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Solutions

1. (a) The discounted price is S̃t = e−rtSt = e−rtS0 exp (h(t)− δBt).
By Itô’s lemma (or Itô’s formula) applied to f(t, x) = e−rt exp(h(t)−
δBt) (it is a C1,2 function):

dS̃t =
∂f

∂t
(t, Bt)dt+

∂f

∂x
(t, Bt)dBt +

1

2

∂2f

∂x2
(t, Bt) (dBt)

2

=
(
−rS̃t + h′(t)S̃t

)
dt− δS̃tdBt +

1

2
δ2S̃tdt

=

(
h′(t) +

1

2
δ2 − r

)
S̃tdt− δS̃tdBt.

where we have used (dBt)
2 = dt. Therefore

dS̃t =

(
h′(t) +

1

2
δ2 − r

)
S̃tdt− δS̃tdBt.

(b) The discounted price process S̃t is a martingale if and only if the
drift coeffi cient in the SDE is zero, that is, h′(t) + 1

2δ
2 − r = 0.

Indeed, if this occurs then

S̃t = S̃0 − δ
∫ t

0
S̃udBu,

and the stochastic integral is a martingale. The function h that
satisfies h′(t) + 1

2δ
2 − r = 0 is

h(t) =

(
r − 1

2
δ2
)
t+ C,

but at time 0, we have S0 = S0 exp {h (0)− δB0} = S0 exp {C}
and therefore C = 0 and

h(t) =

(
r − 1

2
δ2
)
t.
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Moreover, if S̃t is a martingale, then

E
[
S̃t

]
= S̃0 = S0

and therefore

E [St] = E
[
ertS̃t

]
= ertE

[
S̃t

]
= ertS0.

2. (a) When t→ +∞, considering the stationary distribution, one must
have E [I (t− 1)] = E [I (t)] and V ar [I (t− 1)] = V ar [I (t)].
Therefore,

E [I (t)] = QMU +QAE [I (t)]−QA.QMU +QSD.E [QZ(t)] .

Hence
(1−QA)E [I (t)] = QMU (1−QA) + 0,

and we obtain
E [I (t)] = QMU = 0.03.

For the variance,

V ar [I (t)] = (QA)2 V ar [I (t)] + (QSD)2 V ar [QZ(t)] .

Hence

V ar [I (t)] =
(QSD)2

1− (QA)2
=

(0.005)2

1− (0.5)2
= 3.33× 10−5.

The stationary distribution in the long run is the Gaussian dis-
tribution N

(
0.03; 3.33× 10−5

)
.

(b) Global structure of the equation: this year’s value = long run
mean (ln(RMU))+RA(last year’s value − long run mean) + a
stochastic shock to the system + another stochastic shock to the
system.
The parameter RA is the autoregressive parameter (for the mean-
reverting effect). The term CE(t) is a stochastic shock from
another process.
The term CZ(t) is the random error term used to model con-
ventional bond yields and CZ(t) and RZ(t) are not combined
into a simple series of i.i.d. standard normal random variables
because of the correlations that exist between conventional and
index-linked bonds.
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(c) The real yield of an index-linked bond R(t) is positive, that is
the reason why we model ln(R(t)) and not R(t) directly. The
parameters to be estimated from data are: RMU, RA, RBC,
CSD and RSD.

3. (a) Strike:
Call option: a higher strike price means a lower intrinsic value.
A lower intrinsic value means a lower premium.
Put option: a higher strike price will mean a higher intrinsic value
and a higher premium.
Interest rates:
Call option: an increase in the risk-free rate of interest will result
in a higher value for the option because the money saved by
purchasing the option rather than the underlying share can be
invested at this higher rate of interest, thus increasing the value
of the option.
Put option: higher interest means a lower value (put options can
be purchased as a way of deferring the sale of a share: the money
is tied up for longer)
Volatility:
The higher the volatility of the underlying share, the greater the
chance that the underlying share price can move significantly in
favour of the holder of the option before expiry. So the value of
an option will increase with the volatility of the underlying share.

(b) The put-call parity:

ct +Ke−r(T−t) = pt + St.

Now, if we take the partial derivative with respect to S we obtain:

∆c = ∆p + 1.

If we take the second partial derivative with respect to S, we
obtain

Γc = Γp.

In the divided case, the put-call parity is

ct +Ke−r(T−t) = pt + Ste
−q(T−t).
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If we take the derivative with respect to S, we have

∆c = ∆p + e−q(T−t).

If we take the second derivative with respect to S, we obtain

Γc = Γp.

(c) We know that Θ = ∂f
∂t , ∆ = ∂f

∂S and Γ = ∂2f
∂S2
. Therefore, the

Black-Scholes PDE can be transformed in

Θ + rs∆ +
1

2
σ2s2Γ = rf.

Using the numerical data and this equation, we can calculate

c(t, St) =
−0.2 + 0.05× 10× 0.25 + 1

2 × 0.22 × 102 × 0.1

0.05
= 2.5.

4. (a) d = 0.8; u = 1
0.8 = 1.25. In order to obtain an arbitrage free

model, we must have d < er < u. Therefore

ln(0.8) < r < ln(1.25).

Or
−0.2231 < r < 0.2231.

Since r > 0, we must have

r ∈ ]0, 0.2231[ .

The risk-neutral probability for an up-movement is

q =
er − d
u− d =

e0.10 − 0.8

1.25− 0.8
= 0.6782.

(b) Binomial tree:
Payoff function of the derivative (call + put):

Payoff =


25− ST if ST < 25
0 if 25 ≤ ST ≤ 40
ST − 40 if ST > 40

.

Payoff of the derivative: C2
(
u2
)

= 46.875−40 = 6.875, C2 (ud) =
0, C2

(
d2
)

= 25− 19.2 = 5.8
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S0=30

S1(u)=37.5

S1(d)=24

S2(u2)=46.875

S2(ud)=30

S2(d2)=19.2

Using the usual backward procedure with r = 0.1 and q = 0.6782 :

At time 1: C1 (u) = exp(−r)
[
qC2

(
u2
)

+ (1− q)C2 (ud)
]

= 4.2189,

C1 (d) = exp(−r)
[
qC2

(
ud2
)

+ (1− q)C2
(
d2
)]

= 1.6888

At time 0, the price is C0 = exp(−r) [qC1 (u) + (1− q)C1 (d)] =
3.0807.

(c) the non-recombinig binomial model allows for different values of
volatility when in different states (it allows different up and down
factors for different states): ut (j) and dt (j) vary with t and j.
Therefore, the number of states at time N is 2N states: if N
is large, it is a big number with exponential growth (for com-
putational purposes), since computation times even for simple
derivative securities are at best proportional to the number of
states. For example, with 20 periods, at time t = 20 we have
220 = 1048600 states.
In the recombining binomial model, it is assumed that the volatil-
ity is the same at all states (the up and down factors are the same
irrespective of wether they appear in the binomial tree). At time
N we have N+1 possible states (linear growth with N) instead of
2N . For example, in a 20-period model, we have 21 states at time
t = 20, instead of 1048600 states. Therefore, with this model the
computing times are substantially reduced.

5. (a) Let f(t, s) be the value at time t of a derivative when the price
of the the underlying asset at t is St = s.
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Delta of the derivative and vega:

∆ =
∂f

∂s
,

Γ =
∂2f

∂s2
,

ρ =
∂f

∂r
,

λ =
∂f

∂q
,

where r is the risk free interest rate and q is the dividend yield
on the underlying asset.
In order to have a porfolio with zero delta, ∆p×N+∆S×number
of shares= 0. Since ∆p = −0.25 and ∆S = 1, we have

N =
10000

0.25
= 40000.

(b) We have ∆X = 0.6, ∆Y = 0.2, ΓX = 0.1, ΓY = 0.2. Let NX be
the number of derivatives X and NY be the number of derivatives
Y in the portfolio. In order to have a zero delta and a zero gamma
portfolio: {

0.6NX + 0.2Ny = 0
40000× 0.1 + 0.1NX + 0.2NY = 0

It is easy to solve this linear system os 2 equations. The solution
is {

NX = 8000,
NY = −24000.

6. (a) The Vasicek model has the dynamics, under the risk-neutral mea-
sure Q:

dr(t) = α(µ− r(t))dt+ σdW̃ (t)

where W̃ is a standard Brownian motion under Q.
The Cox-Ingersoll-Ross (CIR) model has the dynamics under Q:

dr(t) = α(µ− r(t))dt+ σ
√
r(t)dW̃ (t).

The critical difference between the two models occurs in the
volatility, which is increasing in line with the square-root of r(t)
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for the CIR model. Since this diminishes to zero as r(t) ap-
proaches zero, and provided σ2 is not too large (r(t) will never
hit zero provided σ2 ≤ 2αµ), we can guarantee that r(t) will not
hit zero. Consequently all other interest rates will also remain
strictly positive.

(b) If the bond market is complete then the discounted zero-coupon

bond price B̃ (t, T ) = exp
(
−
∫ t
0 r (s) ds

)
B (t, T ) is a martingale

with respect to the risk-neutral probability measure Q. By the
Itô formula applied to f(t, x) = exp

(
−
∫ t
0 r (s) ds

)
x, and by the

fundamental theorem of integral calculus, we have that

dB̃ (t, T ) = −r(t) exp

(
−
∫ t

0
r (s) ds

)
B (t, T ) dt+ exp

(
−
∫ t

0
r (s) ds

)
dB (t, T )

= −r(t)B̃ (t, T ) dt+ B̃ (t, T ) [m(t, T )dt+ S(t, T )dWt]

= B̃ (t, T ) [(m(t, T )− r(t)) dt+ S(t, T )dWt] .

In order to be a martingale, the drift coeffi cient must be zero,
that is, m(t, T )− r(t) = 0. Therefore∫ T

t
a(t, u)du =

(∫ T

t
σ(t, u)du

)2
.
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