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Chapter 1

Introduction

1.1 Outline

The aim of this course is to develop the necessary mathematical skills in order
to understand and apply the mathematical methods of analytical, stochas-
tic and numerical type, that play an important role in financial stochastic
models either in discrete or continuous time. In particular, we are interested
in models for the valuation of derivative securities. These skills are also im-
portant in order to communicate with other financial professionals and to
critically evaluate modern financial theories. These lecture notes were pre-
pared for the first part of the course "Models in Finance", of the Msc. degree
in Actuarial Science in ISEG, Technical University of Lisbon, in the acad-
emic year 2012/2013. They cover the first five chapters of the programme
that correspond to the theory of stochastic calculus, which is the core math-
ematical theory behind the models for the valuation of derivative securities.
Therefore, it is necessary that the students understand the basic methods
of stochastic calculus in order to be able to deduce the main properties of
stochastic models for the valuation of derivative securities. In some parts of
the text, we follow the references [9] and [10].

1.2 What is stochastic calculus?

What is stochastic calculus? Briefly, it is an integral (and differential) calcu-
lus with respect to certain stochastic processes (for example: Brownian mo-
tion). It allows to define integrals (and "derivatives") of stochastic processes
where the "integrating function" is also a stochastic process. It allows to
define and solve stochastic differential equations (where there is a random
factor). The most important stochastic process for stochastic calculus and fi-
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CHAPTER 1. INTRODUCTION 2

nancial applications is the Brownian motion. The main financial applications
of stochastic calculus are the pricing and hedging of financial derivatives, the
study of the Black-Scholes model, interest rate models and credit risk mod-
elling.
For a very interesting and modern account of the history of stochastic

calculus, we refer to [4]. Some of the most important authors involved in
the stochastic calculus development were Louis Bachelier, Albert Einstein,
Norbert Wiener, Andrey Kolmogorov, Vincent Doeblin, Kiyosi Itô, Joseph
Doob and Paul-André Meyer.

Kiyosi Itô

Andrey Kolmogorov



Chapter 2

The Brownian motion

2.1 Definition

Let us begin by presenting the definition of stochastic process.

Definition 2.1 A stochastic process is a family of random variables {Xt, t ∈ T}
defined on a probability space (Ω,F , P ), where T is the set where the "time"
parameter t is defined. If T = N, we say that the process is a discrete time
process; if T = [a, b] ⊂ R or if T = R, we say it is a continuous time process.

A stochastic process depends on t ∈ T and on ω ∈ Ω, i.e.

{Xt, t ∈ T} = {Xt (ω) , ω ∈ Ω, t ∈ T} ,

where Xt is the state or position of the process at time t.
The space of the states S (space where the random variables take values)

is usually R (continuous state space) or N (discrete state space).
For each fixed ω (ω ∈ Ω), the mapping t → Xt (ω) or X· (ω) is called a

realization, trajectory or sample path of the process.
As an example of a trajectory, we present below some trajectories of

Brownian motion

3



CHAPTER 2. THE BROWNIAN MOTION 4

A trajectory of a one-dimensional
Brownian motion.

A trajectory of a bidimensional
Brownian motion.

The name of the process was given after Robert Brown, a 19th century
botanist who first observed the physical motion of grains of polen suspended
in water under a microscope. In 1900, Louis Bachelier, in is thesis "Théorie de
la spéculation" used the Brownian motion to model financial assets evolution.
Albert Einstein, in one of his 1905 papers, used Brownian motion as a tool
to indirectly confirm the existence of atoms and molecules.
Now, we present a rigorous definition of the process.
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Definition 2.2 The standard Brownian motion (also called Wiener Process)
is a stochastic process B = {Bt; t ≥ 0} with state space S = R and satisfying
the following properties:

1. B0 = 0.

2. B has independent increments (i.e. Bt−Bs is independent of {Bu, u ≤ s}
whenever s < t).

3. B has stationary increments (i.e., the distribution of Bt − Bs depends
only on t− s).

4. B has Gaussian increments (i.e., the distribution of Bt − Bs is the
normal distribution N(0, t− s).)

5. B has continuous sample paths (i.e. for each fixed ω (ω ∈ Ω), the
mapping t→ Xt (ω) is continuous).

Some authors consider that the term Brownian motion refers to a process
W = {Wt; t ≥ 0} which satisfies conditions 2,3 e 5 of the previous definition of
standard Brownian motion and also condition 4’: the distribution ofWt−Ws

isN(µ (t− s) , σ2 (t− s)), where µ is the drift coeffi cient and σ is the diffusion
coeffi cient. A Brownian motion W with drift µ and diffusion coeffi cient σ
can be constructed from a standard Brownian motion B by:

Wt = W0 + µt+ σBt.

Exercise 2.3 Prove the previous statement, i.e., prove that if B is a stan-
dard Brownian motion, then Wt = W0 +µt+σBt is a Brownian motion with
drift µ and diffusion coeffi cient σ.

It can be diffi cult to prove that the conditions on the definition of standard
Brownian motion are compatible. However, using the Kolmogorov extension
theorem (see ) one can show that there exists a stochastic process which
satisfies all the conditions of the definition of standard Brownian motion.
Condition (4) or condition (5) can be dropped from the definition of standard
Brownian motion or Brownian motion, since each of these properties can be
shown to be a consequence of the other properties. The Brownian motion
is the only process with stationary independent increments and continuous
sample paths.
Let us consider a simple symmetric random walk, i. e., a discrete time

process defined by

Xn =
n∑
i=1

Zi, where Zi =

{
+1 with probability 1

2
.

−1 with probability 1
2
.



CHAPTER 2. THE BROWNIAN MOTION 6

Figure 2.1: A random walk path

Figure 2.2: Another random walk path

If we reduce the step size progessively from 1 unit until it is infinitesimal
(and rescale the values of X) then the simple symmetric random walk tends
to a Brownian motion.

2.2 Main properties of the Brownian motion

In order to prove some properties of the Brownian motion, we can use the
following decomposition (for s < t):

Bt = Bs + (Bt −Bs) , (2.1)

where Bs is known at time s and Bt − Bs is a random variable independent
of the history of the process up until time s. In particular, Bt − Bs is inde-
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Figure 2.3: A Brownian motion path as a limit of a random walk path

pendent of Bs (this is a consequence of the independent increments property
of Brownian motion).

Proposition 2.4 Properties of the standard Brownian motion B:
(1) The standard Brownian motion or the Brownian motion are Gaussian

processes.
(2) cov (Bt, Bs) = min {t, s} .
(3) B is a Markov process.
(4) B is a martingale.
(5) B returns infinitely often to 0 (or to any other level a ∈ R).
(6) (scaling property of Brownian motion or self-similar property): If B1

is a stochastic process defined by B1 (t) := 1√
c
Bct, with c > 0, then B1 is also

a standard Brownian motion.
(7) (time inversion property): If If B2 is a stochastic process defined by

B2 (t) := tB(1/t) then B2 is also a standard Brownian motion.

A Gaussian process is essentially a process where its random variables
are Gaussian random variables: this is clear for standard Brownian motion
by condition 4. of the definition. A Gaussian stochastic process is com-
pletely determined by its expectation and covariance function (as a normal
random variable is determined by its expectation and variance). If we know
that a stochastic process has Gaussian increments and we know the first two
moments of these increments, then we can determine all the statistical prop-
erties of the process. Therefore, in order to prove that a Gaussian process is
a standard Brownian motion, we only need to compute the expectation and
the covariance function of the process and prove that they are equal to zero
and equal to the coveriance function given by property (2).
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Proof. Proof of property (2): Let s < t. Then, using (2.1), we obtain

cov (Bt, Bs) = cov [Bs + (Bt −Bs) , Bs]

= cov (Bs, Bs) + cov (Bt −Bs, Bs)

= E
[
B2
s

]
+ 0 = s.

Proof of property (3): Recall that X is a Markov process if the probability
of obtaining a state at time t depends only of the state of the process at the
previous last observed instant tk and not from the previous history, i.e., if
t1 < t2 < · · · < tk < t, then

P [a < Xt < b|Xt1 = x1, Xt2 = x2, . . . , Xtk = xk]

= P [a < Xt < b|Xtk = xk] .

A Markov process with discrete state space is a Markov chain. A Markov
process with continuous state space and continuous time is a diffusion process.
For the Brownian motion, we have

P [a < Bt < b|Bt1 = x1, Bt2 = x2, . . . , Btk = xk]

= P [a− xk < Bt −Btk < b− xk|Btk = xk] ,

by the independent increments property of standard Brownian motion (con-
dition 2. of the definition).
Proof of property (6): Clearly, B1 (0) = 1√

c
Bct = 1√

c
B0 = 0 and B1(t) −

B1 (s) = 1√
c

(Bct −Bcs) is independent of {Bcu, u ≤ s} by the independent
increments property of the standard Brownian motion. Therefore B1(t) −
B1 (s) is independent of {B1 (u) , u ≤ s} and B1 has independent increments.
The distribution of B1(t) − B1 (s) = 1√

c
(Bct −Bcs) ∼ 1√

c
N (0, ct− cs) ∼

N (0, t− s) and threfore B1 has stationary increments. Moreover, B1(t) =
1√
c
Bct has continuous sample paths because Bct has continuous sample paths.

Exercise 2.5 Prove the time inversion property (property 7) by computing
the expectation and the covariance function of B2.

Another important property of Brownian motion is the following one.

Proposition 2.6 Property of non-differentiability of sample paths: The sam-
ple paths of a Brownian motion are not differentiable anywhere a.s. (with
probability 1).
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We will prove a weaker result: for any fixed time t0, the probability that
the sample path of a standard Brownian motion is differentiable at t0 is 0.
Proof. Let us assume t0 = 0 (the proof can be generalized to any t0). If B
has derivative a at 0 then:

a− δ < Bt −B0

t
< a+ δ

for t small enough. This means that (with variable change: s = 1
t
) we have

a − δ < sB(1/s) < a + δ and by the time inversion property (7), sB(1/s) is
a standard Brownian motion, so if we make t → 0 then s → +∞ and the
probability that a standard Brownian motion remains confined between a−δ
and a+ δ, when s→ +∞, is zero.
More details about the Brownian motion and its properties can be found

in references [2], [5], [7], [9] [10], [11] and [12]. For reviews of probability
theory and stochastic processes we refer to [2], [3] and [8].

2.3 The geometric Brownian motion

The Brownian motion is not very useful for modeling market prices (at the
long run) since it can take negative values and the Brownian motion model
would imply that the sizes of price movements are independent of the level
of the prices. A more useful and realistic model is the geometric Brownian
motion:

St = eWt ,

where W is a Brownian motion Wt = W0 + µt+ σBt.
St is lognormally distributed with mean W0 + µt and variance σ2t, i.e,

the log (St) ∼ N (W0 + µt, σ2t). It is also clear that St ≥ 0 for all t and it is
easy to prove that

E [St] = exp

[
(W0 + µt) +

1

2
σ2t

]
,

var [St] = [E [St]]
2 {exp

[
σ2t
]
− 1
}
.

In the Black-Scholes model, the underlying asset price follows geometric
Brownian motion. The geometric Brownian motion properties are less helpful
than those of Brownian motion: increments of S are neither independent nor
stationary.
In order to do some analysis of geometric Brownian motion S one can

proceed as follows:
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1. Take the logarithm of the observations;

2. Use techniques for the Brownian motion.

As an example, let us consider the log-return of a time series under geo-
metric Brownian motion:

log
St
Ss

= log
eWt

eWs
= Wt −Ws.

Therefore, the log-returns (and the returns themselves) are independent over
disjoint time periods.

2.4 Martingales in discrete and in continuous
time

A martingale is essentially a stochastic process for which its "current value"
is the "optimal estimator" of its expected "future value", i.e., given the mar-
tingale {Mj, j ∈ N} and the information Fn at instant n, then Mn is the
best estimator for Mn+1. A martingale has "no drift" and its expected value
remains constant in time.
Martingale theory is fundamental in modern financial theory. Indeed,

the modern theory of pricing and hedging of financial derivatives is strongly
based on martingale properties.
In order to define martingales, let us present the conditional expectation

definition and properties. Let (Ω,F , P ) be a probability space and B ⊂ F
be a σ-algebra.

Definition 2.7 The conditional expectation of the integrable random vari-
able X given B (or E(X|B)) is an integral random variable Z such that

1. Z is B-measurable

2. For each A ∈ B, we have

E (Z1A) = E (X1A) (2.2)

If X is integrable (i.e., E [|X|] < +∞) then Z = E(X|B) exists and is
unique (a.s.).

Proposition 2.8 (Properties of the conditional expectation). Let X, Y and
Z be integrable random variables, and a, b ∈ R. Then
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1.
E(aX + bY |B) = aE(X|B) + bE(Y |B). (2.3)

2.
E (E(X|B)) = E (X) . (2.4)

3. If X and the σ-algebra B are independent then:

E(X|B) = E (X) (2.5)

4. If X is B-measurable (or if σ (X) ⊂ B) then:

E(X|B) = X. (2.6)

5. If Y is B-measurable (or if σ (X) ⊂ B) then

E(Y X|B) = Y E(X|B) (2.7)

6. Given two σ-algebras C ⊂ B then

E(E (X|B) |C) = E(E (X|C) |B) = E(X|C) (2.8)

7. Consider that Z is B-measurable and X is independent of B. Let h(x, z)
be a measurable function such that h(X,Z) is an integrable random
variable. Then

E (h (X,Z) |B) = E (h (X, z)) |z=Z .

Note: First we compute E (h (X, z)) for a z fixed value of Z and then
we replace z by Z.

Given several random variables Y1, Y2, . . . , Yn, we can consider the condi-
tional expectation

E [X|Y1, Y2, . . . , Yn] = E [X|β] ,

where β is the σ-algebra generated by Y1, Y2, . . . , Yn. The σ-algebra generated
by a random variable X is given by sets of the form

σ (X) :=
{
X−1(B) : B ∈ BR

}
.

Let Y= (Y1, Y2, . . . , Yn) (notation). Then

E [E [X|Y ]] = E [X] .
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A very important property (it is the reason why conditional expectation is
so important) is that E [X|Y ] is the optimal estimator of X based on Y in
the sense that for every function h, we have:

E
{

(X − E [X|Y ])2} ≤ E
{

(X − h (Y ))2} . (2.9)

Definition 2.9 Let (Ω,F , P ) be a probability space and {Fn, n ≥ 0} be a
sequence of σ-algebras such that

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ F (2.10)

The sequence {Fn, n ≥ 0} is called a filtration

A filtration can be considered as an "information flow".

Definition 2.10 The process M = {Mn;n ≥ 0} (in discrete time) is a mar-
tingale with respect to the filtration {Fn, n ≥ 0} if:

1. For each n, Mn is a Fn-measurable random variable (i.e., M is a sto-
chastic process adapted to the filtration {Fn, n ≥ 0}).

2. For each n, E [|Mn|] <∞.

3. For each n, we have:

E [Mn+1|Fn] = Mn. (2.11)

If we consider the filtration Fn = σ (M0,M1, . . . ,Mn) , then we say that
M = {Mn;n ≥ 0} is a martingale (with respect to this filtration) if

1. For each n, E [|Mn|] <∞.

2. For each n, we have:
E [Mn+1|Fn] = Mn. (2.12)

Proposition 2.11 It is easy to show that if M = {Mn;n ≥ 0} is a martin-
gale then

1. E [Mn] = E [M0] for all n ≥ 1.

2. E [Mn|Fk] = Mk for all n ≥ k.

Exercise 2.12 Prove properties 1. and 2. above.
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The "current value" Mk of a martingale is the "optimal estimator" of its
"future value" Mn.
The martingale concept allows us to define a risk neutral probability

measure in the financial context. If the discounted price of a financial asset is
a martingale when calculated using a particular probability distribution, then
this probability distribution is called a "risk-neutral" probability measure
(meaning that the asset price has no "drift").

Example 2.13 Assume that a share has a price process St and a discounted
price process

S̃t = e−rtSt, (2.13)

where r is the risk-free interest rate. If we assume that for a probability
measure Q, the process S̃t is a martingale then, under Q, we have that

EQ

[
S̃n+1|S̃0, S̃1, . . . , S̃n

]
= S̃n.

Since S̃n is known (it is measurable) with respect to σ
(
S̃0, S̃1, . . . , S̃n

)
, then

by property (2.6), we have that

EQ

[
e−r(n+1)Sn+1

e−rnSn
|S̃0, S̃1, . . . , S̃n

]
= 1

⇐⇒ EQ

[
Sn+1

Sn
|S0, S1, . . . , Sn

]
= er.

Therefore, the expected return in period from time n to time n + 1 is the
risk-free rate: that is why the distribution Q is called risk-neutral measure.

Definition 2.14 Consider the probability space (Ω,F , P ) and the family of
σ-algebras in continuous time {Ft, t ≥ 0} , such that

Fs ⊂ Ft, 0 ≤ s ≤ t. (2.14)

The family {Ft, t ≥ 0} is called a filtration in continuous time.

Let FXt be the σ-algebra generated by process X on the interval [0, t],
i.e. FXt = σ (Xs, 0 ≤ s ≤ t). Then FXt is the "information generated by X
on interval [0, t]" or the "history of the process X up until time t". A ∈ FXt
means that is possible to decide if event A occurred or not, based on the
observation of the paths of the process X on [0, t].



CHAPTER 2. THE BROWNIAN MOTION 14

Example 2.15 If A = {ω : X (5) > 1} then A ∈ FX5 but A /∈ FX4 .

A stochastic process Y is said to be adapted to the filtration {Ft, t ≥ 0}
if Yt is Ft measurable for all t. If FXt = σ (Xs, 0 ≤ s ≤ t) is the filtration
generated by X, then any continuous function of Xt is adapted to FXt .

1. E [X|Ft] is the optimal estimator of X among all Ft-measurable ran-
dom variables with finite expectation, or equivalently

E {(X − E [X|Ft])Y } = 0 (2.15)

for all Ft-measurable bounded random variables Y .

2. E {E [X|Ft]} = E [X].

3. If X is Ft-measurable then E [X|Ft] = X.

4. If Y is Ft-measurable and bounded then E [XY |Ft] = Y E [X|Ft] .

5. If X is independent of Ft then E [X|Ft] = E [X] .

We can now define what is a martingale in continuous time.

Definition 2.16 A stochastic process M = {Mt; t ≥ 0} is a martingale with
respect to the filtration {Ft, t ≥ 0} if

1. For each t ≥ 0, Mt is a Ft-measurable random variable (i.e., M is
adapted to {Ft, t ≥ 0}).

2. For each t ≥ 0, E [|Mt|] <∞.

3. For each s ≤ t,
E [Mt|Fs] = Ms. (2.16)

The condition (3) is equivalent to E [Mt −Ms|Fs] = 0. If t ∈ [0, T ] then
Mt = E [MT |Ft]. Moreover, condition (3) implies that E [Mt] = E [M0] for
all t.
Consider a standard Brownian motionB = {Bt; t ≥ 0} defined on (Ω,F , P )

and
FBt = σ {Bs, s ≤ t} . (2.17)

Proposition 2.17 The following processes are FBt -martingales:

1. Bt.
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2. B2
t − t.

3. exp
(
aBt − a2t

2

)
.

Proof. 1. Bt is FBt -measurable and therefore it is adapted. E [|Bt|] < ∞.
Moreover Bt −Bs is independent of FBs . Hence

E
[
Bt −Bs|FBs

]
= E [Bt −Bs] = 0.

2. Clearly, B2
t −t is FBt -measurable and adapted. Moreover E [|B2

t − t|] <
∞. By the properties of the conditional expectation, we have

E
[
B2
t − t|FBs

]
= E

[
(Bt −Bs +Bs)

2 |FBs
]
− t

= E
[
(Bt −Bs)

2]+ 2BsE
[
Bt −Bs|FBs

]
+B2

s − t
= t− s+B2

s − t = B2
s − s.

Exercise 2.18 Prove that the processXt = exp
(
aBt − a2t

2

)
is a

{
FBt , t ≥ 0

}
-

martingale.
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The Itô integral

3.1 Motivation

A stochastic differential equation (SDE) is a differential equation with "noise"
of the type:

dX

dt
= b(t,Xt) + σ (t,Xt) ”

dBt

dt
”.

The term ”dBt
dt

” is a stochastic "noise". Does not exist in a classical sense
since B is not differentiable. The stochastic differential equation (SDE) in
integral form can be written as

Xt = X0 +

∫ t

0

b(s,Xs)ds+ ”

∫ t

0

σ (s,Xs) dBs” (3.1)

How to define the integral ∫ T

0

usdBs, (3.2)

where B is a Brownian motion and u is an appropriate adapted process?
The SDE’s that we deal with are the continuous time versions of the

equations used to define time series (processes in discrete time).

Example 3.1 A zero-mean random walk can be defined by:

Xt = Xt−1 + σZt,

where Zt is a standard normal random variable (the Zi variables are called
"white noise"). This equation is a stochastic difference equation and is equiv-
alent to ∆Xt = σZt. Its solution is

Xt = X0 + σ
t∑

s=1

Zs.

16
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0
tn

i tn
i+1

sn
i

T

Figure 3.1: The partition

In continuous time, the analog of a zero-mean random walk is a zero-mean
Brownian motion Wt.

In order to define the stochastic integral
∫ T

0
usdBs, one could try to apply

the following strategy:

• Consider a sequence of partitions of [0, T ] and a sequence of points:

τn: 0 = tn0 < tn1 < tn2 < · · · < tnk(n) = T

sn: tni ≤ sni ≤ tni+1, i = 0, . . . , k (n)− 1,

such that lim
n→∞

sup
i

(
tni+1 − tni

)
= 0.

• Consider Riemann-Stieltjes (R-S) integral, defined as the limit of Rie-
mann sums: ∫ T

0

fdg := lim
n→∞

n−1∑
i=0

f (sni ) ∆gi,

where ∆gi := g(tni+1) − g(tni ), if the limit exists and is independent of
the sequences τn and sn.

• If g is a differentiable function and f is continuous, the (R-S) integral
is well defined and

∫ T
0
f (t) dg (t) =

∫ T
0
f (t) g′ (t) dt.

• The (R-S) integral
∫ T

0
fdg exists if f is continuous and g has bounded

total variation, i.e.,
sup
τn

∑
i

|∆gi| <∞.

• In the Brownian motion case B, it is clear that B′(t) does not exist, so
we cannot define the path integral:∫ T

0

ut (ω) dBt (ω)
×
6=
∫ T

0

ut (ω)B′t (ω) dt
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• Moreover, we can prove that the Brownian motion total variation is not
bounded and therefore we cannot define the (R-S) integral

∫ T
0
ut (ω) dBt (ω)

in general.

If u has sample paths of class C1, then integrating by parts, the (R-S)
integral exists and we can compute:∫ T

0

ut (ω) dBt (ω) = uT (ω)BT (ω)−
∫ T

0

u′t (ω)Bt (ω) dt.

However, we have a big problem: for instance, the integral
∫ T

0
Bt (ω) dBt (ω)

does not exist as a R-S integral. We need to consider processes u with sample
paths more irregular than C1 trajectories. How to define the integral (3.2)
for these processes? We need to consider a new strategy. We will construct
the stochastic integral

∫ T
0
utdBt using a probabilistic approach.

3.2 The Itô integral for simple processes

Definition 3.2 Consider processes u of class L2
a,T , which is defined as the

class of processes u = {ut, t ∈ [0, T ]}, such that:
1. u is adapted and measurable (measurable in the sense that the mapping

(t, ω) → ut (ω) is measurable on the product space [0, T ] × Ω, with
respect to the σ-algebra β ([0, T ])×F).

2. E
[∫ T

0
u2
tdt
]
<∞.

The condition 1. allows us to show that
∫ t

0
usds is Ft-measurable. The

condition 2. allows us to show that u as a map of two variables t and ω
belongs to the space L2 ([0, T ]× Ω) and that:

E

[∫ T

0

u2
tdt

]
=

∫ T

0

E
[
u2
t

]
dt =

∫
[0,T ]×Ω

u2
t (ω) dtP (dω) .

In order to define
∫ T

0
utdBt for u ∈ L2

a,T , we will consider the limit in
mean-square (i.e., a limit in L2 (Ω)) of integrals of simple processes.

Definition 3.3 The process u ∈ S (set of simple processes in [0, T ]) is called
a simple process if

ut =

n∑
j=1

φj1(tj−1,tj ] (t) , (3.3)

where 0 = t0 < t1 < · · · < tn = T , the random variables φj are square-
integrable (E

[
φ2
j

]
<∞) and Ftj−1-measurable
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Definition 3.4 If u is a simple process of form (3.3) (u ∈ S), then the
stochastic Itô integral of u with respect to Brownian motion B is∫ T

0

utdBt :=
n∑
j=1

φj
(
Btj −Btj−1

)
.

Example 3.5 Consider the simple process

ut =

n∑
j=1

Btj−11(tj−1,tj ] (t) .

Then ∫ T

0

utdBt =
n∑
j=1

Btj−1

(
Btj −Btj−1

)
.

Therefore

E

[∫ T

0

utdBt

]
=

n∑
j=1

E
[
Btj−1

(
Btj −Btj−1

)]
=

n∑
j=1

E
[
Btj−1

]
E
[
Btj −Btj−1

]
= 0.

Proposition: (Isometry property or norm preservation property). Let
u ∈ S. Then:

E

[(∫ T

0

utdBt

)2
]

= E

[∫ T

0

u2
tdt

]
=

∫ T

0

E
[
u2
t

]
dt. (3.4)

Proof. With ∆Bj := Btj −Btj−1 , we have

E

[(∫ T

0

utdBt

)2
]

= E

( n∑
j=1

φj∆Bj

)2


=
n∑
j=1

E
[
φ2
j (∆Bj)

2]+ 2
n∑
i<j

E [φiφj∆Bi∆Bj] .

Note that since φiφj∆Bi is Fj−1-measurable and∆Bj is independent of Fj−1,

then
n∑
i<j

E [φiφj∆Bi∆Bj] =
n∑
i<j

E [φiφj∆Bi]E [∆Bj] = 0.
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On the other hand, since φ2
j is Fj−1-measurable and ∆Bj is independent of

Fj−1,

n∑
j=1

E
[
φ2
j (∆Bj)

2] =

n∑
j=1

E
[
φ2
j

]
E
[
(∆Bj)

2]
=

n∑
j=1

E
[
φ2
j

]
(tj − tj−1) =

= E

[∫ T

0

u2
tdt

]
.

Proposition 3.6 Consider that u and v are simple processes. We have the
following properties.

1. Linearity: If a, b ∈ R,∫ T

0

(aut + bvt) dBt = a

∫ T

0

utdBt + b

∫ T

0

vtdBt. (3.5)

2. Zero mean:

E

[∫ T

0

utdBt

]
= 0. (3.6)

Exercise 3.7 Prove the property 2.

Exercise 3.8 Compute
∫ 5

0
f (s) dBs with f(s) = 1 if 0 ≤ s ≤ 2 and f(s) = 4

if 2 < s ≤ 5. What is the distribution of the resulting random variable?

3.3 The Itô integral for adapted processes

A process u ∈ L2
a,T can be approximated by a sequence of simple processes,

in the sense of the following lemma.

Lemma 3.9 If u ∈ L2
a,T then exists a sequence of simple processes

{
u(n)
}

such that

lim
n→∞

E

[∫ T

0

∣∣∣ut − u(n)
t

∣∣∣2 dt] = 0. (3.7)

For a proof of this important Lemma, we refer to [9] or [10].



CHAPTER 3. THE ITÔ INTEGRAL 21

Definition 3.10 The Itô stochastic integral of u ∈ L2
a,T is defined as the

limit (in the L2 (Ω) sense)∫ T

0

utdBt = lim
n→∞

(L2)

∫ T

0

u
(n)
t dBt, (3.8)

where
{
u(n)
}
is a sequence of simple processes satisfying (3.7).

Proposition 3.11 Properties of the Itô integral
∫ T

0
utdBt for u ∈ L2

a,T .

1. Isometry (or norm preservation):

E

[(∫ T

0

utdBt

)2
]

= E

[∫ T

0

u2
tdt

]
=

∫ T

0

E
[
u2
t

]
dt. (3.9)

2. Zero mean:

E

[∫ T

0

utdBt

]
= 0 (3.10)

3. Linearity:∫ T

0

(aut + bvt) dBt = a

∫ T

0

utdBt + b

∫ T

0

vtdBt. (3.11)

4. The process
{∫ t

0
usdBs, t ≥ 0

}
is a martingale.

5. The sample paths of
{∫ t

0
usdBs, t ≥ 0

}
are continuous.

Example 3.12 Let us show that∫ T

0

BtdBt =
1

2
B2
T −

1

2
T .

Since ut = Bt, let us consider the sequence of simple processes

unt =
n∑
j=1

Btnj−1
1(tnj−1,tnj ]

(t) ,
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with tnj := j
n
T .∫ T

0

BtdBt = lim
n→∞

(L2)

∫ T

0

u
(n)
t dBt =

= lim
n→∞

(L2)

n∑
j=1

Btnj−1

(
Btnj
−Btnj−1

)
= lim

n→∞
(L2)

1

2

n∑
j=1

[(
B2
tnj
−B2

tnj−1

)
−
(
Btnj
−Btnj−1

)2
]

=
1

2

(
B2
T − T

)
,

where we used: E

[(∑n
j=1

(
∆Btnj

)2

− T
)2
]

= 0 and 1
2

∑n
j=1

(
B2
tnj
−B2

tnj−1

)
=

1
2
B2
T .

Let us prove that E

[(∑n
j=1

(
∆Btnj

)2

− T
)2
]

= 0. Using the indepen-

dence of increments and E
[(

∆Btnj

)2
]

= ∆tnj , then

E

( n∑
j=1

(
∆Btnj

)2

− T
)2
 = E

( n∑
j=1

[(
∆Btnj

)2

−∆tnj

])2


=
n∑
j=1

E

[(
∆Btnj

)2

−∆tnj

]2

.

Using the fact that E
[
(Bt −Bs)

2k
]

= (2k)!
2k·k!

(t− s)k, then

E

( n∑
j=1

(
∆Btnj

)2

− T
)2
 =

n∑
j=1

[
3∆tnj − 2

(
∆tnj

)2
+
(
∆tnj

)2
]

= 2
n∑
j=1

(
∆tnj

)2
= 2T sup

j

∣∣∆tnj ∣∣ →
n→∞

0.

Let us note that, by using the formula E
[
(Bt −Bs)

2k
]

= (2k)!
2k·k!

(t− s)k ,
we have that

V ar
[
(∆B)2] = E

[
(∆B)4]− (E [(∆B)2])2

= 3 (∆t)2 − (∆t)2 = 2 (∆t)2 .
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We also know that
E
[
(∆B)2] = ∆t.

Therefore, if ∆t is small, the variance of (∆B)2 is very small when compared
with its expected value. Therefore, when ∆t→ 0 or "∆t = dt", we have

(dBt)
2 ≈ dt. (3.12)

For an elementary introduction to stochastic integrals, see [1] and [7]. For
detailed presentations of stochastic integration, please see [5], [9], [10] and
[11].



Chapter 4

Itô’s Formula

4.1 The One dimensional Itô formula

The Itô formula or Itô’s lemma is simply a stochastic version of the classical
chain rule. Suppose we have a function of a function f (bt) and we
consider that f is a C2 class function. In order to find d

dt
f (bt), by Taylor’s

formula (second order expansion), we obtain

δf (bt) = f ′ (bt) δbt +
1

2
f ′′ (bt) (δbt)

2 + · · ·

Dividing by δt and letting δt→ 0, we obtain the classical chain rule

d

dt
f (bt) = f ′ (bt)

dbt
dt

+
1

2
f ′′ (bt)

dbt
dt

lim
δt→0

(δbt) = f ′ (bt)
dbt
dt
,

or
df (bt) = f ′ (bt) dbt.

What if we replace the deterministic function bt by the standard Brownian
motion Bt? Then, the second order term 1

2
f ′′ (Bt) (δBt)

2 cannot be ignored
because (δBt)

2 ≈ (dBt)
2 ≈ dt is not of the order (dt)2, that is, we obtain the

Itô formula
df (Bt) = f ′ (Bt) dBt +

1

2
f ′′ (Bt) dt. (4.1)

Example 4.1 Consider the stochastic differential of B2
t . In order to repre-

sent this process using a stochastic integral, let B2
t = f (Bt) with f (x) = x2.

Therefore, by (4.1), we obtain

d
(
B2
t

)
= 2BtdBt +

1

2
2 (dBt)

2

= 2BtdBt + dt,

24
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which is the Taylor expansion of B2
t as a function of Bt, assuming that

(dBt)
2 = dt. Note that in integral form, the result is equivalent to∫ t

0

BsdBs =
1

2

(
B2
t − t

)
.

If f is a C2 function, then we can write

f (Bt) = stochastic integral+process with differentiable paths

= Itô process.

We can replace condition 2) E
[∫ T

0
u2
tdt
]
<∞ in the definition of L2

a,T by
the weaker condition

2′) P

[∫ T

0

u2
tdt <∞

]
= 1.

Definition 4.2 Let La,T be the space of processes that satisfy condition 1 of
the definition of L2

a,T and condition 2’).

The Itô integral can be defined for u ∈ La,T but, in this case, the stochastic
integral may fail to have zero expected value and the Itô isometry may fail
to be verified.

Definition 4.3 Define L1
a,T as the space of processes v such that:

1. v is an adapted and measurable process (vt is {Ft}-adapted, and the
map (t, ω)→ ut (ω), defined on [0, T ]×Ω is measurable with respect to
the σ-algebra B ([0, T ])×F).

2. P
[∫ T

0
|vt| dt <∞

]
= 1.

Definition 4.4 An adapted and continuous process X = {Xt, 0 ≤ t ≤ T} is
called an Itô process if it satisfies the decomposition:

Xt = X0 +

∫ t

0

usdBs +

∫ t

0

vsds, (4.2)

where u ∈ La,T and v ∈ L1
a,T .
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Theorem 4.5 (One-dimensional Itô’s formula or Itô’s lemma): Let X =
{Xt, 0 ≤ t ≤ T} be a Itô process of type (4.2). Let f(t, x) be a C1,2 function.
Then Yt = f(t,Xt) is an Itô process and we have

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs) ds+

∫ t

0

∂f

∂x
(s,Xs)usdBs

+

∫ t

0

∂f

∂x
(s,Xs) vsds+

1

2

∫ t

0

∂2f

∂x2
(s,Xs)u

2
sds.

In differential form, the Itô formula is given by

df(t,Xt) =
∂f

∂t
(t,Xt) dt+

∂f

∂x
(t,Xt) dXt

+
1

2

∂2f

∂x2
(t,Xt) (dXt)

2 .

where (dXt)
2 can be computed using (4.2) and the table of products

× dBt dt
dBt dt 0
dt 0 0

The Itô formula for f(t, x) and Xt = Bt, or Yt = f(t, Bt) is given by

f(t, Bt) = f(0, 0) +

∫ t

0

∂f

∂t
(s, Bs) ds+

∫ t

0

∂f

∂x
(s, Bs) dBs

+
1

2

∫ t

0

∂2f

∂x2
(s, Bs) ds.

or (in differential form)

df(t, Bt) =
∂f

∂t
(t, Bt) dt+

∂f

∂x
(t, Bt) dBt

+
1

2

∂2f

∂x2
(t, Bt) dt.

The Itô formula for f(x) and Xt = Bt, or Yt = f(Bt) is given by

df(Bt) =
∂f

∂x
(Bt) dBt +

1

2

∂2f

∂x2
(Bt) dt.
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4.2 The multidimensional Itô formula

Suposse that Bt := (B1
t , B

2
t , . . . , B

m
t ) is anm-dimensional standard Brownian

motion, that is, components Bk
t , k = 1, ...,m are one-dimensional indepen-

dent standard Brownian motion. Consider a Itô process of dimension n,
defined by

X1
t = X1

0 +

∫ t

0

u11
s dB

1
s + · · ·+

∫ t

0

u1m
s dBm

s +

∫ t

0

v1
sds,

X2
t = X2

0 +

∫ t

0

u21
s dB

1
s + · · ·+

∫ t

0

u2m
s dBm

s +

∫ t

0

v2
sds,

...

Xn
t = Xn

0 +

∫ t

0

un1
s dB

1
s + · · ·+

∫ t

0

unms dBm
s +

∫ t

0

vns ds.

In differential form, we can write

dX i
t =

m∑
j=1

uijt dB
j
t + vitdt,

with i = 1, 2, . . . , n. Or, in compact form:

dXt = utdBt + vtdt,

where vt is n-dimensional and ut is a n×m matrix of processes. We assume
that the components of u belong to La,T and the components of v belong to
L1
a,T .

Theorem 4.6 (Multidimensional Itô formula or Itô’s lemma): If f : [0, T ]×
Rn → Rp is a C1,2 function, then Yt = f(t,Xt) is a Itô process and we have
the Itô formula:

dY k
t =

∂fk
∂t

(t,Xt) dt+

n∑
i=1

∂fk
∂xi

(t,Xt) dX
i
t

+
1

2

n∑
i,j=1

∂2fk
∂xi∂xj

(t,Xt) dX
i
tdX

j
t .

The product of the differentials dX i
tdX

j
t is computed following the prod-

uct rules

dBi
tdB

j
t =

{
0 se i 6= j
dt se i = j

,

dBi
tdt = 0,

(dt)2 = 0.
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If Bt is a n-dimensional standard Brownian motion and f : Rn → R is a
C2 function with Yt = f(Bt), then

f(Bt) = f(B0) +

n∑
i=1

∫ t

0

∂f

∂xi
(Bt) dB

i
s +

1

2

∫ t

0

(
n∑
i=1

∂2f

∂x2
i

(Bt)

)
ds.

Example 4.7 (Integration by parts formula) If X1
t and X

2
t are Itô processes

and Yt = X1
tX

2
t , then by Itô’s formula applied to f(x) = f(x1, x2) = x1x2,

we get
d
(
X1
tX

2
t

)
= X2

t dX
1
t +X1

t dX
2
t + dX1

t dX
2
t .

That is:

X1
tX

2
t = X1

0X
2
0 +

∫ t

0

X2
sdX

1
s +

∫ t

0

X1
sdX

2
s +

∫ t

0

dX1
sdX

2
s .

Example 4.8 Consider the process

Yt =
(
B1
t

)2
+
(
B2
t

)2
+ · · ·+ (Bn

t )2 .

Represent this process in terms of Itô stochastic integrals with respect to n-
dimensional standard Brownian motion. By the multidimensional Itô formula
applied to f(x) = f(x1, x2, . . . , xn) = x2

1 + · · ·+ x2
n, we obtain

dYt = 2B1
t dB

1
t + · · ·+ 2Bn

t dB
n
t

+ ndt.

That is:

Yt = 2

∫ t

0

B1
sdB

1
s + · · ·+ 2

∫ t

0

Bn
s dB

n
s + nt.

Exercise 4.9 Let Bt := (B1
t , B

2
t ) be a two dimensional Brownian motion.

Represent the process

Yt =
(
B1
t t,
(
B2
t

)2 −B1
tB

2
t

)
as an Itô process.

Solution 4.10 By the multidimensional Itô’s formula applied to f(t, x) =
f(t, x1, x2) = (x1t, x

2
2 − x1x2) , we obtain

dY 1
t = B1

t dt+ tdB1
t ,

dY 2
t = −B2

t dB
1
t +

(
2B2

t −B1
t

)
dB2

t + dt
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that is

Y 1
t =

∫ t

0

B1
sds+

∫ t

0

sdB1
s ,

Y 2
t = −

∫ t

0

B2
sdB

1
s +

∫ t

0

(
2B2

s −B1
s

)
dB2

s + t.

Exercise 4.11 Assume that a process Xt satisfies the SDE

dXt = σ (Xt) dBt + µ (Xt) dt.

Compute the stochastic differential of the process Yt = X3
t and represent this

process as an Itô process.

We now present a sketch of the proof of the Itô formula. Consider the
process

Yt = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs) ds+

∫ t

0

∂f

∂x
(s,Xs)usdBs

+

∫ t

0

∂f

∂x
(s,Xs) vsds+

1

2

∫ t

0

∂2f

∂x2
(s,Xs)u

2
sds.

This is an Itô process. We assume that f and its partial derivatives are
bounded (the general case can be proved approximating f by bounded func-
tions with bounded derivatives). The Itô stochastic integral can be approx-
imated by a sequence of stochastic integrals of simple processes and so we
can assume that u and v are simple processes.
Consider a partition of [0, t] into n equal sub-intervals:

f (t,Xt) = f (0, X0) +
n−1∑
k=0

(
f
(
tk+1, Xtk+1

)
− f (tk, Xtk)

)
.

By Taylor formula,

f
(
tk+1, Xtk+1

)
− f (tk, Xtk) =

∂f

∂t
(tk, Xtk) ∆t+

∂f

∂x
(tk, Xtk) ∆Xk

+
1

2

∂2f

∂x2
(tk, Xtk) (∆Xk)

2 +Qk,

where Qk is the remainder or error. We also have that

∆Xk = Xtk+1 −Xtk =

∫ tk+1

tk

vsds+

∫ tk+1

tk

usdBs

= v (tk) ∆t+ u (tk) ∆Bk + Sk,
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where Sk is the remainder or error. Therefore:

(∆Xk)
2 = (v (tk))

2 (∆t)2 + (u (tk))
2 (∆Bk)

2

+ 2v (tk)u (tk) ∆t∆Bk + Pk,

where Pk is the remainder or error term. If we replace all this terms, we
obtain

f (t,Xt)− f (0, X0) = I1 + I2 + I3 +
1

2
I4 +

1

2
K1 +K2 +R,

where

I1 =
∑
k

∂f

∂t
(tk, Xtk) ∆t,

I2 =
∑
k

∂f

∂t
(tk, Xtk) v (tk) ∆t,

I3 =
∑
k

∂f

∂x
(tk, Xtk)u (tk) ∆Bk,

I4 =
∑
k

∂2f

∂x2
(tk, Xtk) (u (tk))

2 (∆Bk)
2 .

K1 =
∑
k

∂2f

∂x2
(tk, Xtk) (v (tk))

2 (∆t)2 ,

K2 =
∑
k

∂2f

∂x2
(tk, Xtk) v (tk)u (tk) ∆t∆Bk,

R =
∑
k

(Qk + Sk + Pk) .

When n→∞, it is easy to show that

I1 →
∫ t

0

∂f

∂t
(s,Xs) ds,

I2 →
∫ t

0

∂f

∂x
(s,Xs) vsds,

I3 →
∫ t

0

∂f

∂x
(s,Xs)usdBs.

As we have seeen before (quadratic variation of standard Brownian motion),
we have that ∑

k

(∆Bk)
2 → t,
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hence

I4 →
∫ t

0

∂2f

∂x2
(s,Xs)u

2
sds.

On the other hand, we also have

K1 → 0,

K2 → 0.

It is also possible to show (but more technical and hard) that

R→ 0.

Therefore, in the limit, when n → ∞, we obtain the one-dimensional Itô’s
formula.

4.3 The martingale representation theorem

Let u ∈ L2
a,T (u adapted, measurable and squared integrable) and let

Mt = E [M0] +

∫ t

0

usdBs. (4.3)

The process M is a Ft-martingale. We can also that any squared inte-
grable martingale has the form (4.3).

Theorem 4.12 (Itô integral representation): Let F ∈ L2 (Ω,FT , P ). Then,
exists a unique process u ∈ L2

a,T such that

F = E [F ] +

∫ t

0

usdBs. (4.4)

Proof.

1. Assume that

F = exp

(∫ T

0

h (s) dBs −
1

2

∫ T

0

h (s)2 ds

)
, (4.5)

with h a deterministic function and
∫ T

0
h (s)2 ds < ∞. Applying the

Itô formula with f (x) = ex, Xt =
∫ t

0
h (s) dBs − 1

2

∫ t
0
h (s)2 ds and

Yt = f (Xt), we obtain

dYt = Yt

(
h (t) dBt −

1

2
h (t)2 dt

)
+

1

2
Yt (h (t) dBt)

2

= Yth (t) dBt.



CHAPTER 4. ITÔ’S FORMULA 32

Hence,

Yt = 1 +

∫ t

0

Ysh (s) dBs.

and

F = YT = 1 +

∫ T

0

Ysh (s) dBs

= E [F ] +

∫ T

0

Ysh (s) dBs

Note that

E
[∫ T

0

(Ysh (s))2 ds

]
<∞,

since E [Y 2
t ] = exp

(∫ t
0
h (u)2 du

)
<∞. Therefore

E
[∫ T

0

(Ysh (s))2 ds

]
≤
∫ T

0

exp

(∫ s

0

h (u)2 du

)
h (s)2 ds

≤ exp

(∫ T

0

h (u)2 du

)∫ T

0

h (s)2 ds.

2. The representation (4.4) also holds (by the linear property) for linear
combinations of random variables of the form (4.5). In general, F ∈
L2 (Ω,FT , P ) can be approximates (in the mean square sense) by a
sequence {Fn} of linear combinations of random variables of the type
(4.5). Therefore

Fn = E [Fn] +

∫ t

0

u(n)
s dBs.

By the Itô isometry, we have that

E
[
(Fn − Fm)2] = (E [Fn − Fm])2 + E

[∫ t

0

(
u(n)
s − u(m)

s

)2
ds

]
≥ E

[∫ t

0

(
u(n)
s − u(m)

s

)2
ds

]
.

{Fn} is a Cauchy sequence in L2 (Ω,FT , P ). Hence

E
[
(Fn − Fm)2] −→ 0 when. n,m→∞.

Therefore

E
[∫ t

0

(
u(n)
s − u(m)

s

)2
ds

]
−→ 0 when n,m→∞.



CHAPTER 4. ITÔ’S FORMULA 33

and
{
u(n)
}
is a Cauchy sequence in L2 ([0, T ]× Ω). Since this is a com-

plete space, u(n) → u in L2 ([0, T ]× Ω). The process u is adapted be-
cause u(n) ∈ L2

a,T and exists a subsequence
{
u(n) (t, ω)

}
that converges

to u (t, ω) for a.a. (t, ω) ∈ [0, T ]×Ω. Therefore, u (t, ·) is Ft-measurable
for a.a. t. Modifying this process u in a set of zero measure in the t
variable, we obtain an adapted process u.

We have that

lim
n→∞

E
[
(Fn − F )2] = lim

n→∞
E
(
E [Fn] +

∫ T

0

u(n)
s dBs − F

)2

= 0.

On the other hand, by Itô isometry, we obtain

lim
n→∞

E (E [Fn]− E [F ])2 = 0

lim
n→∞

E
(∫ T

0

(
u(n)
s − us

)
dBs

)2

= lim
n→∞

E
∫ T

0

(
u(n)
s − us

)2
ds = 0.

Therefore, F = E [F ] +
∫ T

0
usdBs.

3. Uniqueness: suppose that u(1),u(2) ∈ L2
a,T and

F = E [F ] +

∫ T

0

u(1)
s dBs = E [F ] +

∫ T

0

u(2)
s dBs.

By Itô isometry,

E

[(∫ T

0

(
u(1)
s − u(2)

s

)
dBs

)2
]

= E
[∫ T

0

(
u(1)
s − u(2)

s

)2
ds

]
= 0.

Hence
u(1) (t, ω) = u (t, ω)(2) a.a. (t, ω) ∈ [0, T ]× Ω.

Theorem 4.13 (Martingale representation theorem): Let {Mt, t ∈ [0, T ]} be
a {Ft}-martingale and E [M2

T ] < ∞. Then exists a unique process u ∈ L2
a,T

such that

Mt = E [M0] +

∫ t

0

usdBs ∀t ∈ [0, T ] .
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Proof. By the Itô integral representation theorem applied to F = MT ,
∃1u ∈ L2

a,T such that

MT = E [MT ] +

∫ T

0

usdBs.

Since {Mt, t ∈ [0, T ]} is a martingale, E [MT ] = E [M0] and

Mt = E [MT |Ft] = E [E [MT ] |Ft] + E
[∫ T

0

usdBs|Ft
]

= E [M0] +

∫ t

0

usdBs.

where we have used the martingale property for the stochastic integral.

Example 4.14 Let F = B3
T . What is the Itô integral representation of this

random variable? By the Itô formula with f (x) = x3 and B3
T = f (Bt), we

obtain

B3
T =

∫ T

0

3B2
t dBt + 3

∫ T

0

Btdt.

Integrating by parts,∫ T

0

Btdt = TBT −
∫ T

0

tdBt =

∫ T

0

(T − t) dBt.

Therefore,

F = B3
T =

∫ T

0

3
[
B2
t + (T − t)

]
dBt. (4.6)

Clearly E [B3
T ] = 0 (since BT ∼ N (0, T )). Therefore, the integral represen-

tation is (4.6).

Exercise 4.15 What is the process u such that
∫ T

0
tB2

t dt − T 2

2
B2
T = −T 3

6
+∫ T

0
utdBt ?

Solution 4.16 Applying the Itô formula to Xt = f(t, Bt) = t2B2
t , with

f(t, x) = t2x2, we obtain

T 2B2
T =

∫ T

0

2tB2
t dt+

∫ T

0

2t2BtdBt +

∫ T

0

t2dt.

Hence ∫ T

0

tB2
t dt−

T 2

2
B2
T = −T

3

6
−
∫ T

0

t2BtdBt
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and therefore
ut = −t2Bt.

Note that E
[∫ T

0
tB2

t dt− T 2

2
B2
T

]
= −T 3

6
.

In general, the integration by parts formula is the one stated in the fol-
lowing exercise.

Exercise 4.17 (Integration by parts): Assume that f (s) is a deterministic
function of class C1. Prove that∫ t

0

f (s) dBs = f (t)Bt −
∫ t

0

f ′ (s)Bsds.

Solution 4.18 This formula can be deduced by the Itô formula applied to
g (t, x) = f (t)x, which results in

f (t)Bt =

∫ t

0

f ′ (s)Bsds+

∫ t

0

f (s) dBs.



Chapter 5

Stochastic Differential
Equations

5.1 Itô processes and diffusions

Consider a deterministic ordinary differential equation (ODE)

f (t, x (t) , x′ (t) , x′′ (t) , . . .) = 0, 0 ≤ t ≤ T .

The first order ODE can be represented by

dx (t)

dt
= µ (t, x (t)) ,

or
dx (t) = µ (t, x (t)) dt.

A discrete version of this equation is

∆x (t) = x (t+ ∆t)− x (t) ≈ µ (t, x (t)) ∆t.

Example 5.1 The first order linear homogeneous ODE is

dx (t)

dt
= cx (t)

and has solution
x (t) = x (0) ect.

A stochastic differential equation (SDE) has the general form

dXt = µ (t,Xt) dt+ σ (t,Xt) dBt, (5.1)

X0 = X0,

36
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where µ (t,Xt) is the drift coeffi cient and σ (t,Xt) is the diffusion coeffi cient.
The SDE can also be written in the integral form

Xt = X0 +

∫ t

0

µ (s,Xs) ds+

∫ t

0

σ (s,Xs) dBs. (5.2)

A "naif" interpretation of SDE is that the increment ∆Xt ≈ µ (t,Xt) ∆t +
σ (t,Xt) ∆Bt. and the distribution of this increment can be approximated
by ∆Xt ∼ N

(
µ (t,Xt) ∆t, (σ (t,Xt))

2 ∆t
)
, when ∆t is very small.

Definition 5.2 A solution of the SDE (5.1) or (5.2) is a stochastic process
{Xt} which satisfies:

1. {Xt} is an adapted process (to the standard Brownian motion) and has
continuous sample paths.

2. E
[∫ T

0
(σ (s,Xs))

2 ds
]
<∞.

3. {Xt} satisfies the SDE (5.1) or (5.2)

The solutions of stochastic differential equations are called diffusions or
"diffusion processes".

Definition 5.3 The process {Xt, t ≥ 0} is said to be a time-homogeneous
diffusion process if

• 1. it is a Markov process.

2. it has continuous sample paths.

3. there exist functions µ (x) and σ2 (x) > 0 such that, as h→ 0+,

E [Xt+h −Xt|Xt = x] = hµ(x) + o (h) ,

E
[
(Xt+h −Xt)

2 |Xt = x
]

= hσ2(x) + o (h) ,

E
[
(Xt+h −Xt)

3 |Xt = x
]

= o (h) .

A diffusion is "locally" like a Brownian motion with drift, but with a vari-
able drift coeffi cient µ(x) and diffusion coeffi cient σ (x) . Fitting a diffusion
model involves estimating the drift function µ(x) and the diffusion function
σ (x) . Estimating arbitrary drift and diffusion coeffi cients is virtually impos-
sible unless a very large quantity of data is to hand. Usually, a parametric
form is specified for the mean and the variance and the parameters are esti-
mated from data.



CHAPTER 5. STOCHASTIC DIFFERENTIAL EQUATIONS 38

5.2 The existence and uniqueness theorem

The following theorem gives suffi cient conditions to ensure that a unique so-
lution exists for a stochastic differential equation. For a proof of this theorem,
we refer to [10].

Theorem 5.4 Let T > 0, µ(·, ·) : [0, T ]×R→ R and σ(·, ·) : [0, T ]×R→ R
be measurable functions such that

1. E
[
|X0|2

]
< ∞. and X0 is independent of the standard Brownian mo-

tion B.

2. (linear growth condition)

|µ (t, x)|+ |σ (t, x)| ≤ C (1 + |x|) , x ∈ R, t ∈ [0, T ] .

3. (Lipschitz condition)

|µ (t, x)− µ (t, y)|+|σ (t, x)− σ (t, y)| ≤ D |x− y| , x, y ∈ R, t ∈ [0, T ] .

Then the SDE

Xt = X0 +

∫ t

0

µ (s,Xs) ds+

∫ t

0

σ (s,Xs) dBs (5.3)

has a unique solution. That is, exists a unique stochastic process X =
{Xt, 0 ≤ t ≤ T} continuous and adapted, which satisfies (5.3) and

E

[∫ T

0

|Xs|2 ds
]
<∞.

5.3 The geometric Brownian motion and the
OU process

Example 5.5 The standard model for a risky asset price is the SDE

dSt = αStdt+ σStdBt (5.4)

or

St = S0 + α

∫ t

0

Ssds+ σ

∫ t

0

SsdBs (5.5)



CHAPTER 5. STOCHASTIC DIFFERENTIAL EQUATIONS 39

How to solve this SDE?
Assume that St = f (t, Bt) with f ∈ C1,2. By Itô formula:

St = f (t, Bt) = S0 +

∫ t

0

(
∂f

∂t
(s, Bs) +

1

2

∂2f

∂x2
(s, Bs)

)
ds+ (5.6)

+

∫ t

0

∂f

∂x
(s, Bs) dBs.

Comparing (5.5) with (5.6) then, by the uniqueness of representation as an
itô process, we have

∂f

∂s
(s, Bs) +

1

2

∂2f

∂x2
(s, Bs) = αf (s, Bs) , (5.7)

∂f

∂x
(s, Bs) = σf (s, Bs) . (5.8)

Differentiating (5.8), we get

∂2f

∂x2
(s, x) = σ

∂f

∂x
(s, x) = σ2f (s, x)

and replacing in (5.7) we obtain that(
α− 1

2
σ2

)
f (s, x) =

∂f

∂s
(s, x)

Separating the variables: f (s, x) = g (s)h (x), we get

∂f

∂s
(s, x) = g′ (s)h (x)

and

g′ (s) =

(
α− 1

2
σ2

)
g (s)

which is a linear ODE, with solution:

g (s) = g (0) exp

[(
α− 1

2
σ2

)
s

]
Using (5.8), h′ (x) = σh (x) and

f (s, x) = f (0, 0) exp

[(
α− 1

2
σ2

)
s+ σx

]
.

Hence

St = f (t, Bt) = S0 exp

[(
α− 1

2
σ2

)
t+ σBt

]
(5.9)
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which is the geometric Brownian motion. Therefore, St
S0
has lognormal dis-

tribution with parameters
(
α− 1

2
σ2
)
t and σ2t. Moreover

E

[
St
S0

]
= eαt, var

[
St
S0

]
= e2αt

(
eσ

2t − 1
)
.

Note that the solution of the SDE was obtained by solving a deterministic
PDE (partial differential equation).

Let us verify that (5.9) satisfies SDE (5.4) or (5.5). Apllying the Itô
formula to St = f (t, Bt) with

f (t, x) = S0 exp

[(
α− 1

2
σ2

)
t+ σx

]
,

we obtain

St = S0 +

∫ t

0

[(
α− 1

2
σ2

)
Ss +

1

2
σ2Ss

]
ds+

∫ t

0

σSsdBs

= S0 + α

∫ t

0

Ssds+ σ

∫ t

0

SsdBs

or:
dSt = αStdt+ σStdBt.

Example 5.6 The Ornstein-Uhlenbeck process (or Langevin equation) is the
solution of the SDE

dXt = µXtdt+ σdBt

or

Xt = X0 + µ

∫ t

0

Xsds+ σ

∫ t

0

dBs.

In discrete time, this SDE transforms into

Xt+1 = (1 + µ)Xt + σ (Bt+1 −Bt)

or
Xt+1 = φXt + Zt,

with φ = 1 +µ and Zt ∼ N (0, σ2). This is the equation for an autoregressive
time series of order 1.
Let

Yt = e−µtXt
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or Yt = f (t,Xt) with f (t, x) = e−µtx. By Itô formula,

Yt = Y0 +

∫ t

0

(
−µe−µsXs + µe−µsXs +

1

2
σ2 × 0

)
ds

+

∫ t

0

σe−µsdBs.

Therefore,

Xt = eµtX0 + eµt
∫ t

0

σe−µsdBs.

If X0 is constant, this process is called the Ornstein-Uhlenbeck process.

Example 5.7 Consider the SDE for the geometric Brownian motion again:

dSt = αStdt+ σStdBt (5.10)

or

St = S0 + α

∫ t

0

Ssds+ σ

∫ t

0

SsdBs. (5.11)

Assume that
St = eZt .

or
Zt = ln (St) .

By the Itô formula, with f(x) = ln (x), we have

dZt =
1

St
dSt +

1

2

(
−1

S2
t

)
(dSt)

2

=

(
α− 1

2
σ2

)
dt+ σdBt.

That is Zt = Z0 +
(
α− 1

2
σ2
)
t+ σBt and

St = S0 exp

[(
α− 1

2
σ2

)
t+ σBt

]
.

In general, the solution of the homogeneous linear SDE

dXt = µ (t)Xtdt+ σ (t)XtdBt

is

Xt = X0 exp

[∫ t

0

(
µ (s)− 1

2
σ (s)2

)
ds+

∫ t

0

σ (s) dBs

]
.
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5.4 Mean reverting processes

Example 5.8 The Ornstein-Uhlenbeck process with mean reversion is the
solution of the SDE

dXt = a (m−Xt) dt+ σdBt,

X0 = x.

where a, σ > 0 and m ∈ R. The solution of the associated ODE dxt = −axtdt
is xt = xe−at. Consider the variable change Xt = Yte

−at or Yt = Xte
at. By

the Itô formula applied to f (t, x) = xeat, we have

Yt = x+m
(
eat − 1

)
+ σ

∫ t

0

easdBs.

Therefore

Xt = m+ (x−m) e−at + σe−at
∫ t

0

easdBs.

This is a Gaussian process, since the random part is
∫ t

0
f (s) dBs, where f is

deterministic. The expected value is

E [Xt] = m+ (x−m) e−at

and the covariance is (by Itô isometry)

Cov [Xt, Xs] = σ2e−a(t+s)E

(∫ t

0

eardBr

)(∫ s

0

eardBr

)
= σ2e−a(t+s)

∫ t∧s

0

e2ardr

=
σ2

2a

(
e−a|t−s| − e−a(t+s)

)
.

Note that

Xt ∼ N

[
m+ (x−m) e−at,

σ2

2a

(
1− e−2at

)]
.

When t→∞, the distribution of Xt converges to

ν := N

[
m,

σ2

2a

]
,

which is the invariant or stationary distribution. If X0 has distribution ν
then the distribution of Xt will be ν for all t.
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Remark 5.9 Some financial applications of the Ornstein-Uhlenbeck process
with mean reversion are:

• The Vasicek model for the interest rate rt:

drt = a (b− rt) dt+ σdBt,

with a, b, σ real constants. The solution of the SDE is

rt = b+ (r0 − b) e−at + σe−at
∫ t

0

easdBs.

• The Black-Scholes model with stochastic volatility: assume that the
volatility σ (t) = f (Yt) is a function of an Ornstein-Uhlenbeck process
with mean reversion

dYt = a (m− Yt) dt+ βdWt,

where {Wt, 0 ≤ t ≤ T} is a standard Brownian motion. The SDE which
models the asset price evolution is

dSt = αStdt+ f (Yt)StdBt

where {Bt, 0 ≤ t ≤ T} is a standard Brownian motion and the processes
Wt and Bt may be correlated, i.e.,

E [BtWs] = ρ (s ∧ t) .

An important and useful theoretical result is the following one.

Proposition 5.10 Let f : [0,+∞)→ R be a deterministic function. Then

1. Mt = exp
(∫ t

0
f(s)dBs − 1

2

∫ t
0

(f(s))2 ds
)
is a martingale.

2.
∫ t

0
f(s)dBs has a normal distribution with mean 0 and variance

∫ t
0

(f(s))2 ds.

The property 1 is a simple generalization of the fact that exp
(
λBt − 1

2
λ2t
)

is a martingale. The property 2 follows from 1, because martingales have con-
stant mean, E [M0] = 1 andE

[
exp

(
λ
∫ t

0
f(s)dBs

)]
= exp

(
1
2
λ2
∫ t

0
(f(s))2 ds

)
,

which is the moment generating function of the N
(

0,
∫ t

0
(f(s))2 ds

)
distrib-

ution.
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Remark 5.11 The AR(1) process is related with the mean reverting OU
process. Consider the AR(1) process

Xt = φXt−1 + Zt,

with φ = 1 + µ and Zt ∼ N (0, σ2
e). Then

E [Xt] = φnX0,

V ar [Xt] = σ2
e

(1− α2n)

1− α2
.

These coincide with the mean and variance values of the mean-reverting
Ornstein-Uhlenbeck with m = 0, if we put α = e−a and σ2e

1−α2 = σ2

2a
. Therefore,

the mean-reverting Ornstein-Uhlenbeck process is the continuous time equiv-
alent of a AR(1) process such as standard Brownian motion is the continuous
time equivalent of a random walk.

Exercise 5.12 (Exam style problem): A derivatives trader is modelling the
volatility of an equity index using the following time-discrete model (model
1):

σt = 0.12 + 0.4σt−1 + 0.05εt, t = 1, 2, 3, . . .

where σt is the volatility at time t years and ε1, ε2, . . .are a sequence of i.i.d.
random variables with standard normal distribution. The initial volatility is
σ0 = 0.15 (that is, 15%). The trader is developing a related continuous-time
model for use in derivative pricing. The model is defined by the following
SDE (model 2):

dσt = −α (σt − µ) dt+ βdBt,

where σt is the volatility at time t years, Bt is the standard Brownian motion
and the parameters α, β and µ all take positive values.

(a) Determine the long-term distribution of σt for model 1.

(b) Show that for model 2 (solve the SDE), we have that

σt = σ0e
−αt + µ

(
1− e−αt

)
+

∫ t

0

βe−α(t−s)dBs.

(c) Determine the numerical value of µ and a relationship between para-
meters α and β if it is required that σt has the same long-term mean
and variance under each model (models 1 and 2)

(d) State another consistency property between the two models that could
be used to determine precise numerical values for α and β.
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(e) The derivative pricing formula used by the trader involves the squared
volatility Vt = σ2

t , which represents the variance of the returns on the
index. Determine the SDE for Vt in terms of the parameters α, β and
µ.

For more details on the theory of stochastic differential equations, see [5],
[10] or [11]. For numerical methods, see [6].



Chapter 6

The Girsanov Theorem

6.1 Basic idea

The Girsanov Theorem, in its simplest version, says that a Brownian motion
with drift

B̃t = Bt + λt

can be transformed into a standard Brownian motion if we transform the
probability measure P, of our probability space (Ω,F , P ) into a new proba-
bility measure Q. In financial appliations, this new probability measure, is
the so-called risk neutral measure or the equivalent martingale measure.
In more general terms, the Girsanov Theorem says that we can transform

the drift coeffi cient of an Itô process in such a way that the law of the
process does not change "too much". The law of the new Itô process will
be absolutely continuous with respect to the law of the original process and
we can calculate explicitly the Radon-Nikodym derivative associated to the
measure change

6.2 Change of probability measures

Consider the space La,T , which is the space of adapted and measurable

stochastic processes u such that P
[∫ T

0
u2
tdt <∞

]
= 1. Let us define de-

fine L1
a,T as the space of adapted and measurable processes v such that

P
[∫ T

0
|vt| dt <∞

]
= 1.

Definition 6.1 A continuous and adapted process X = {Xt, 0 ≤ t ≤ T} is

46
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said to be an Itô process if it has the form

Xt = X0 +

∫ t

0

usdBs +

∫ t

0

vsds, (6.1)

where u ∈ La,T and v ∈ L1
a,T .

The drift of an Itô process is the integral term
∫ t

0
vsds.

Let L ≥ 0 be a random variable defined on the probability space (Ω,F , P ) .
Then, we can define a new probability measure Q, by

Q(A) = E [1AL] , for any A ∈ F .

It is clear that we must have

Q(Ω) = E [L] = 1,

and that Q(A) = E [1AL] is equivalent to∫
Ω

1AdQ =

∫
Ω

1ALdP.

We say that L is the density of Q with respect to P and we write

dQ

dP
= L.

L is also the Radon-Nikodym derivative of Q with respect to P .
The expected value of a random variable X, defined on the probability

space (Ω,F , P ), with respect to Q, is given by the formula

EQ [X] = E [XL] .

The probabilty measure Q is absolutely continuous with respect to P . This
means that

P (A) = 0 =⇒ Q(A) = 0.

When are the measures P e Q equivalent? In order to answer this question,
we recall the definition of equivalent probability measures.

Definition 6.2 Two probability measures P and Q which apply to the same
sigma-algebra F are said to be equivalent if for any event A ∈ F : P (A) = 0
if and only if Q(A) > 0, where P (A) and Q(A) are the probabilities of A
under P and Q respectively.

If the random variable L is strictly positive (L > 0), then the probabilty
measures P and Q are equivalent (or mutually absolutely continuous), which
is equivalent to say that

P (A) = 0⇐⇒ Q(A) = 0.
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6.3 Girsanov Theorem

We now discuss the simplest version of the Girsanov Theorem, which applies
to a a random variable X with normal distribution N (m,σ2). The basic
question that leads to the Girsanov Theorem is: exists a probability measure
Q, such that X has a normal distribution with mean zero, i.e. N (0, σ2), with
respect to Q? In order to answer this question, consider the random variable

L = exp

(
−m
σ2
X +

m2

2σ2

)
.

It is easy to show that E [L] = 1. Indeed, using the probability density
function of the normal distribution N (m,σ2), we have that

E [L] =

∫ +∞

−∞
exp

(
−m
σ2
x+

m2

2σ2

)
1

σ
√

2π
exp

(
−(x−m)2

2σ2

)
dx

=
1

σ
√

2π

∫ +∞

−∞
exp

(
− x2

2σ2

)
dx = 1.

Assume that the new measure Q has density L with respect to P . Then, in
the probability space (Ω,F , Q), the random variable X has a characteristic
function given by

EQ
[
eitX

]
= E

[
eitXL

]
=

1

σ
√

2π

∫ +∞

−∞
exp

(
itx− m

σ2
x+

m2

2σ2

)
exp

(
−(x−m)2

2σ2

)
dx

=
1

σ
√

2π

∫ +∞

−∞
exp

(
itx− x2

2σ2

)
dx = e−

σ2t2

2 .

Therefore, X has distribution N (0, σ2).
The next version of the Girsanov Theorem is for the Brownian motion.

Let {Bt, t ∈ [0, T ]}be a Brownian motion in the probability space (Ω,FT , P ).
Fix a real number λ and consider the martingale

Lt = exp

(
−λBt −

λ2

2
t

)
. (6.2)

Exercise 6.3 Prove that the stochastic process {Lt, t ∈ [0, T ]}, given by (6.2),
is a positive martingale with expected value 1 and satisfies the stochastic dif-
ferential equation

dLt = −λLtdBt,

L0 = 1.
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The random variable

LT = exp

(
−λBT −

λ2

2
T

)
is a density in the probability space (Ω,FT , P ), and we can define the new
probability measure

Q (A) = E [1ALT ] ,

for each A ∈ FT . Since {Lt, t ∈ [0, T ]} is a martingale then the random
variable Lt = exp

(
−λBt − λ2

2
t
)
is also a density in the probabilty space

(Ω,Ft, P ). In this probability space, the measure Q has precisely the density
Lt with respect to P. Indeed, if A ∈ Ft, then

Q(A) = E [1ALT ] = E [E [1ALT |Ft]]
= E [1AE [LT |Ft]] = E [1ALt] ,

where we have applied the properties of conditional expectation and the
martingale property of {Lt, t ∈ [0, T ]}.

Theorem 6.4 (Girsanov Theorem I): In the probability space (Ω,FT , Q),
where Q is defined by Q (A) = E [1ALT ], the stochastic process

B̃t = Bt + λt

is a standard Brownian motion.

In order to prove the theorem, we need a technical lemma.

Lemma 6.5 Assume that X is a random variable and that G is a σ-algebra
such that:

E
[
eiuX |G

]
= e−

u2σ2

2 .

Then, X is independent of the σ-algebra G and has normal distribution
N (0, σ2).

For a proof of this lemma, we refer to [9] (pages 63-64).
Proof. (of the Girsanov Theorem) We only need to show that in the space
(Ω,FT , Q), the increment B̃t− B̃s, with s < t ≤ T , is independent of Fs and
has normal distribution N (0, t− s). By Lemma 6.5, this is a consequence of

EQ

[
1Ae

iu(B̃t−B̃s)
]

= Q (A) e−
u2

2
(t−s), (6.3)
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for all s < t, A ∈ Fs and u ∈ R. Indeed, if (6.3) is satisfied then, by the con-
ditional expectation definition and by Lemma 6.5, we have that

(
B̃t − B̃s

)
is independent of Fs and has normal distribution N (0, t− s).
We now show that (6.3) is satisifed.

EQ

[
1Ae

iu(B̃t−B̃s)
]

= E
[
1Ae

iu(B̃t−B̃s)Lt

]
= E

[
1Ae

iu(Bt−Bs)+iuλ(t−s)−λ(Bt−Bs)−λ
2

2
(t−s)Ls

]
= E [1ALs]E

[
e(iu−λ)(Bt−Bs)

]
eiuλ(t−s)−λ

2

2
(t−s)

= Q(A)e
(iu−λ)2

2
(t−s)+iuλ(t−s)−λ

2

2
(t−s)

= Q(A)e−
u2

2
(t−s),

where we have used the definitions ofEQ and Lt, the independence of (Bt −Bs)
from Ls and A and the definition of Q.
Finally, we present a more general version of the Girsanov Theorem.

Theorem 6.6 (Teorema de Girsanov II): Let {θt, t ∈ [0, T ]} be an adapted
stochastic process that satisfies the Novikov condition:

E

[
exp

(
1

2

∫ T

0

θ2
t dt

)]
<∞. (6.4)

Then, the stochastic process

B̃t = Bt +

∫ t

0

θsds

is a Brownian motion with respect to the measure Q, defined by Q (A) =
E [1ALT ], where

Lt = exp

(
−
∫ t

0

θsdBs −
1

2

∫ t

0

θ2
sds

)
. (6.5)

Note that the process Lt in (6.5) satisfies the linear stochastic differential
equation

Lt = 1−
∫ t

0

θsLsdBs.

In order to ensure that the process Lt is a density, we need to have E [Lt] = 1
and the Novikov condition (6.4) is suffi cient to ensure that E [Lt] = 1.
The second version of the Girsanov Theorem generalizes the first version.

Indeed, with θt ≡ λ we obtain the first version.
A detailed discussion of the Girsanov Theorem is presented in [10].
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