Exercises from

Arbitrage Theory in Continuous Time (3:rd ed) Chapters 4-5

Tomas Björk
Stockholm School of Economics

May 10, 2010

1 Exercises

Exercise 1.1 Compute the stochastic differential $d Z$ when
(a) $Z(t)=e^{\alpha t}$,
(b) $Z(t)=\int_{0}^{t} g(s) d W(s)$, where g is an adapted stochastic process.
(c) $Z(t)=e^{\alpha W(t)}$
(d) $Z(t)=e^{\alpha X(t)}$, where X has the stochastic differential

$$
d X(t)=\mu d t+\sigma d W(t)
$$

(μ and σ are constants).
(e) $Z(t)=X^{2}(t)$, where X has the stochastic differential

$$
d X(t)=\alpha X(t) d t+\sigma X(t) d W(t) .
$$

Exercise 1.2 Compute the stochastic differential for Z when $Z(t)=\frac{1}{X(t)}$ and X has the stochastic differential

$$
d X(t)=\alpha X(t) d t+\sigma X(t) d W(t) .
$$

By using the definition $Z=X^{-1}$ you can in fact express the right hand side of $d Z$ entirely in terms of Z itself (rather than in terms of X). Thus Z satisfies a stochastic differential equation. Which one?

Exercise 1.3 Let $\sigma(t)$ be a given deterministic function of time and define the process X by

$$
\begin{equation*}
X(t)=\int_{0}^{t} \sigma(s) d W(s) \tag{1}
\end{equation*}
$$

Show that the characteristic function of $X(t)$ (for a fixed t) is given by

$$
\begin{equation*}
E\left[e^{i u X(t)}\right]=\exp \left\{-\frac{u^{2}}{2} \int_{0}^{t} \sigma^{2}(s) d s\right\}, \quad u \in R \tag{2}
\end{equation*}
$$

thus showing that $X(t)$ is normally distibuted with zero mean and a variance given by

$$
\operatorname{Var}[X(t)]=\int_{0}^{t} \sigma^{2}(s) d s
$$

Exercise 1.4 Suppose that X has the stochastic differential

$$
d X(t)=\alpha X(t) d t+\sigma(t) d W(t)
$$

where α is a real number whereas $\sigma(t)$ is any stochastic process. Determine the function $m(t)=E[X(t)]$.

Exercise 1.5 Suppose that the process X has a stochastic differential

$$
d X(t)=\mu(t) d t+\sigma(t) d W(t)
$$

and that $\mu(t) \geq 0$ with probability one for all t. Show that this implies that X is a submartingale.

Exercise 1.6 A function $h\left(x_{1}, \ldots, x_{n}\right)$ is said to be harmonic if it satisfies the condition

$$
\sum_{i=1}^{n} \frac{\partial^{2} h}{\partial x_{i}^{2}}=0
$$

It is subharmonic if it satisfies the condition

$$
\sum_{i=1}^{n} \frac{\partial^{2} h}{\partial x_{i}^{2}} \geq 0
$$

Let W_{1}, \ldots, W_{n} be independent standard Wiener processes, and define the process X by $X(t)=h\left(W_{1}(t), \ldots, W_{n}(t)\right)$. Show that X is a martingale (submartingale) if h is harmonic (subharmonic).

Exercise 1.7 The object of this exercise is to give an argument for the formal identity

$$
d W_{1} \cdot d W_{2}=0
$$

when W_{1} and W_{2} are independent Wiener processes. Let us therefore fix a time t, and divide the interval $[0, t]$ into equidistant points $0=t_{0}<t_{1}<$ $\cdots<t_{n}=t$, where $t_{i}=\frac{i}{n} \cdot t$. We use the notation

$$
\Delta W_{i}\left(t_{k}\right)=W_{i}\left(t_{k}\right)-W_{i}\left(t_{k-1}\right), \quad i=1,2 .
$$

Now define Q_{n} by

$$
Q_{n}=\sum_{k=1}^{n} \Delta W_{1}\left(t_{k}\right) \cdot \Delta W_{2}\left(t_{k}\right)
$$

Show that $Q_{n} \rightarrow 0$ in L^{2}, i.e. show that

$$
\begin{aligned}
E\left[Q_{n}\right] & =0, \\
\operatorname{Var}\left[Q_{n}\right] & \rightarrow 0 .
\end{aligned}
$$

Exercise 1.8 Let X and Y be given as the solutions to the following system of stochastic differential equations.

$$
\begin{aligned}
d X & =\alpha X d t-Y d W, \quad X(0)=x_{0} \\
d Y & =\alpha Y d t+X d W, \quad Y(0)=y_{0}
\end{aligned}
$$

Note that the initial values x_{0}, y_{0} are deterministic constants.
(a) Prove that the process R defined by $R(t)=X^{2}(t)+Y^{2}(t)$ is deterministic.
(b) Compute $E[X(t)]$.

Exercise 1.9 For a $n \times n$ matrix A, the trace of A is defined as

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i} .
$$

(a) If B is $n \times d$ and C is $d \times n$, then $B C$ is $n \times n$. Show that

$$
\operatorname{tr}(B C)=\sum_{i j} B_{i j} C_{j i}
$$

(b) With assumptions as above, show that

$$
\operatorname{tr}(B C)=\operatorname{tr}(C B)
$$

(c) Show that the multi dimensional Itô formula can be written

$$
d f=\left\{\frac{\partial f}{\partial t}+\sum_{i=1}^{n} \mu_{i} \frac{\partial f}{\partial x_{i}}+\frac{1}{2} \operatorname{tr}\left[\sigma^{\star} H \sigma\right]\right\} d t+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \sigma_{i} d W_{i}
$$

where H denotes the Hessian matrix

$$
H_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

Exercise 1.10 Show that the scalar SDE

$$
\begin{aligned}
d X_{t} & =\alpha X_{t} d t+\sigma d W_{t} \\
X_{0} & =x_{0}
\end{aligned}
$$

has the solution

$$
\begin{equation*}
X(t)=e^{\alpha t} \cdot x_{0}+\sigma \int_{0}^{t} e^{\alpha(t-s)} d W_{s} \tag{3}
\end{equation*}
$$

by differentiating X as defined by eqn (3) and showing that X so defined actually satisfies the $S D E$.

Hint: Write eqn (3) as

$$
X_{t}=Y_{t}+Z_{t} \cdot R_{t},
$$

where

$$
\begin{aligned}
Y_{t} & =e^{\alpha t} \cdot x_{0} \\
Z_{t} & =e^{\alpha t} \cdot \sigma \\
R_{t} & =\int_{0}^{t} e^{-\alpha s} d W_{s}
\end{aligned}
$$

and first compute the differentials $d Z, d Y$ and $d R$. Then use the multidimensional Itô formula on the function $f(y, z, r)=y+z \cdot r$.

Exercise 1.11 Let A be an $n \times n$ matrix, and define the matrix exponential e^{A} by the series

$$
e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

This series can be shown to converge uniformly.
(a) Show, by taking derivatives under the summation sign, that

$$
\frac{d e^{A t}}{d t}=A e^{A t}
$$

(b) Show that

$$
e^{0}=I,
$$

where 0 denotes the zero matrix, and I denotes the identity matrix.
(c) Convince yourself that if A and B commute, i.e. $A B=B A$, then

$$
e^{A+B}=e^{A} \cdot e^{B}=e^{B} \cdot e^{A} .
$$

Hint: Write the series expansion in detail.
(d) Show that e^{A} is invertible for every A, and that in fact

$$
\left[e^{A}\right]^{-1}=e^{-A}
$$

(e) Show that for any A, t and s

$$
e^{A(t+s)}=e^{A t} \cdot e^{A s}
$$

(f) Show that

$$
\left(e^{A}\right)^{\star}=e^{A^{\star}}
$$

Exercise 1.12 Consider the n-dimensional linear SDE

$$
\left\{\begin{align*}
d X_{t} & =\left(A X_{t}+b_{t}\right) d t+\sigma_{t} d W_{t} \tag{4}\\
X_{0} & =x_{0}
\end{align*}\right.
$$

where A is an $n \times n$ matrix, b is an R^{n}-valued deterministic function (in column vector form), σ is a deterministic $n \times d$ deterministic matrix valued function, and W an d-dimensional Wiener process. Show that the solution of this equation is given by

$$
\begin{equation*}
X_{t}=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-s)} b_{s} d s+\int_{0}^{t} e^{A(t-s)} \sigma_{s} d W_{s} \tag{5}
\end{equation*}
$$

Exercise 1.13 Consider again the linear SDE (4). Show that the expected value function

$$
m(t)=E[X(t)]
$$

, and the covariance matrix

$$
C(t)=\left\{\operatorname{Cov}\left(X_{i}(t), X_{j}(t)\right\}_{i, j}\right.
$$

are given by

$$
\begin{aligned}
m(t) & =e^{A t} x_{0}+\int_{0}^{t} e^{A(t-s)} b(s) d s \\
C(t) & =\int_{0}^{t} e^{A(t-s)} \sigma(s) \sigma^{\star}(s) e^{A^{\star}(t-s)} d s
\end{aligned}
$$

where * denotes transpose.

Hint: Use the explicit solution above, and the fact that

$$
C(t)=E\left[X_{t} X_{t}^{\star}\right]-m(t) m^{\star}(t) .
$$

Geometric Brownian motion (GBM) constitutes a class of processes which is closed under a number of nice operations. Here are some examples.

Exercise 1.14 Suppose that X satisfies the $S D E$

$$
d X_{t}=\alpha X_{t} d t+\sigma X_{t} d W_{t}
$$

Now define Y by $Y_{t}=X_{t}^{\beta}$, where β is a real number. Then Y is also a $G B M$ process. Compute $d Y$ and find out which SDE Y satisfies.

Exercise 1.15 Suppose that X satisfies the $S D E$

$$
d X_{t}=\alpha X_{t} d t+\sigma X_{t} d W_{t}
$$

and Y satisfies

$$
d Y_{t}=\gamma Y_{t} d t+\delta Y_{t} d V_{t}
$$

where V is a Wiener process which is independent of W. Define Z by $Z=\frac{X}{Y}$ and derive an SDE for Z by computing $d Z$ and substituting Z for $\frac{X}{Y}$ in the right hand side of $d Z$. If X is nominal income and Y describes inflation then Z describes real income.

Exercise 1.16 Suppose that X satisfies the $S D E$

$$
d X_{t}=\alpha X_{t} d t+\sigma X_{t} d W_{t}
$$

and Y satisfies

$$
d Y_{t}=\gamma Y_{t} d t+\delta Y_{t} d W_{t}
$$

Note that now both X and Y are driven by the same Wiener process W. Define Z by $Z=\frac{X}{Y}$ and derive an $S D E$ for Z.

Exercise 1.17 Suppose that X satisfies the SDE

$$
d X_{t}=\alpha X_{t} d t+\sigma X_{t} d W_{t}
$$

and Y satisfies

$$
d Y_{t}=\gamma Y_{t} d t+\delta Y_{t} d V_{t}
$$

where V is a Wiener process which is independent of W. Define Z by $Z=$ $X \cdot Y$ and derive an $S D E$ for Z. If X describes the price process of, for example, IBM in US\$ and Y is the currency rate SEK/US\$ then Z describes the dynamics of the IBM stock expressed in SEK.

Exercise 1.18 Use a stochastic representation result in order to solve the following boundary value problem in the domain $[0, T] \times R$.

$$
\begin{aligned}
\frac{\partial F}{\partial t}+\mu x \frac{\partial F}{\partial x}+\frac{1}{2} \sigma^{2} x^{2} \frac{\partial^{2} F}{\partial x^{2}} & =0 \\
F(T, x) & =\ln \left(x^{2}\right)
\end{aligned}
$$

Here μ and σ are assumed to be known constants.
Exercise 1.19 Consider the following boundary value problem in the domain $[0, T] \times R$.

$$
\begin{aligned}
\frac{\partial F}{\partial t}+\mu(t, x) \frac{\partial F}{\partial x}+\frac{1}{2} \sigma^{2}(t, x) \frac{\partial^{2} F}{\partial x^{2}}+k(t, x) & =0 \\
F(T, x) & =\Phi(x)
\end{aligned}
$$

Here μ, σ, k and Φ are assumed to be known functions.
Prove that this problem has the stochastic representation formula

$$
F(t, x)=E_{t, x}\left[\Phi\left(X_{T}\right)\right]+\int_{t}^{T} E_{t, x}\left[k\left(s, X_{s}\right)\right] d s
$$

where as usual X has the dynamics

$$
\begin{aligned}
d X_{s} & =\mu\left(s, X_{s}\right) d s+\sigma\left(s, X_{s}\right) d W_{s} \\
X_{t} & =x
\end{aligned}
$$

Hint: Define X as above, assume that F actually solves the PDE and consider the process $Z_{s}=F\left(s, X_{s}\right)$.

Exercise 1.20 Use the result of the previous exercise in order to solve

$$
\begin{aligned}
\frac{\partial F}{\partial t}+\frac{1}{2} x^{2} \frac{\partial^{2} F}{\partial x^{2}}+x & =0 \\
F(T, x) & =\ln \left(x^{2}\right)
\end{aligned}
$$

Exercise 1.21 Consider the following boundary value problem in the domain $[0, T] \times R$.

$$
\begin{aligned}
\frac{\partial F}{\partial t}+\mu(t, x) \frac{\partial F}{\partial x}+\frac{1}{2} \sigma^{2}(t, x) \frac{\partial^{2} F}{\partial x^{2}}+r(t, x) F & =0 \\
F(T, x) & =\Phi(x)
\end{aligned}
$$

Here $\mu(t, x), \sigma(t, x), r(t, x)$ and $\Phi(x)$ are assumed to be known functions. Prove that this problem has a stochastic representation formula of the form

$$
F(t, x)=E_{t, x}\left[\Phi\left(X_{T}\right) e^{\int_{t}^{T} r\left(s, X_{s}\right) d s}\right]
$$

by considering the process $Z_{s}=F\left(s, X_{s}\right) \times \exp \left[\int_{t}^{s} r\left(u, X_{u}\right) d u\right]$ on the time interval $[t, T]$.

Exercise 1.22 Solve the boundary value problem

$$
\begin{aligned}
\frac{\partial F}{\partial t}(t, x, y)+\frac{1}{2} \sigma^{2} \frac{\partial^{2} F}{\partial x^{2}}(t, x, y)+\frac{1}{2} \delta^{2} \frac{\partial^{2} F}{\partial y^{2}}(t, x, y) & =0 \\
F(T, x, y) & =x y
\end{aligned}
$$

Exercise 1.23 Go through the details in the derivation of the Kolmogorov forward equation.

Exercise 1.24 Consider the SDE

$$
d X_{t}=\alpha d t+\sigma d W_{t}
$$

where α and σ are constants.
(a) Compute the transition density $p(s, y ; t, x)$, by solving the $S D E$.
(b) Write down the Fokker-Planck equation for the transition density and check the equation is indeed satisfied by your answer in (a).

Exercise 1.25 Consider the standard GBM

$$
d X_{t}=\alpha X_{t} d t+\sigma X_{t} d W_{t}
$$

and use the representation

$$
X_{t}=X_{s} \exp \left\{\left[\alpha-\frac{1}{2} \sigma^{2}\right](t-s)+\sigma\left[W_{t}-W_{s}\right]\right\}
$$

in order to derive the transition density $p(s, y ; t, x)$ of $G B M$. Check that this density satisfies the Fokker-Planck equation.

