

lecture 6: competition and collusion

the story so far

Natural monopoly:

- \circ Definitions
- (Ideal) Pricing solutions
- Regulation in practice
- Regulation under asymmetric information

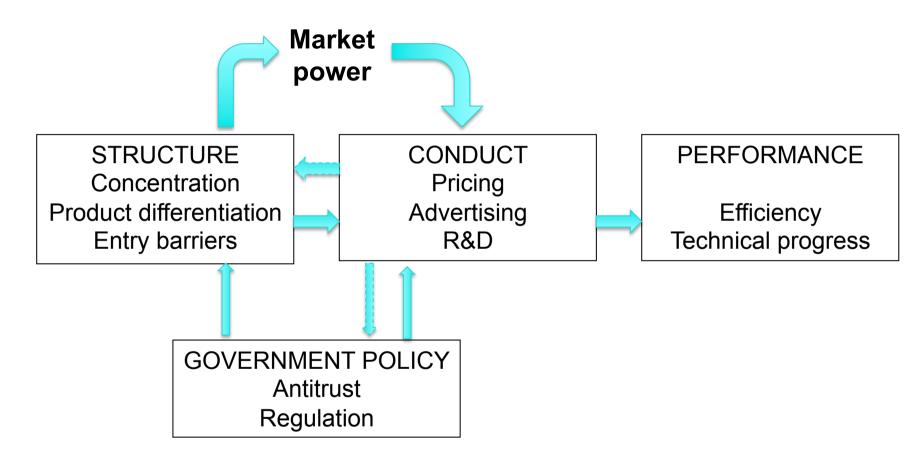
outline

Competition and antitrust

- $_{\circ}$ Introduction
- Oligopoly and Collusion

References

• VHV, ch. 3, 5


Regulation vs. competition policy

Economic regulation: for industries in which effective competition is not an immediately available alternative to the existing market structure; e.g. the so-called network industries (electricity, telecomunications, railway etc..)

Competition Policy: when competition is the primary mechanism, but still some constraints have to be imposed on firms' behavior (**antitrust law and policy**)

(eliminate impediments to competion, making ongoing government intervention unnecessary)

Structure-conduct-performance paradigm of IO

Structure

- Many IO models assume sellers of equal size
- The concept of *concentration* takes into account the number of firms, but also how sales are distributed among firms

Concentration

• Herfindahl-Hirschman index
$$HHI = \sum_{i=1}^{N} s_i^2$$

 \circ Concentration ratios

$$CR_m = \sum_{i=1}^m S_i$$

Concentration example

• Percentage of sales in Industries X and Y:

Firm	Industry X	Industry Y
1	20	60
2	20	10
3	20	5
4	20	5
5	20	5
6		5
7		5
8 9		5 5

 $_{\circ}$ Which one is more concentrated?

Concentration example

- \circ CR_{3Y} > CR_{3X}, but CR_{5Y} < CR_{5X}
- $HHI_{Y} = 60^{2} + 10^{2} + 6 * 5^{2} = 3850 \text{ and } HHI_{X} = 20^{2} + 20^{2} + 20^{2} + 20^{2} + 20^{2} = 2000$

Concentration example 2

- The four-firm concentration ratio for the airline industry in the United States was 61 in 1990
- That is, the market shares of the top four firms were:

American	18%
United	17%
Delta	14%
Northwest	12%
Total	61%

Concentration example 2

- Concentration is a better measure of the size distribution of sellers because it gives weight to the inequality of sizes.
- Otherwise, a simple count of sellers would weight American equally with, say, Southwest, which had only 2 percent of the market in 1990

Entry conditions

- Ease with which a new firm enters an industry
- Depends on:
 - cost of entry
 - advantage of incumbent firms (for being there first)
- Entry barrier:
 - Def: something that makes entry more costly or more difficult
 - Important in that they permit existing firms to charge prices above the competitive level without attracting entry
 - Ex: patent

Entry barriers

- Different opinions
- Examples:
 - Patent holder on a drug
 - Potential entrants into an industry have absolutely higher costs for all output levels than established firms
 - Economies of scale that are large relative to the total market demand constitute an entry barrier
 - Strong brand loyalties created through intensive advertising have been cited as an entry barrier to new firms

Structure

- Product differentiation is another source of market power
- In markets where the product is homogeneous, e.g., wheat, steel, oil,..., price is the primary basis for competition
- Differentiated products, e.g., breakfast cereals, autos, soft drinks, beer, and medicines, are less likely to be sold primarily on a price basis (advertising and product design are important)
- Product differentiation influences the character of competitive tactics

Conduct

- Conduct refers to decisions regarding price, quantity, advertising, R&D, capacity, design, product differentiation,...
- Two states:
- Collusion: forms of coordination among firms, in particular raising price
 - 1. Explicit
 - a. Tacit
- 2. Competition
- Industries differ in the intensity and instruments of competition

Performance

- (Static) Efficiency
- Technical progress
- Other dimensions, only marginally influenced by antitrust policy: full employment of resources, fair distribution of income,...

Government

- Affects market structure...
- Ex: an antitrust decision may lead to dissolving a monopoly
- And market performance
- Ex: an antitrust decision may affect prices

Structures

- Perfect competition
- Monopoly: single seller (>P; <Q)
- Monopsony: single buyer (<P; <Q)
- Oligopoly: small number of firms (>P; <Q)
- Oligopsony: small groups of buyers (<P; <Q)
- Monopolistic (imperfect) competition: many sellers, differentiated product

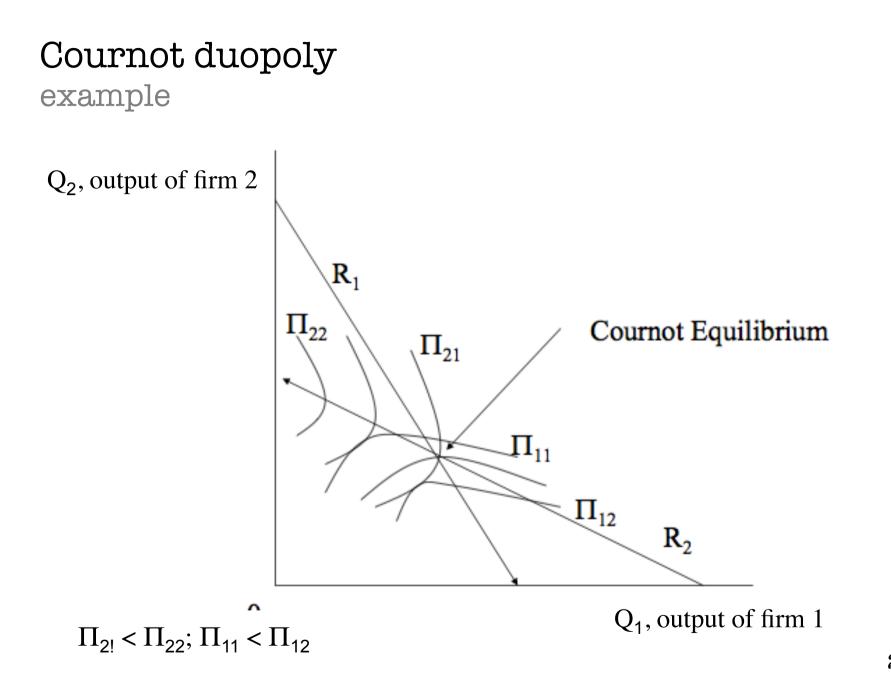
Nash equilibrium

 A profile of strategies is a Nash equilibrium iff each player's strategy is a best response to the other players' strategies

Cournot duopoly

- $_{\circ}$ Two identical firms 1 and 2
- Both set quantities assuming that the conjectural variation is zero (e.g., firm 1 assumes $dq_2/dq_1=0$)
- Nash equilibrium occurs when a firm does not want to change its output having observed its rival's output

Cournot duopoly


example

- $P = 25 (q_1 + q_2);$
- \circ C₁ = 5q₁;
- \circ C₂ = 5q₂.
- $_{\circ}$ Best response functions:

$$q_1 = (20 - q_2)/2$$
 and $q_2 = (20 - q_1)/2$

 \circ Solution:

$$q_1 = q_2 = 20/3; P = 35/3; \Pi_1 = \Pi_2 = 400/9 = 44;$$

CS = PS = 800/9; TS = 1600/9

Cournot oligopoly

$$\circ \quad \mathbf{Q} = \mathbf{q}_1 + \mathbf{q}_2 + \dots + \mathbf{q}_n$$

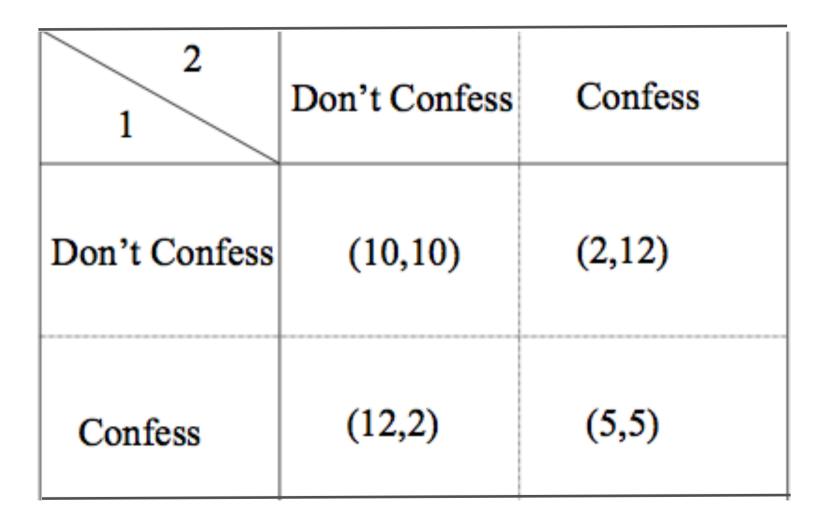
$$\circ$$
 $\Pi_i = P(Q).q_i - C(q_i)$

• Solution:

$$(P-MC_i)/P = s_i/\eta$$

where $s_{\rm i}$ is firm i's market share and η is price-elasticity of demand

Duopoly as a normal form game

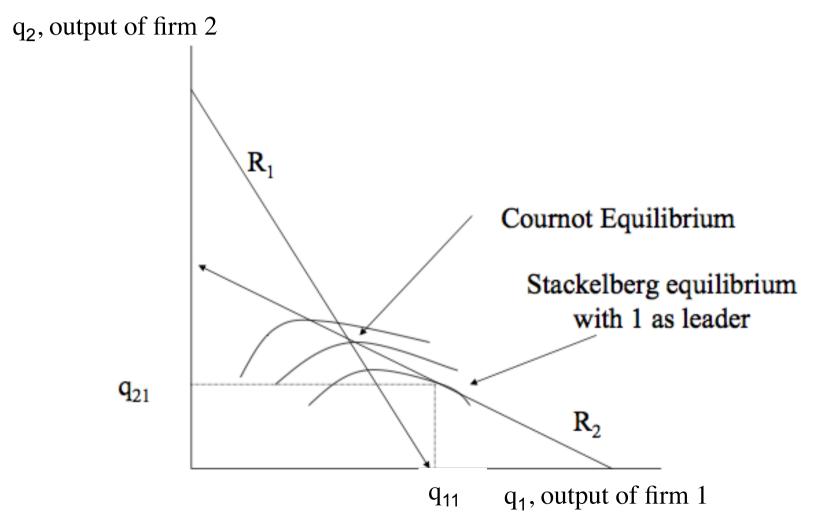

2	S1=5	S2=20/3	S3=10
S1=5	(50,50)	(42,55)	(25,50)
S2=20/3	(55,42)	(44,44)	(22,33)
S3=10	(50,25)	(33,22)	(0,0)

 (S_2, S_2) is the Nash equilibrium (S_1, S_1) is the collusive equilibrium S_3 is dominated

Duopoly as a prisoners' dilemma

2	S1=5	S2=20/3
S1=5	(50,50)	(42,55)
S2=20/3	(55,42)	(44,44)

The prisoners' dilemma


Stackelberg duopoly

- Firm 1 is the leader and firm 2 is the follower
- Firm 1 knows $q_2 = (20 q_1)/2$ and maximizes profits
- Firm 2 plays *a la* Cournot

• Solution:

$$q_1 = 10; q_2 = 5; P = 10$$

 $\Pi_1 = 50, \Pi_2 = 25; PS = 75; CS = 112.5; TS = 187.5$

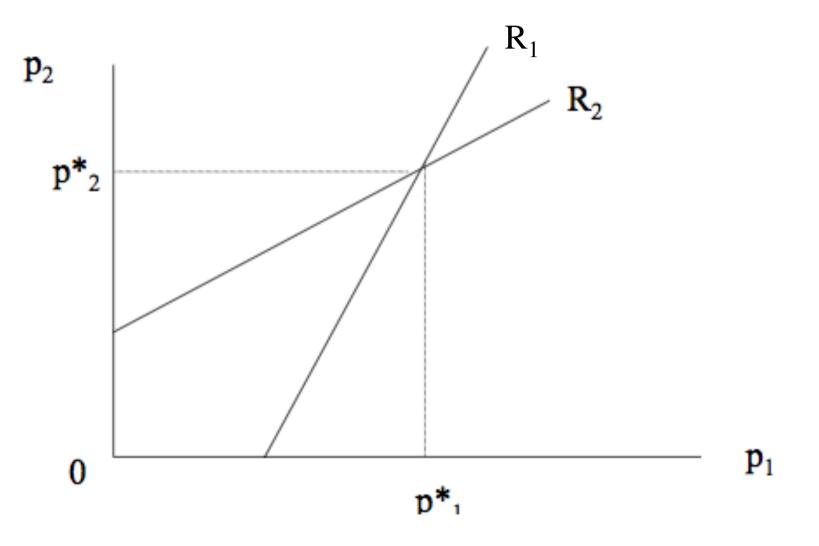
Bertrand duopoly

- Two identical firms (1 and 2)
- Both set prices assuming the other's choice is independent of its own, i.e., the conjectural variation of price is O
- Equilibrium occurs when each firm does not want to change its price after having observed what price the other firm has set

•
$$P = MC (= AC)$$

 $_{\circ}$ Profits are O

Bertrand with differentiated products


- Firms 1 and 2 produce similar but not identical products and compete on price
- Demands: $q_1 = 20 p_1 + p_2$; $q_2 = 20 p_2 + p_1$
- \circ Assume MC = 0
- Price reaction functions:

$$p_1 = (20 + p_2)/2; p_2 = (20 + p_1)/2$$
$$p_1 = p_2 = 20; \Pi_1 = \Pi_2 = 400$$

• If firm 1 is leader,

$$p_1 = 30; p_2 = 25; \Pi_1 = 450; \Pi_2 = 625$$

Bertrand equilibrium

31

Cournot and collusion

- Coordination of output may result from an agreement (cooperative behavior) or as a result of indefinite repetition or irrational commitments
- In the Cournot example, the collusive outcome is P = 15 and $q_1 = q_2 = 5$, with firm profits of 50. If with cheating the Cournot outcome appears, firms get 44
- Firm 1 compares 1-period gain with multi-period loss: gain is 5 and loss is $6\delta/(1-\delta)$; so, cheat if $\delta < 5/11$ and sustain collusion if $\delta \ge 5/11$

Collusion in general

Incentive constraints: immediate gain from deviation
vs. lost future profits and importance of future

$$\pi_i^c + \delta V_i^c \ge \pi_i^d + \delta V_i^p, i = 1, \dots, n$$

Or: collusion occurs if discount factor is high enough:

$$\delta \ge \frac{\pi_i^d - \pi_i^c}{V_i^c - V_i^p} \equiv \overline{\delta}_i, i = 1, ..., n$$