

Production and Operations Quiz 1: Version A

THIS QUIZ HAS DURATION OF EXACTLY ONE HOUR AND THIRTY MINUTES.

Clearly mark your answer with the symbol "X" in the designated column. Wrong or misplaced answers receive 0 points. Pages 9 and 10 have been intentionally left blank and are to be used for ancillary computations.

Group I

1. Consider the project ISEGNL with network diagram, expected activity durations and standard deviations presented below:

Activities	Α	В	С	D	Е	F	G
Expected							
duration	5	4	3	4	3	6	2
(days)							
Standard							
deviation	2	1	2	3	1	3	2
(days)							

[2 v	[2 val.] Identify the critical path of project ISEGNL.		
1		A – E – F – G	
2		A – C – F – G	
3		B – C – F – G	
4		B – D – G	

Name______[2]

_	[2 val.] If the late start (LS) time for activity D is 10, its Slack (S) is:			
1		5 days		
2		4 days		
3		1 days		
4		6 days		

[1 val.] Please consider a <u>new</u> project with expected activity durations and standard deviations identical to those displayed in the previous table. Assume now precedencies are <u>different</u> from before. If the new critical path is ACDG what is the probability that the project duration is lesser than 12 days?

1 0.7486
2 0.3300

Consider the following data from project NOW:

0.5432

0.2514

Activities	Α	В	С	D	Е	F	G	Н
Normal	6	5	4	3	5	4	3	3
time								
(weeks)								
Crash time	5	4	2	2	2	4	3	2
(weeks)								
Normal	1200	600	1000	500	600	800	500	800
cost								
(euros)								
Crash cost	1600	700	2100	950	1200	800	500	1100
(euros)								

After a network diagram was drawn the following paths were identified:

ACH	
BCDE	
BFGH	
ACDH	

3

4

Name_____[3]

[1 val.]	[1 val.] Estimate the impact of crashing activity E by three weeks		
on the total duration of the project.			
1		Project duration is shortened by one week	
2		Project duration is shortened by two weeks	
3		Project duration is shortened by three weeks	
4		Project duration remains unaltered	

	[2 val.] If the duration of the NOW project is crashed by two			
<u>weeks</u>	weeks what is the minimum total project cost?			
1		6550		
2		6450		
3		6300		
4		6000		

Group II

For the purposes of Group II please consider companies to work 50 weeks per year, and 5 days per week.

[1	val.	Annual demand for TVPLUS television sets at				
ELE	ELECTRICA store is of 10 000 units. The order cost is of 30					
euro	euros and the weekly holding cost per unit is 0.50 euros. How					
mar	many orders should ELECTRICA make in a year?					
1		65 orders				
2		9 orders				
3		10 orders				
4		24 orders				

VIGILANTE manufactures surveillance systems, namely the VG1 model, which has an yearly demand of 40000 units. Currently, VIGILANTE has a production capacity of 1000 VG1 units per week, a set-up cost of 100 euros and an yearly holding cost of 10 euros per unit.

[2 val.] Please identify the correct production order quantity:			
1		894 units	
2		2000 units	
3		1000 units	
4		800 units	

[2	[2 val.] Assuming ELECTRICA produces a lot size of 3000				
uni	units what is the duration of the production phase in which				
onl	only inventory consumption takes place?				
1		3.75 weeks			
2		0.75 weeks			
3		2.5 weeks			
4		0.5 weeks			

Name______ [4]

Weekly demand for wholegrain flour at GOODBUY supermarket follows a Normal distribution with mean of 60 packages and standard deviation of 10 packages. The yearly holding cost of each package is 2 euros. The lead time is 8 weeks. Currently the supermarket owner orders batches of 500 packages.

_	[2 val.] Assuming the GOODBUY supermarket owner follows a safety stock of 70 packages, what is the service level provided			
	to the customers?			
1		99.32%		
2		95.0%		
3		81.06%		
4		85%		

[2 \	[2 val.] Assuming the GOODBUY supermarket owner follows a			
safe	safety stock of 70 packages, what is the yearly holding cost			
asso	associated with this inventory policy?			
1		640 euros/year		
2		500 euros/ year		
3		1140 euros/ year		
4		140 euros/ year		

Name______[5]

Group III

The following data was retrieved from the aggregate production plan of ELECTRICA washing machines for the months of May through July:

			Capacity	
Month	Demand (machines)	Regular time production (machines)	Overtime production (machines)	Subcontracting
May	1000	800	100	50
June	800	700	100	50
July	1300	1300	100	50
Initial In	ventory: 200 n	nachines		
Costs:	-			
Dogular	time Cost		2006 /machine	_

Regular time Cost200€ /machineOvertime Cost220€/machineSubcontracting Cost250€/machineHolding Cost10€/machine/monthBackorder Cost25€/machine/month

Consider the following production plan:

			ay	Ju	ne	July		а	
Initia Invent		200	0		10		20		200
	RT1	800	200		210		220		800
May	OT1		220	50	230		240		100
	SUB1		250		260		270		50
	RT2		225	700	200		210		700
June	ОТ2		245		220		230		100
	SUB2		275		250		260		50
July	RT3		250	50	225	1250	200		1300
,	ОТЗ		270		245	50	220		100

Name______[6]

SUB3	300	275	250		50
Demand	1000	800	1300	b	

_	-	Please choose the text/values of cells a and b vely):					
1		Ending Inventory; 350					
2	Ending Inventory; 0						
3		Unsatisfied Demand; 350					
4		Unused Capacity; 350					

For mul as

[2 v	[2 val.] What are the regular time costs, holding costs, and									
bacl	backorder costs for the given production plan in the month									
June	e?									
1		140000;11500;11250								
2		150000;500;1250								
3		150000;0;11250								
4		22750; 500; 1250								

Inventory Management

EOQ

$$Q = \sqrt{\frac{2DS}{H}}$$
 ; N = D/Q ; ROP = d × L ;

$$TC = \frac{Q}{2} \times H + \frac{D}{Q} \times S + P \times D$$

POQ

$$Q = \sqrt{\frac{2DS}{H(1 - \frac{d}{p})}}$$

$$TC = \frac{Q}{2} (1 - \frac{d}{p}) \times H + \frac{D}{Q} \times S + P \times D$$

$$t_p = t_1 = \frac{Q}{p}$$

$$T = \frac{Q}{D}$$

$$I_{\text{máx}} = M = Q(1 - \frac{d}{p})$$

Name______[7]

Probabilistic Models

$$SS = Z$$
 _{dLT}

$$ROP = {}_{LT} \times {}_{d} + SS$$

$$ROP = LT \times d + SS$$

$$ROP = LT \times d + SS$$

$$_{dLT}=\sqrt{\mu_{d}^{2}\times\ _{LT}^{2}+\ _{LT}\times\ _{d}^{2}}$$

$$_{\rm dLT} = \sqrt{\rm LT} \times _{\rm d}$$

$$_{dLT} = \sqrt{d^2 \times ~_{LT}^2}$$

= P(X > ROP) = probability of stockout

$$TC = \left(\frac{Q}{2} + SS\right) \times H + \frac{D}{Q} \times S + P \times D$$

Project Management

EF = ES + Activity time

LS = LF - Activity time

Slack = LS - ES or Slack = LF-EF

Expected activity time =
$$t = \frac{a + 4m + b}{6}$$

Variance of activity completion time =

$$\left[\frac{(b-a)}{6}\right]^2$$

Name	[8]	

Crash cost per period = $\frac{CC - NC}{NT - CT}$

Name______[9]

The Normal Distribution

Cumulative Standard Table

 $P(Z \le z) = \Phi(z)$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

α	0.400	0.300	0.200	0.100	0.050	0.025	0.020	0.010	0.005	0.001
Z_{α}	0.253	0.524	0.842	1.282	1.645	1.960	2.054	2.326	2.576	3.090
$Z_{\alpha/2}$	0.842	1.036	1.282	1.645	1.960	2.240	2.326	2.576	2.807	3.291

ANCILLARY COMPUTATIONS

Name	 		[10]

Name_____ [11]