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Abstract. Panel data play an important role in empirical economics. With panel
data one can answer questions about microeconomic dynamic behavior that could
not be answered with cross sectional data. Panel data techniques are also useful
for analyzing cross sectional data with grouping. This paper discusses some issues
related to specification and estimation of nonlinear models using panel data.
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1 Introduction

There is a natural grouping of the observations in many economic data sets. For
example. a data set might contain information about an individual or a firm over
a number of time periods. In this case. one can think of the observations for a
given individual or firm as a group. This kind of data set is often referred to as a
panel data set, but some of the tools that have been developed for this case are also
applicable in other situations where the observations are grouped. For example, a
data set might contain information on households, in which case one might think of
the households living in the same narrowly defined geographical area as a group.
In a data set of individuals. one might think of individuals that belong the same
family as a group. It is therefore natural to use the term panel data for any situation
in which there is a natural grouping of the data.

There are at least two reasons why such a grouping is interesting, —and important
even if it is not interesting. The first reason is that with grouped data, one would
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expect the errors in an econometric model to be related across observations in
the same group. This raises econometric issues that must be dealt with, even if
this relationship is not the object of interest. This correlation within a group is
often modeled by allowing for a group-effect which has the interpretation as an
unobserved group-specific explanatory variable. The second reason for studying
grouped data is that the relationship between the observations in a given group
might be interesting in itself. For example, if the group consists of individuals over
time. then it is sometimes of interest to know how, and whether, the dependent
variable in one period affects its future values.

This paper will discuss some issues related to estimation of standard nonlinear
econometric models using panel data. The paper is not intended as a survey, but
rather as an introduction to a particular subset of the literature. Although some
of the tools described here apply to any kind of grouped data, we will use the
terminology that one would use if the data consisted of 7 individuals observed over
T time periods. In some cases, T will be allowed to be different across observations,
which is refered to as an unbalanced panel. The generic model that will be discussed
has the form

it = g (it, it s 0) (n
where y;; is the dependent variable of interest and ;¢ is a vector of explanatory
variables for individual ¢ in time period ¢. We will use y; and z; (without the
subscript ) to denote a vector of all the dependent (and explanatory) variables
for individual i. o, is a time—invariant, individual specific effect, which can be
interpreted as an unobserved explanatory variable. o; is sometimes referred to as
unobserved heterogeneity. @ is the vector of parameters to be estimated, and almost
all of the results that will be discussed for estimators of nonlinear panel data models
are justified by asymptotics rather than finite sample arguments. The asymptotic
arguments assume that n is large with small (fixed) T', which corresponds to the
situation in which many individuals are observed in a few time periods.

We will discuss a number of different nonlinear models in this paper, but the
leading specific example to be considered is the discrete choice model

1if aufB+ai+ex=0
it = (2)
(0 otherwise.

If £;, is normally or logistically distributed and independent of (. ;). then this
is a panel data version of the familiar probit and logit models. Note that one cannot
simultaneously identify the scale of /3 and & in (2). When discussing estimation of
(2). we will therefore assume that some scale normalization is imposed.

Distinguishing between the assumptions that are made with regard to the rela-
tionship between current dependent variables and future explanatory variables is
crucial in the analysis of panel data. This is most easily seen by considering the
case where (1) is linear. In that case, first-differencing will eliminate the o,

(yit — Yit—1) = (@ie — Tie—1) B+ (€ix — Eit—1)- (3)

If the error in time period t, 5, is uncorrelated with past, current and future values
of the explanatory variable, then one can estimate {3 by applying ordinary least
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squares to (3). On the other hand. if the error is uncorrelated only with past and
current values of the explanatory variables, then (g;; — £;,_,) will be correlated
with (;, — @y 1), and the ordinary least squares estimator will be inconsistent, !
In this paper, we will say that the explanatory variables are strictly exogenous
when assumptions are made on the distribution of the errors conditional on past,
current and future values of the explanatory variables. We will say that explanatory
variables are predetermined when assumptions are made on the distribution of the
errors conditional only on past and current values of the explanatory variable.

2 Static models

[t is useful to first consider models in which the explanatory variables are strictly
exogenous. This assumption is sometimes unrealistic in economic contexts if one
interprets ¢ as time. In that case, one typically wants to think of y;; as the out-
come of some agent’s optimization problem. Since the agent (presumably) observes
Uit before solving the optimization problem that leads to y,,, ;. one might expect
yie 1o be an explanatory variable in the equation for s |. which would rule out
strict exogeneity. Moreover. in many economic examples, ;; is itself a choice vari-
able. and one may want to allow for the possibility that the agent chooses ;; on the
basis of past values of y;,.> On the other hand, as pointed out in the introduction,
the panel structure does not necessarily have to be due to the agents bein ¢ observed
over time. If, for example, ¢ in (1) refers to a family in a village, then it might be rea-
sonable to assume that the y,,’s depend on each other only through the explanatory
variables :;¢, and through some village-specific unobserved characteristic, a;. In
other words, it might be reasonable to make assumptions on the errors conditional
on the explanatory variables for all the units in a particular group. Specifically, in
(2), one might assume that the errors ¢, are independent over time, and all logis-
tically or normally distributed conditional on (. ;). In that case, (2) becomes a
logit or probit model with group-specitic constants.

Assume, for the moment. that one is willing to parameterize the distribution
of ; given (0;.x;) in models like (1) and (2). There are then essentially two
approaches that have been taken 1o deal with the group-specific effect, a;. They
are, perhaps somewhat misleadingly. referred to as the random effects and the fived
effects approach.

Ina random effects approach, one parameterizes the distribution of o, conditio-
nal on x;. This makes the model fully parametric and it can, in pri nciple, be estimated
by maximum likelihood. For example, if one assumes that =, in (2) is independent of

! In this case, one can estimate 3 by an instrumental variables approach that uses past values of the
explanatory variables as instruments. See e.g., Arellano and Bond ( 1988).

> An often cited example of this is a model of female labor supply in which the presence of small
children in the household is used as an explunatory variable. In this case, it might be reasonable 1o assume
that shocks to the labor supply are unrelated to current and past values of the number of small children,
but it is much more difficult to justify an assumption that it is also unrelated to future values, because
that would imply that shocks to the labor supply have no effect on the current and future decisions
regarding child-bearing. See. e.g.. Browning (1992),

* Reeall that «; is defined to be (i, ..., T, )
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(ev;. ;) with a multivariate normal distribution, and that cy; is normally distributed
and independent of ;. then one can express the probability of any sequence of 3/’s in
terms of a multivariate normal distribution. Of course, because of numerical issues
related to how quickly and accurately one can calculate the multivariate normal
CDF, it can be very difficult to actually use these probabilities to estimate the model
by maximum likelihood. The extensive literature on simulation-based estimation
is therefore very much relevant*, although the developments in that literature are
not specific to panel data. Because the random effects approach makes the model
fully parametric, it is also conceptually straightforward to approach the estimation
of its parameters from a Bayesian point of view.

In a pure random effects model, one can also ignore the panel structure and
estimate the model by a pseudo-maximum likelihood method that ignores the panel
structure altogether. Once the distributions of =; and «; have been specified, one
can obtain the distribution of y;; given a,; in (1}, and one can then estimate the
parameters of interest, #, by ignoring the panel structure and treating the data as
one large cross section. Under suitable regularity assumptions, this will lead to a
consistent and asymptotically normal estimator, although one will have to correct
the standard errors for the fact that the observations are not independent.” Consider,
for example, a random effects probit model. If =, is composed of i.i.d. normally
distributed random variables, then the marginal distribution for all the y’s are as in
a probit model, and all the marginal choice probabilities (and [9) can be estimated
by treating the data as one large cross section.

In a fixed effects approach. one attempts to find ways to estimate # in (1) making
only minimal assumptions on «;. This is inspired by the linear panel data model,
in which one can difference away the group specific effects as in (3). One can also
motivate the fixed effects approach by noting that if one had only few individuals
observed over many time periods. then one could justify treating the «v;’s as pa-
rameters to be estirmated: One could then proceed parametrically and estimate all
the parameters by maximum likelihood (or some other convenient method). This
would require no assumptions on the distribution of o;. However, if one is in a
situation where the number of individuals is large and the number of time periods
small, then it seems appealing to consider asymptotics with large n and fixed T;.
Treating the rv;"s as parameters to be estimated in that case, implies that the number
of parameters will be increasing as the sample size increases. This problem, which
is called the incidental parameters problem, will typically, but not always, lead to
inconsistent estimation of all the parameters of the model (see Neyman and Scott,
1948).

The contribution of the literature on estimation of nonlinear fixed effects panel
data models has been to develop alternative estimation procedures for estimating ¢
in (1) without making assumptions on the distribution of the o;"s. The general idea is
that, although the model does not have features that are linear in the ¢r;'s (so the a’s

4 See e,g. Hajivassiliou and Ruud (1994).

* Estimating the panel model by considering only the marginal distribution of y;; (and nat the joinl)
will typically not lead to estimates of the parameters of the distribution of the errors, £;; and a;. Onc
possibility is to proceed in atwo-step manner where one first estimates ¢ as described, and then estimates
the parameters of the distributions of £, and o, using features of the joint distribution of the vector ;.
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cannot be differenced away), it is nonetheless sometimes possible to find features
of the model that do not depend on a1 ;. These are the features that will be used to
construct estimators of the models. Unfortunately. the features of the model that do
not depend on «i; tend to be different for different functional forms for g in (1), and
do not always exist, as for example in the case of a fixed effects probit model. The
resulting estimation procedures are therefore different for different models, and one
ends up estimating, say. a logit model in a way that is fundamentally different from
the way one would estimate, say, a censored regression model. This is somewhat
unsatisfactory and fundamentally different from the random effects model in which
one can use one approach, such as maximum likelihood, to estimate a number of
different models.

To see how one can estimate a nonlinear panel data model without any assump-
tions of the distribution of the «v; s, consider (2) with independent logistic ;s and,
for simplicity, assume that 7' = 2. In that case, for d; and dy equal to either 0 or 1,

Plyis = dy. iz = dalieyg, o, o)

‘ - Iy
exp (2 0+ o) h exp (a3 +a;)"

= 4
I +exp(rgd+a;) 1+ exp (e + ;)

and the feature of the model that does not depend on o is

exp (i1 — wig) 3)"
L Fexp (g —xa)3)

P(.‘I'I! = d| Lito i i+ e = 1) =

for d equal 1o 0 or 1. In other words, for the individuals for whom y changes, the
probability that it changes from 1 to 0. as opposed to changing from 0 to 1, is a logit
with explanatory variables (i, — ;5 ). Since this probability does not depend on
(v, one can estimate F without making assumptions on o;, by considering only the
individuals for whom y;; + y;» = 1. and then estimating a logit model for the event
yir = 1. It is intuitively appealing that the individuals who do not switch, are not
used to estimate 4, since for any value of /4, those individuals can be rationalized
either by extremely large or by extremely small values of ;.

The fixed effects logit model in (4) also illustrates a fundamental difficulty in
estimating nonlinear models. Knowing /3 in (2) allows one to judge the relative
importance of different time—varying explanatory variables. It also allows one to
calculate the effect of a;; on the probability that 3, = 1 conditional on a particular
value for o, It does not, however, allow one to calculate the average effect of
. on the probability that y;; = 1 across the distribution of «, in the population.
See Wooldridge (2000) for a lenghty discussion of this. This phenomenon is not
specific to panel data models, but rather is a general feature of many nonlinear
semiparametric models. Consider for example the cross sectional semiparametric
discrete choice model

g = L{ayB+g; =0}

where =, is independent of .r;. Many papers in econometrics have considered esti-
mation of /7 in this model,” but knowledge of /7 is not sufficient for one to calculate

© See for example Powell (1994) for a discussion of this and references to this literature.
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the effect of r; on the probability that ; = 1. On the other hand, knowing /7 allows
one to judge the relative importance of the components of r;, and to determine
which components have no effect. Also, if the model being investigated is derived
from some structural economic model, then the parameter might be of independent
interest.

One appealing aspect of the fixed effects approach is that «v; is allowed to depend
on x; in an arbitrary manner. A number of authors (see for example Chamberlain,
1984; Newey, 1994; Chen, 1998) have tried to accomplish this in a random effects
approach by parameterizing the distribution of «; as a function of ;. This is fairly
innocent in a linear model, since one can interpret the coefficient as the parameters
in linear projections, and consequently there is a sense in which the model is always
correctly specified. Unfortunately, this is less true for nonlinear models. Consider,
for example, a probit version of (2). In that case it would be natural to assume that

0
;| (Eigyomeyimy) ~ N Z .F{f"'}'g.(fg (5)

=l

where the parameters 7, and a;{ might depend on 7;. The marginal distribution of
y;: would be from a probit model and it would be easy to estimate the parameters of
interest (subject to the normalizations necessary for identification). Unfortunately,
it is not always easy to justify (5) because one would presumably want it to hold
no matter what 7T} is. As a general statement, this places strong assumptions on the
distribution of the explanatory variables. In particular, the law of iterated expecta-
tions implies that if (5) holds in time periods 7" and T' + 1 with 7 given by ; and
1, respectively, then

T+1 T
i) Z .‘1',1'?’[, Bily vosgTiT | = E Lt
t=1 t=1
ar
w

E [#ip41] Zity s T = Z-‘J'n (% = Ft) [Fr+a
=1

In other words, the mean of ;¢4 1, given its past values, is not only linear, but the
coefficients are linked to the parameters one would get by estimating a probit model
for the distribution of ;. given the explanatory variables in various periods. (5)
has other implications in the same spirit. But of course, even if one is not willing to
accept these restrictions on the distribution of the regressors and on the parameters,
one might still be willing to proceed from (5) on the basis that it might be a useful
approximation that captures the possibility that o is related to i, and allows one to
estimate all the parameters needed for calculating the effect of ; on the probability
that y;; = 1.

A recent paper by Altonji and Matzkin (2001) takes a more nonparametric
approach to estimation of (1). In order to simplify the exposition, assume that £; is
independent of ;. The basic idea is that the value of x;; affects the distribution of
4.+ both directly and indirectly through its effect on ;. On the other hand, it will
only affect the distribution of y;, indirectly through its effect on ¢;. With a little
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additional structure, one can then compare the joint distribution of y;. and ', to
the joint distribution of 4;; and .;;, and use that comparison to isolate the direct
effect of r;; on the distribution of y;;, holding «v; fixed. While most of the results in
Altonji and Matzkin (2001) are nonparametric in the sense that they are concerned
with estimating the effect on the distribution of ;. it is in principle possible to turn
these into estimates of the average effect of ;; on (say) the mean of y;;.

2.1 Details on some specific nonlinear models

As mentioned above, it is possible to estimate the coefficients on 24 in a panel data
logit model with two time periods by considering the conditional distribution of
Uir given 1,1 + ;0. This is a special case of a more general idea. Consider the model
given in (1). A sufficient statistic, S;, for «; is defined to be a function” of the data
such that the distribution of y;, conditional on (S, x;. «;), does not depend on «v,.
In the two—period logit model, y;1 + ;2 is such a functmn. If one has a sufficient
statistic, which furthermore has the property that the distribution of y; conditional on
(Si. i, ;) depends on £, then one can estimate # by maximum likelihood using the
conditional distribution of the data, given the sufficient statistic. Andersen (1970)
proved that the resulting estimator is consistent and asymptotically normal under
appropriate regularity conditions.

Unfortunately, there are only few standard nonlinear econometric panel data
models for which a sufficient statistic that has the appropriate properties exists.
For example, the only sufficient statistic in the probit version of (2) is y,. and it is
therefore clear that one cannot make inference about 3 by considering the distri-
bution conditional on the sufficient statistic. A second limitation of the approach
of conditioning on sufficient statistics, is that it requires a parametric model for
yi conditional on (i, ;). In this subsection, we will therefore discuss some al-
ternative approaches to estimation of nonlinear fixed effects panel data models.
One can interpret these as generalizations of the conditional likelihood approach.
Specifically, the general idea is to look for some feature of the data, whose dis-
tribution depends on #. but not on «y,;. That feature will then be used to estimate
f without making assumptions on cv;. In the conditional likelihood approach, the
feature used to estimate (. is the conditional distribution of y; given (S, 1;. ;).
In the approaches discussed below, the features will be objects like moments and
medians. Before discussing these, we will briefly review two cases in which the
conditional likelihood approach does work.

Example I (Logit). The suthuent statistic for a logit model with 7, observations
for each individual is S, = Z, _1 it and the conditional distribution of y; given
(8 25 ;) IS

- T ,
T exp (Zf:l y.,-,.r'-,,t‘i)

P yii.....'.U-.u‘.?‘.lZyir--"i-”i = T !
=1 E[n’; ..... dr, )EH,‘ exp (Z[;!- dr'l‘”d)

7 The sufficiem statistic, S, does not have to be a scalar,
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where B, consists of all sequences of length 7; with elements that are all O or 1.

Example 2 (Poisson Regression). The panel data poisson regression model is given
by

Yit| @i, i ~ po (exp(a; + @) -
For this model, the sufficient statistic is ZL, 1.4, and the conditional distribution
of y; given (S;. a2, @) is

e

Z Uit s Ty is o5 Ui,y O (6)

t=1

P Yoo Wiy
ST e Y1 W .
2ap=1 Wit ): exp(xi/d)

i ¥R T "
Hg:.[ .U'i!"! =1 23:| ﬂ?([}{ll‘,‘.s;i)

This follows from the fact that the conditional distribution of independent poisson
random variables is multinomial.

Conditional likelihood estimation of the panel data poisson regression model
was considered by Hausman, Hall, and Griliches (1984). Somewhat surprisingly.
Blundell, Griffith, and Windmeijer (1997) and Lancaster (1997) have shown that
treating all the fixed effects as parameters to be estimated, leads to the conditional
maximum likelihood estimator based on (6). In other words, the incidental param-
eters problem does not lead to an inconsistent estimator in the panel data poisson
regression model with strictly exogenous regressors.

The next three examples illustrate how some features of the model, other than
the conditional likelihood. can depend on the parameter 1o be estimated, but not of
ov;. and how this can be used to construct an estimator. For all of them, the basic
idea is to compare two time periods, ¢ and s, for a given individual. So to implement
the ideas in practice, one will have to consider all pairs of time periods and then
combine them in some way. The three examples are interesting in their own right,
but the main reason for presenting them here, is to illustrate the close link between
the literature on nonlinear fixed effects panel data models and the estimation of
nonlinear semiparametric cross sectional models.

Example 3 (Semiparamerric Binary Choice). Consider a semiparametric version
of the panel data discrete choice model (2), where, for two time periods ¢ and s,
£, and ¢;, are identically distributed conditional on (e, i Tis). Manski (1987)
observed that in this model

median ( Yir — Uis| Qi Tips Tis Yir # i) = sign ((ay — Wia) ) (7)

The key observation is that the right-hand side does not depend on c,, but that it
does depend on 7. One can therefore estimate /7 by minimizing

3 it — wia) = sign (@i — is) b)|
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which is equivalent to maximizing
"

Z sign (i — yis) - sign (g — 2ig) b) .

=1
The resulting estimator is consistent but not root—n asymptotically normal.

To understand the insight behind Example 3, one must relate it to Manski's
earlier work on the cross sectional binary choice model (Manski (1975, 1985))

I if w8420
Ui = . with median (E,| .l".t) = (8)
() otherwise

If £; = —u;/3 with probability 0, then (8) implies that 2y; — | = sign (w3 +¢e)
(with probability 1). This implies that median ( 2y, — 1|a;) = sign (;/4). whichin
turn implies that the function E [sign (2y; — 1) - sign (a;b)] is maximized atb = /7.
Itis therefore natural to estimate 3 by maximizing 3| sign (2y; — 1)-sign (x;h).

The key observation in Manski (1987) is that in the panel data version of the
model. the behavior of y;; — ;. conditional on v, # y,.. is similar to the behavior
of 2y; — lin the cross sectional version given in (8). With that observation, one
can then proceed just as one would in the cross sectional case, and the properties of
the resulting estimator are essentially identical to the properties of the maximum
score estimator proposed in Manski (1975).

Example 4 (Censored Regression). Honoré (1992) considered the censored regres-
sion model
Ui = max {0, x50 + oy + g} (9

and showed that if (2, =,,) is distributed like (z,,. ;) conditional on (. 2.,
or; ). then /3 is the unique minimizer (as a function of b) of the function

El(max{yi,. Aa;ib} — max{yy, —Aayb} — Axib)? (10)
+2 - Wyar < Aaib}Azib — yir)yis +2 - Hyin < —Daib}(—Daib — yi )y
where Ax; = @y — ;5. This suggests estimating by
;?z;l.rg mfin Z ((1‘1‘1;!3\'{;1;,,. Auwib}— max{yss, —Axib}—Lzib)? (1)
=

+2- Wy <AmbH Aab—gy )y +2 - 1{?},_,;‘:A.I.T;EJ}(—A.I',()y;,,]jj.,,).

The minimization problem (10) is convex and has as first order condition

0 = E[((max{y;, Axib} — max{0, Az;b})
—(max{y;s, —Ax;ib} — max{0, —Aw;b}))Ax;].

At b = (3, the right hand side equals

E [(max {ov; +ei, —xip3, —i8} — max {o + 5. —x1603, = /3}) Da]
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If £;; and =, are identically distributed conditional on (a;, 2y, ), then this is
clearly 0. That is the reason why (10) is minimized at b = A%, As discussed in
Honoré and Kyriazidou (2000a) and Arellano and Honoré (2001), there are many
other estimators of /3 in (9). Moreover, the estimator in (11) above is consistent and
asymptotically normal under Manski (1987)’s assumption that £, and &, are iden-
tically distributed conditional on (cv;, &, r.). This is weaker than the assumption
made in Honoré (1992). It is trivial to modify the model in such a way that the
same estimation strategy applies to the models ¥, = max {¢;, 25 + a; + €t}
or yir = min {e¢;, w43 + a; + 2q ). where ¢; is observed.

The censored regression model can be motivated in many ways. Perhaps the
cleanest is the case where some relationship of interest is assumed to be as in the
linear panel data model

o @ -
Yip = T3+ @ +E4p,

but where the dependent variable of interest, ¥,. is subject to top coding, so that
the observed variable is min (¢;. ¥}, ). where ¢; is the value above which y; is top
coded. In that case, the parameter 4 is the marginal effect of x on the variable of
interest 4*. So while the model is nonlinear, and /3, therefore, is not the marginal
effect of - on the observed y, it is the marginal effect of i on the dependent variable
of interest.

Example 5 (Sample Selection). Kyriazidou (1997) studied the following panel data
version of the “standard” sample selection model

" !
Yrae = Tl + ey + €1

Yair = T2ieBa + oy + 24
where we observe:
i = 1{yi; >0} (12)
Ui if yrip = 1
Yair = (13)
0 otherwise .

and it is assumed that the errors (215, €241 ) are independent" and identically dis-
tributed and independent of (. x,). Since the model for y; is a discrete choice
model like the one discussed in Examples | and 3, the new challenge is to estimate
5. Kyriazidou (1997) showed that if K (-)is a kernel, and h,, is a sequence of

% Honoré (1992) also gives a graphical motivation for (10). This can be seen as a two-dimensional
version of the graphical motivition of the estimator of the cross sectional censored regression model
proposed in Powell (1986).

¥ This assumption is stronger than necessary. See Kyriazidou (1997) or Honoré and Kyriazidoo
(2000a) for details.
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numbers that converges to 0 at an appropriate rate as n increases. then

=/}

L4 /

~ ¢ - Ty —Lljs l:f
3 = Z (@20 — 2is)’ (@i — Lois) K {_“—“—}l

Yriethis | (14)
i=] h"

T

X Z (i, — w2is) (Y2ir — Y2is) K

=1

{-'711£ - -?511.«) .":}l
| Yritlhis
h'n
is consistent and asymptotically normal under appropriate regularity conditions.
However, the rate of convergence of /4, is slower than /7.

The estimator in (14) can be understood by observing that

E [yie| hie = Ly @i 04 v5] = oo + ag;
+Eegi|e1ie

> —.'::,,,.‘3. = ﬂ]l,J'H,.I'g-,,ffk”.ﬂ-_g,']

where the last term is a sample selection term similar to the one in Heckman
(1976, 1979). If (£4;4, 224 ) is distributed like (£45:0:5) conditional on (ry;. 295,
vy, (vo;) then the last term will be the same for an individual who happens to
have 21;/%1 = x1;5/31. and for such an individual, the transformation ya;y — ¥2:s
will eliminate the fixed effect, ay;, as well as the sample selection term. The
estimator .'32 uses all observed differences of the form ya;; — y2is, but the term

K ((I'—’:'”—&) guarantees that in the limit, as n increases, only terms for which
Zrah = a3 will get any weight.

The estimator proposed by Kyriazidou (1997) is closely related to an approach
for the cross sectional sample selection model proposed by Powell (1987)'". Rather
than considering pairs of time periods for a given individual in a panel, Powell
considered all pairs of individuals in a cross section. This results in a \/71—consistent
estimator, essentially because the effective number of terms used to define Powell’s
estimator is of order n*h (as opposed to nh in Kyriazidou, 1997).

3 Dynamic models

When the second dimension in a panel is time, it is often natural to assume that
one of the explanatory variables in (1) is a past value of the dependent variable.
In that case. it does not make sense to assume that the explanatory variables are
strictly exogenous, as was done in the previous section.'' The same is true when
the explanatory variables ., are allowed to depend on past values of the dependent
variable. In this section, we will briefly discuss this problem and some proposed
solutions in the case where the model has a set of strictly exogenous explanatory
variables, 2., as well as a lagged dependent explanatory variable.

0 See also Ahnand Powell (1993),

"' In other words, it does not make sense o make assumptions of the distribution of
(=45, £ ) conditional on (@, @i ).
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As mentioned in Section 2, there are essentially two approaches that one can
take to estimate nonlinear panel data models. A random effects approach in which
one models the distribution of the individual specific effect, and a fixed effects
approach in which the distribution of the individual specific effect is left completely
unspecified. The trade-off between the two approaches is the same for dynamic
models as it is for static models. In particular, for nonlinear models like (1) it
is often true that knowing # does not allow one to calculate marginal effects of
interest. On the other hand, the consistency of the estimators of a random effects
model usually hinges on a correct specification of the distribution of the individual
specific effect. Unfortunately, this is even more difficult in a dynamic model than
in a static model.

To illustrate the main point, consider a dynamic version of (2) in which one
of the explanatory variables is the lagged dependent variable ;. and the other
explanatory variables are strictly exogenous. (2) would then specify the distribution
of (2. ... ysr ) given the individual specific effect, the strictly exogenous variables
and y,1. However, it does not specify the distribution of y;; given the individual
specific effect and the strictly exogenous variables. There are then essentially two
approaches. One approach, which was proposed by Heckman (1981), is to specify a
separate model for y;; given the individual specific effect and the strictly exogenous
variables. A distributional assumption on the individual specific effect (conditional
on the strictly exogenous variables) is therefore sufficient for one to proceed by
maximum likelihood (or some other parametric method). The other approach, which
was advocated by Wooldridge (2000), is to specify the distribution of the individual
specific effect conditional on the strictly exogenous variables, and on the first y,
;1. With that, one can derive the distribution of (2, .. i, ) given the strictly
exogenous variables and y;,. The latter can then be used to estimate the parameters
of interest (by maximum likelihood or some other parametric method).

Both the random effects and the fixed effects approaches to dynamic nonlinear
panel data models have potential problems. But they also have some very appealing
features. If (2) has been in effect before the start of the sample period. then the
distribution of y;, (given the random effect and the strictly exogenous variables)
will depend on the joint distribution of the random effect and the strictly exogenous
variables in periods prior to the start of the sample. It is almost unavoidable that
modelling the distribution of y;; (given the individual specific effect and the strictly
exogenous variables) is inconsistent with (2) and one can, at best, hope that the
approach will lead to a useful approximation.'” On the other hand, there are cases
in which there is a logical start of the process which coincides with the first time
period in the sample. For example. the dependent variable might be the labor market
status of high school graduates, and the data might contain information about the
labor market status of individuals from the time they graduated from high school.
In that case, there is no reason why one would want to specify the distribution of
the first observation in a way that is consistent with (2), and the issues associated
with this random effects approach are not different from those in 4 static model.

12 O)f course. thiit can be said about almost any econometric model. The point here therefore is that
the approach leads to one more level of approximation, and since the model for the first period is likely
10 be inconsistent with the maodel for the remaining periods, it might be difficult w interpret the results.
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As pointed out in Wooldridge (2000), specifying the distribution of the random
effect conditional on the strictly exogenous variables and on y;, can lead to very
tractable functional forms for some common nonlinear models. On the other hand,
in this setting, the distribution of the random effect conditional on the strictly
exogenous variables and on ;. is likely to be very complicated and to depend on all
the exogenous variables in all time periods. The reason is that if the first observation
depends on the random effect, then the distribution of the latter conditional on ifi
will typically depend on ;; . Moreover, if past values of y;; are also generated from
(2). then the distribution of the random effect conditional on i1, and all values of
xy¢. will depend (in a complicated way) on the values of 5, before the start of the
sample. The distribution of the random effect conditional on the strictly exogenous
variables, and on ;. will therefore depend on the time series properties of 2, in
some very complicated way. In an attempt to overcome this, Arellano and Carrasco
(1999) considered a model like (2) where the distribution of =;, + ¢v; conditional
on all the observables up to time ¢ is assumed to be homoskedastic normal (except
that the variance may depend on ) but with unspecified expectation.

The difficulty of dealing with the initial conditions problem in random effects
models makes it interesting to consider fixed effects models. Unfortunately, it turns
out 1o be very difficult to make progress on these models in a fixed effects setting.
Moreover. to the extent that progress has been made, the question remains whether
estimating the parameters of the model allows one to calculate interesting marginal
effects, since the latter will typically depend on the “structural” parameters. as well
as the joint distribution of the individual specific effect and the initial observation.

To illustrate these issues consider a fixed effects dynamic logit model of the
form

(15)

Py oo iy ) e exp(@i/? + Yi—17 +ay)
it Pl Yt — 1 Yig—24 <4, | 4 (‘.‘(])[J",i_;'.', i Wip—1% + (I-,').

If there are at least four time periods, and the exogenous explanatory variables
@y are not present in (15), then Cox (1958) and Chamberlain (1985) have shown
that one can estimate 4 by considering the distribution of the data conditional on
a sufficient statistic for o, which in this case is (y7 L Wi Zle y!,). Honoré and
Kyriazidou (2000b) generalized this to the case where the logit model was also
allowed to contain strictly exogenous explanatory variables.

As pointed out above, knowing v and /4 in a model like (15) does not allow
one to calculate the marginal effect of x;; on ;. This is a limitation of the fixed
effects approach. On the other hand, as discussed in Heckman (1978) and Arellano
and Honoré (2001). there are cases in which 4 = () is an interesting hypothesis. In
those cases, it is interesting to estimate + even if it does not allow one to calculate
any marginal effects. Moreover. even though /7 does not allow one to calculate
the magnitude of the effect of 1, on y;,. it does allow one 1o judge the relative
importance of the different components of 1, as well as 1o test whether the effect
exists.

Honoré (1993) and Honoré and Hu (2000) consider censored panel data re-
gression models in which one of the dependent variables is a lagged dependent
variable. Hu (2002) generalizes this 1o a censored panel data regression model in
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which one of the dependent variables is the lagged uncensored dependent variable.
This model corresponds to a dynamic linear panel data model with top coding (in
which it does not make sense to use the lagged censored dependent variable as an
explanatory variable). Finally, Kyriazidou (2001) generalizes Kyriazidou (1997)
by allowing both the selection equation and the outcome equation to depend on the
lagged value of the dependent variable in the same equation.

4 Concluding remarks
4.1 Compuration

The adoption of new methods in econometrics is slowed down by the fixed cost of
having to program the methods “from scratch”. Estimation of static random effects
discrete choice and censored regression models is a “canned” command in Stata.
As discussed in Wooldridge (2000). these routines can be used to also estimate
dynamic models if one specifies the distribution of the individual specific effect
conditional on the strictly exogenous variables, and the first observation of the
dependent variable in a particular manner. The fixed effects logit model can also be
estimated using a canned Stata command. The other estimators mentioned above
require programming."?

4.2 Recommendations for applied work

For static models like the ones discussed in Section 2, the choice between random
effects and fixed effects models is similar to the choice between parametric and
semiparametric models in cross sectional econometrics, and the pros and cons are
also similar, Estimating a random effects panel data model or a parametric cross
sectional model results in a fully specified model in which one can estimate all the
quantities of interest, whereas fixed effects panel data models and semiparametric
cross sectional models typically result in the estimation of some finite dimensional
parameter from which one cannot calculate all functions of the distribution of the
data.'"* Moreover, random effects models will usually lead to more efficient estima-
tors of the parameters of the model if the distributional assumptions are satisfied.
On the other hand. violation of the distributional assumptions in a random effects
(or parametric) model will typically lead to inconsistent estimation of all the pa-
rameters. Fixed effects (and semiparametric) models make fewer such assumptions.
Based on this, it seems that if the main aim of an empirical exercise is to judge
the relative importance of a number of variables, or to statistically test whether
certain variables are needed, and if efficiency is not too much of an issue. then a
fixed effect approach is preferable because it will be less sensitive to distributional

13 Some programs are available (typically in Gauss) for some of the estimators. See, for example,
hitpi/fwwsw.econuclaedu/kyria/ and hitp:/iwww.princeton.edu/ honore/pantob/.

14 This staternent is somewhal misleading, because one could imagine estimating the “structural”
pardmaters as well as the distributions of the unobservables in both fixed effects panel data models and
semniparametric cross sectional models.
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assumptions. On the other hand, if, as is often the case, one wants to use the model
for prediction or for calculating the effect of various “what-if’s”, then a random
effects model would be preferable. In that case, comparing the results to the ones
obtained using a fixed effects approach can be used as a test (formal or informal)
of the validity of the distributional assumptions made in the random effects model.

The comments above also apply to dynamic models of the type discussed in
Section 3, except that both the random effects and fixed effects approaches have
additional difficulties. The fixed effects approach suffers from a lack of knowledge
about how to estimate the models. whereas the initial conditions problem is an
additional issue for the random effects approach,

4.3 Open questions

There are numerous open questions in the literature on nonlinear panel data models.
As already mentioned, many of the fixed effects methods do not lead to estimates
of all the quantities that one needs to calculate the effect of #;, on the distribution
of ;s holding everything else equal, whereas a random effects approach forces one
to make distributional assumptions that in some situations may be undesirable. The
recent paper by Altonji and Matzkin (2001) makes an important contribution by
focusing directly on the effect of ;, on the distribution of i, in a fixed effects model.
Generalizing this to dynamic models would be an interesting topic for research.
While most panel data sets have many more individuals than time periods, it
is sometimes the case that the number of time periods is reasonable large. It is
therefore important to think about estimation of nonlinear panel data models in
situations in which both the number of individuals and the number of time periods
are large. Woutersen (2001) is an interesting example of recent research in this area.

4.4 Concluding remark

Panel data methods are necessary for understanding individual dynamic behavior.
Panel data methods are also useful in situations that are cross sectional in nature.
For example, Case, Lin, and McLanahan (2000) uses a fixed effects approach to
control for the characteristics of the mother in a study of the educational attainment
of children raised by step, adoptive or foster mothers, compared to the birth children
of the same women. Despite the difficulties associated with their use. panel data are
likely to continue to play an important role, and it will be very valuable to expand
the set of tools in this area.
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