TODBOA FOONOMICS \& MANAGBMANT

Lecture 2 - Natural monopoly regulation

outline

- Natural monopoly
- Definitions: economies of scale, economies of scope, subadditivity
- Regulation
- Optimal solutions:
- Linear and nonlinear pricing
- Ramsey pricing
- Regulation in practice:
- Rate of return regulation
- price caps

outline

References

- Natural monopoly:
- VVH, ch. 11
- Baumol W. J. and D. F. Bradford, 1970, "Optimal Departures from Marginal Cost Pricing," American Economic Review, Vol. 60, No. 3, pp. 265-83
- Ramsey, 1927, "A Contribution to the Theory of Taxation," Economic Journal, Vol. 37, No. 1, pp. 47-61

Natural monopoly

typical example

Let $\mathrm{C}\left(\mathrm{q}_{\mathrm{i}}\right)=\mathrm{F}+\mathrm{cq}_{\mathrm{i}}$. Then $\mathrm{AC}_{\mathrm{i}}=\left(\mathrm{F} / \mathrm{q}_{\mathrm{i}}\right)+\mathrm{c}$ is decreasing.

Natural monopoly

definition

- Cost or technology-based definition: An industry is a natural monopoly (NM) if the production of a particular good or service (or all combinations of outputs, in the multiple-output case) by a single firm minimizes cost
- NM has been simply defined as existing when the AC curve is everywhere downward-sloping relative to market demand (economies of scalle);
- Baumol et al. (1970) introduced formally the notion of subadditive costs; a NM occurs when the cost function is subadditive.
- Tirole's definition does not depend solely on costs: a NM arises when market equilibrium yields a single firm.

Natural monopoly

definition

- Cost or technology-based definition: An industry is a natural monopoly (NM) if the production of a particular good or service (or all combinations of outputs, in the multiple output case) by a single firm minimizes cost
- NM has been simply defined as existing when the AC curve is everywhere downward-sloping relative to market demand (economies of scale)
- Baumol et al. (1970) introduced formally the notion of sulbadditive costs; a NM occurs when the cost function is subadditive.
- Tirole's definition does not depend solely on costs: a NM arises when market equilibrium yields a single firm.

Natural monopoly

definition

- Cost or technology-based definition: An industry is a natural monopoly (NM) if the production of a particular good or service (or all combinations of outputs, in the multiple output case) by a single firm minimizes cost
- NM has been simply defined as existing when the AC curve is everywhere downward-sloping relative to market demand (economies of scale)
- Baumol et al. (1970) introduced formally the notion of subadditive costs; a NM occurs when the cost function is subadditive
- Tirole's definition does not depend solely on costs: a NM arises when market equilibrium yields a single firm.

Economies of scale

- Definition: decreasing long run average cost as output increases.
- Why:
- Existence of substantial fixed costs;
- Opportunities for specialization in the deployment of resources;
- Strong market position in factor inputs.

Economies of scale

single-product case

Economies of scale

multiproduct case

Definitions (Baumol, Panzar, Willig, 1982):
2-product case
Decreasing AC along a ray:

$$
\mathrm{C}\left(\mathrm{tq}_{1}, \mathrm{tq}_{2}\right)<\mathrm{tC}\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right), \mathrm{t}>1
$$

Decreasing average incremental cost:
$\frac{\left|C\left(q_{1}, q_{2}\right)-C\left(0, q_{2}\right)\right|}{q_{1}}$ decreasing with q_{1}.
Convex cost function along a transversal ray:

$$
\mathrm{C}\left(\mathrm{tq}_{1},(1-\mathrm{t}) \mathrm{q}_{2}\right)<\mathrm{C}\left(\mathrm{tq}_{1}, 0\right)+\mathrm{C}\left(0,(1-\mathrm{t}) \mathrm{q}_{2}\right), 0<\mathrm{t}<1
$$

(Similar to economies of scope: it is cheaper to produce a convex combination of two goods in the same firm)

Subadditivity

definition

- In a market with k firms, where firm i has a cost function $C\left(q_{i}\right)$ and total output is Q, firms' cost functions are said to be subadditive at output level Q when:

$$
\mathrm{C}(\mathrm{Q})<\mathrm{C}\left(\mathrm{q}_{1}\right)+\mathrm{C}\left(\mathrm{q}_{2}\right)+\ldots+\mathrm{C}\left(\mathrm{q}_{\mathrm{k}}\right)
$$

- If this occurs for all values of Q , consistent with demand Q $=\mathrm{D}(\mathrm{p})$, then the cost function is said to be globally subadditive.

Subadditivity and economies of scale single-product case

- In the single-product case, economies of scale up to Q is a sufficient* but not a necessary condition for subadditivity over this range or, by the cost-based definition, for NM.
- In fact, it may still be less costly for output to be produced in a single firm rather than multiple firms even if output of a single firm has expanded beyond the point where there are economies of scale.

Subadditivity and economies of scale

One firm

Economies of scale
Subadditivity

Economies of scope

- Most NM (public utilities) produce more than one product and there is interdependence among outputs.
- Economies of scope exist when it is cheaper to produce two products together (joint production) than to produce them separately:
- Example

$$
\mathrm{C}\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)<\mathrm{C}\left(\mathrm{q}_{1}, 0\right)+\mathrm{C}\left(0, \mathrm{q}_{2}\right)
$$

- Sources:
- shared inputs;
- shared advertising creating a brand name;
- cost complementarities (producing one good reduces the cost of producing another).

Subadditivity and economies of scope multiproduct case

- Economies of scope is a necessary but not sufficient condition for subadditivity.
- In the multiproduct case, the existence of (productspecific) economies of scale in the production of any one product is neither necessary nor sufficient for subadditivity (because of economies of scope); example.
- Sufficient conditions for subadditivity:
- Economies of scope + declining average incremental cost for all products;
- Convexity along a transversal ray + decreasing AC alons a ray.

Natural monopoly

conflict: productive eff. vS. allocative eff.

- Is a NM productive-efficient?
- Usually yes, but not always: Productive efficiency requires cost to be minimized.
- Is a NM allocative-efficient?
- No: A monopolist generates a deadweight loss by restricting output below the competitive level, since $\mathrm{P}_{\mathrm{M}}>\mathrm{MC}$.

Natural monopoly efficiency

1. (Qe, Pe) first-best: $\mathrm{P}=\mathrm{MC}$
2. $(\mathrm{QO}, \mathrm{PO})$ second-best: $P=A C$

Natural monopoly

- Policy dilemma...
- Least-cost production requires a single-firm; but this leads to monopoly pricing - allocative inefficiency.
- Otherwise, competition results in productive inefficiency.

Natural monopoly

- Two-stage game
- First stage: firms decide to enter (entry implies sunk cost of k)
- Second stage: competition in prices
- Unique pure strategy equilibrium: a single firm enters and sets $\mathrm{P}=\mathrm{P}_{\mathrm{M}}$ (earning monopoly profit - k)

Natural monopoly
 solutions

- Doing nothing - why? Second-best obtained because of:
- Contestable markets

Contestable markets

- Even if there a just a few firms in the market, there may be potential competition from firms who may enter the market
- This may lead to the second best pricing solution!
- Assumptions:
- new firms have no disadvantage (input prices, technology, information,...);
- no sunk costs;
- entry lag is less than price adjustment lag.

Contestable markets

- Let there be N firms, of which m are producing
- The production vector is admissible iff there is market equilibrium and firms do not have losses
- The production vector is sustainable iff none of the N - m firms can enter the market with a lower price and have positive profit
- If a production vector is admissible + sustainable, then it is contestable

Natural monopoly

solutions

- Doing nothing - why? Second-best obtained because of:
- Contestable markets
- Auction bidding
- Close substitutes for the product
- Regulation - ideal pricing solutions
- Linear pricing
- Marginal cost pricing
- Average cost pricing
- Non linear pricing or multipart tariff
- Ramsey pricing (multiproduct case)

Marginal cost pricing

Efficient MC price: $\mathrm{P}_{\mathrm{O}}=\mathrm{C}^{-}\left(\mathrm{Q}\left(\mathrm{P}_{0}\right)\right)$

Advantage: allocative efficiency

Problems:

- information needed
- weak incentives to reduce costs
- NM is not able to break-even when economies of scale exist; use subsidy? This would imply raising funds (distortion) and the producer would know revenue gap would always be funded! Moreover, we may have CS < TC

Average cost pricing

Efficient AC price: $P_{0}=C\left(Q\left(P_{0}\right)\right) / Q\left(P_{0}\right)$

Advantage: maximizes total welfare s.t. break-even constraint Problems:

- information needed
- failure of allocative efficiency: less quantity and higher price than in MC pricing case (Deadweight loss)
- weak incentives to reduce costs

Nonlinear pricing

two-part tariffs

- Two-part tariffs include a fixed fee, regardless of consumption, plus a marginal cost price per unit $T(q)=A+P q$

- If $\mathrm{P}=\mathrm{c}$, we may have efficient pricing and $\mathrm{TR}=\mathrm{TC}$ for appropriate A!
- Nonlinear pricing is more efficient than linear tariffs above MC
Often used in the utility industries (telecom., gas, water, electricity)

Nonlinear pricing

two-part tariffs

- If $C(q)=K+c q$ and consumers are homogeneous, then it would be optimal to set a two-part tariff with

$$
\mathrm{A}^{*}=\mathrm{K} / \mathrm{N} \text { and } \mathrm{P}^{*}=\mathrm{c}
$$

- But when consumers are heterogeneous, consumers with low willingness to pay drop out of the market if

$$
\mathrm{K} / \mathrm{N}>\mathrm{CS}(\mathrm{c})
$$

- When consumers are hetereogeneous, welfare maximizing nonlinear tariffs will most likely involve the firm offering consumers discriminatory two-part tariffs:
- Quantity discounts
- Multipart tariffs
- As discrimination may be forbidden: Self-selecting tariffs

Nonlinear pricing
 Increasing and declining block tariffs

Nonlinear pricing
 Multi-part tariff or self-selecting two-part tariffs

Nonlinear pricing
 optimal two-part tariff

- Trade-off:
- Efficiency losses because of exclusion of additional consumers when A raises
- Consumption losses as P increases above marginal cost.
- Start with $\mathrm{A}=0$ and $\mathrm{P}=\mathrm{c}$: the loss must be compensated by higher A or P or both; balance efficiency losses (consumer exclusion) with consumption losses (reduction quantity).
- So, optimal two-part tariffs generally involve a P that exceeds MC (no allocative efficiency) and a fixed fee that excludes some consumers from the market (failure of universal service).

Multiproduct NM

- For a multiproduct natural monopolist, MC pricing leads to negative profits.
- But if price for each product exceeds MC it can cover this shortfall,
- By how much?
- In the context of a multiproduct monopolist, each product would have a linear price, and the set of prices would minimize deadweight social losses subject to the zero profit constraint.

The Ramsey rule

- The Ramsey rule or Ramsey-Boiteux pricing applies to multiproduct NM that would obtain losses with MC pricing.
- Ramsey found the result before (1927) in the context of the theory of taxation. The rule was later applied by M. Boiteux (1956) to NM.
- Ramsey prices are linear prices that satisfy zero profit and maximize social welfare.

The Ramsey rule

- Assumptions:
- natural monopoly
- independent demands (0 cross-price elasticities)
- linear demands.
- Ramsey-Boiteux pricing: the markup of each commodity is inversely proportional to the corresponding elasticity of demand (but it is smaller as the inverse elasticity of demand is multiplied by a constant lower than 1).

$$
\frac{P_{i}-M C_{i}}{P_{i}}=\frac{\lambda}{\varepsilon_{i}}
$$

- The rule implies that the relative change in quantity is the same for all goods.

The Ramsey rule

example

- $C(X, Y)=1800+20 X+20 Y$
- Demands:
- $Q_{x}=100-P_{x}$
- $Q_{y}=120-2 P_{y}$
- MC pricing would imply $\mathrm{P}_{\mathrm{x}}=\mathrm{P}_{\mathrm{y}}=20$; however, this implies losses.
- One way is to increase the two prices proportionally until 36.1; this leads to DWL of $130+260=390$.
- An alternative is to raise the price of X (less elastic) more, so that the change in quantity is the same for the two products. We obtain $\mathrm{P}_{\mathrm{x}}=40$ and $\mathrm{P}_{\mathrm{y}}=30$.

The Ramsey rule

Examples

- Rail rates for shipping sand, potatoes or oranges are lower than those for liquor, cigarettes,... because elasticities of demand of shipping products that have low values per pound are higher.
- But, before 1984, even though the elasticity of long-distance calls was higher than for shortdistance calls (0.5-2.5 vs. 0.05-0.2), AT\&T priced short-distance calls way below long-distance! Profits in long-distance were used to subsidize losses on local service.

