
σ2
)
ds+ σBt,

and

Yt = Y0 exp

(
1− e−t − 1

2
σ2t+ σBt

)
.

Moreover,
E [Yt] = Y0 exp

(
1− e−t

)
.

(b) We have
Y3 = Y0 exp (0.8902 + 0.2B3)

Since Bt ∼ N (0; t), then V := log
(
Y3
Y0

)
∼ N (0.8902; 0.12), we

have

P

(
Y3
Y0
≤ 0.95

)
= P (exp (0.8902 + 0.2B3) ≤ 0.95)

= P (V ≤ ln (0.95)) = 0.0033.
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2. (a) (i) There are good theoretical reasons to suppose that the ex-
pected returns per time unit should vary over time. It is rea-
sonable to suppose that investors will require a risk premium on
equities relative to bonds. As a result, if interest rates are high,
we might expect the expected value of returns to be high as well.
However, it is not easy to test this argument empirically.

(ii) Empirical data shows that volatility parameter is not constant
in time. The implied volatility obtained from option prices and
the examination of historic option prices suggests that volatility
expectations fluctuate markedly over time.

(iii) One unsettled empirical question is whether markets are
mean reverting, or not. A mean reverting market is one where
rises are more likely following a market fall, and falls are more
likely following a rise. There appears to be some evidence for
this, but the evidence rests heavily on the aftermath of a small
number of dramatic crashes. Furthermore, there also appears to
be some evidence of momentum effects, which imply that a rise
one day is more likely to be followed by another rise the next day.

(iv) About the use of the normality assumptions in market re-
turns: market crashes appear more often than one would expect
from a normal distribution. Empirical data shows that extreme
events occur more often (distribution with ”heavy tails”) than in
a normal distribution. While the random walk produces contin-
uous price paths, jumps or discontinuities seem to be an impor-
tant feature of real markets. Furthermore, days with no change,
or very small change, also happen more often than the normal
distribution suggests.

(b) (i) In the lognormal model, the expected value of returns per
time unit, or drift, is constant, which does not agree with the
theoretical argument given in (a). However, in this case it is
difficult to test empirically if it is really necessary to assume a
non-constant drift.

(ii) In the lognormal model, the volatility is assumed to be con-
stant, in contradiction with empirical evidence.

(iii) The lognormal model is not mean reverting. However, there
is no strong empirical evidence of mean-reversion effects in stock
prices.

(iv) The lognormal model implies normal log-returns. This con-
tradicts the empirical evidence described in (a).
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(c) One class of models with the feature of non-constant volatility are
the ARCH models. Models with non-normal returns or stochastic
volatility models also satisfy this property.

Models based on Lévy processes can also be used in order to
obtain non-normal returns.

3. (a) Consider the 2 portfolios:

A: one long position in the forward contract (that gives you a
share at time T by the price K). This portfolio has value K at
time 0 and value ST −K at time T .

B: borrow Ke−rT in cash and buy one fraction of the share given
by e−qTS0. This portfolio has value e−qTS0 − Ke−rT at time 0
and value ST − K at time T (assuming that the dividends are
reinvested in the share).

At time T both portfolios have a value of ST−K. By the principle
of no arbitrage, these portfolios must have the same value at time
0. Since at time 0, the value of portfolio B is e−qTS0−Ke−rT and
the value of portfolio A at time 0 is 0 (the value of the forward
contract at time 0 must be zero), we have e−qTS0 −Ke−rT = 0
and

K = S0e
(r−q)T .

(b) We have that K = S0e
(r−q)T . Therefore (r − q)T = ln

(
K
S0

)
and

q = r − 1

T
ln

(
K

S0

)
.

Now, with T = 2.5 years, r = 0.1, K = 30 and S0 = 25, we
obtain

q = 0.1− 1

2.5
ln

(
30

25

)
= 0.0271

and the annual dividend rate is 2.71%.

4. (a) u = 1.1 and d = 0.95

(i) The model is arbitrage free if and only if d < er < u. If
r = 0.12 then er = 1.1275 > u.

In this case u < er and the cash investment would outperform the
share investment in all circumstances. An investor could (at time
0) sell the share and invest S0 = 4 Euros in a cash account. At
time 1 he could buy again the share and have a certain positive
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S0=4

S1(u)=4.4

S1(d)=3.8

S2(u2)=4.84

S2(ud)=4.18

S2(d2)=3.61

S3(u3)=5.324

S3(u2d)=4.598

S3(ud2)=3.971

S3(d3)=3.4295

profit of S0e
r−S0u = 4 exp (0.12)−4×1.10 = 0.11 > 0 or S0e

r−
S0d = 4 exp (0.12)− 4× 0.95 = 0.71 > 0 (arbitrage opportunity).

(ii) If r = 0.01 then er = 1.0101. In this case, d < er < u and the
model is arbitrage free.

(b) We have u = 1.10, d = 0.95, S0 = 4 and r = 0.04. Therefore
er = 1.0408 and d < er < u. The model is arbitrage free.

The risk neutral probability of an up-movement is

q =
er − d
u− d

=
e0.04 − 0.95

1.1− 0.95
= 0.6054.

Binomial tree:

(c) Payoff of the derivative: C3 = max {90− exp (S3) , 0}.
Using the usual backward procedure:

C3

(
u3
)

= max
{

90− exp
(
S0u

3
)
, 0
}

= 0, C3(u
2d) = max

{
90− exp

(
S0u

2d
)
, 0
}

=
0, C3

(
d2u
)

= max
{

90− exp
(
S0d

2u
)
, 0
}

= 36.962 and C3

(
d3
)

=
max

{
90− exp

(
S0d

3
)
, 0
}

= 59.139.

At time 2: C2

(
u2
)

= 0, C2 (ud) = exp(−r)
[
q × 0 + (1− q)C3

(
d2u
)]

=
14.013, C2

(
d2
)

= exp(−r)
[
qC3

(
d2u
)

+ (1− q)C3

(
d3
)]

= 43.921.

At time 1: C1 (u) = exp(−r) [q × 0 + (1− q)C2 (ud)] = 5.3127,
C1 (d) = exp(−r)

[
qC2 (ud) + (1− q)C2

(
d2
)]

= 24.802.

At time 0, the price is C0 = exp(−r) [qC1 (u) + (1− q)C1 (d)] =
12.493.

5. (a) The assumptions underlying the Black-Scholes model are as fol-
lows:
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1. The price of the underlying share follows a geometric Brownian
motion.

2. There are no risk-free arbitrage opportunities.

3. The risk-free rate of interest is constant, the same for all
maturities and the same for borrowing or lending.

4. Unlimited short selling (that is, negative holdings) is allowed.

5. There are no taxes or transaction costs.

6. The underlying asset can be traded continuously and in in-
finitesimally small numbers of units.

The general risk-neutral valuation formula for a derivative with
payoff X is

Vt = e−r(T−t)EQ [X|Ft]

(b)

Vt = e−r(T2−t)EQ

[
1

T2 − T1

∫ T2

T1

Sudu|Ft

]
= e−r(T2−t) 1

T2 − T1

∫ T2

T1

EQ [Su|Ft] du

The dynamics of the stock prices St under Q is given by the SDE

dSu = r Su du+ σ Su dZu, u > t

St = s

This is a geometric Brownian motion and the solution is such
that:

Su = s exp

[(
r − σ2

2

)
(u− t) + σ (Zu − Zt)

]
,

and
EQ [Su|Ft] = EQ [Su|St] = Ste

r(u−t).

Therefore

Vt =
e−r(T2−t)

T2 − T1

∫ T2

T1

Ste
r(u−t)du

=
e−r(T2−t)St
(T2 − T1) r

[
er(T2−t) − er(T1−t)

]
=

St
r (T2 − T1)

[1− exp (−r (T2 − T1))] .
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6. (a) (1) if we look at historical interest rate data we can see that
changes in the prices of bonds with different terms to maturity
are not perfectly correlated as one would expect to see if a one-
factor model was correct. Sometimes we even see, for example,
that short-dated bonds fall in price while long-dated bonds go
up.

(2) If we look at the long run of historical data we find that there
have been sustained periods of both high and low interest rates
with periods of both high and low volatility. Again these are
features which are difficult to capture without introducing more
random factors into a model. This issue is especially important
for two types of problem in insurance: the pricing and hedging
of long-dated insurance contracts with interest-rate guarantees;
and asset-liability modelling and long-term risk-management.

(3) we need more complex models to deal effectively with deriva-
tive contracts which are more complex than, say, standard Euro-
pean call options. For example, any contract which makes refer-
ence to more than one interest rate should allow these rates to
be less than perfectly correlated.

(b) (i)

B (t, T ) = exp

[
−
∫ T

t
f (t, u) du

]
.

Therefore

B (t, T ) = exp

[
−
∫ T

t

(
r(t)− α (u− t)4

)
du

]
= exp

[
−r(t)(T − t) +

α

5
(T − t)5

]
(ii)

R(t, T ) =
−1

T − t
logB(t, T ) if t < T

and therefore

R(t, T ) =
−1

T − t

[
−r(t)(T − t) +

α

5
(T − t)5

]
= r(t)− α

5
(T − t)4 .
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(c) r(t) = 0.2, α = 0.01 and T − t = 2. Then:

B (t, T ) = exp

[
−0.2× 2 +

0.01

5
× 25

]
= 0.7146.
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