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Chapter 1

Introduction

1.1 Outline

The aim of this lecture notes is to provide students with some mathematical
methods related with the theory of Lévy processes and applications in fi-
nance. More precisely, we want to give a critical presentation and discussion
of the Black-Scholes model imperfections and the possible advantages of Lévy
processes in financial modeling, present and discuss the main concepts and
results of the Lévy processes theory and its associated stochastic calculus,
present and discuss some important applications of Lévy processes in finance.
These notes were prepared for the course "Lévy Processes and applications",
of the Msc. degree in Financial Mathematics in ISEG, Technical University
of Lisbon, in the academic year 2012/2013. In some parts of the text, we will
follow the references [1], [2], [5] and [7].

1.2 Main concepts, applications and some his-
tory

A Lévy process is, basically, a stochastic process that has stationary and in-
dependent increments. The theory was developed by Paul Lévy (1886-1971)
on the 1930s. Many interesting examples of stochastic processes belong to the
class of Lévy processes: Brownian motion, Poisson processes, jump-diffusion
processes, subordinated processes, etc. Lévy processes forma a simple class
of processes with continuous paths mixed with jumps of random amplitude
size. Moreover, Lévy processes are a subset of semimartingales. An impor-
tant subset of Markov processes are the solutions of stochastic differential
equations driven by Lévy random noise. Lévy processes have a robust and
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CHAPTER 1. INTRODUCTION 2

stable structure. The applications of Lévy processes usually only require
them to take values in Euclidean space. However, this space can be replaced
by infinite dimensional functional spaces, like a Hilbert space or even a Ba-
nach space.
The main applications of Lévy processes are in the areas of turbulence,

finance, Physics and quantum groups. The main areas in finance are op-
tion pricing in incomplete markets, interest rate modelling and credit risk
modelling.
In 1900, Louis Bachelier used the Brownian motion in order to model

the stock prices evolution. This was the first modern model of mathematical
finance and describes the stock price evolution of an asset by the stochastic
process

St = S0 + σBt,

where S0 > 0 is the initial stock price, σ is a real constant and the process
B = {Bt, t ∈ [0, T ]} is a Brownian motion. This model has the unfortunate
disadvantage of allowing negative prices for the stock price. In order to
remedy this problem, Samuelson introduced the geometric Brownian motion
as follows

St = S0 exp

[(
µ− σ2

2

)
t+ σBt

]
,

where µ and σ are constants. This model can also be introduced as the
solution of the stochastic differential equation

dSt
St

= µdt+ σdBt.

In the Samuelson model, the stock price process St has a lognormal distribu-
tion. That is, logSt−logS0 has the Gaussian distributionN

((
µ− σ2

2

)
t, σ2t

)
.

In 1973, Black, Scholes and Merton developed a model known in the
literature as the Black-Scholes model, which has revolutionized the finance
world and triggered the growth of the derivatives markets. In the Black-
Scholes model, investors trade continuously in time. A frictionless market
with two assets is assumed. The first asset is a risky asset, which is usually
called the stock, with price process S = {St, t ∈ [0, T ]} given by the geometric
Brownian motion. The second asset is a risk-free asset, usually called a bond,
and with price process B = {Bt, t ∈ [0, T ]} given by

Bt = exp (rt) ,

where r is the constant risk-free rate. The Black-Scholes model is a complete
model, in the sense that any contingent claim admits a replicating portfolio.
Therefore, there is a unique price for each contingent claim.
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The geometric Brownian motion model for stock prices has been very
popular. However, it has some important drawbacks. Indeed, the log-returns
of stock prices in financial data do not follow a Gaussian distribution (see
[4] and [7]). The empirical negative skewness and excess kurtosis of stocks
log-returns are very different from the normal distribution skewness and kur-
tosis. The excess kurtosis in the log-returns of financial data means that
large movements in asset prices are much more frequent than in a model
with Gaussian log-returns. The empirical distribution has “fat tails”, when
compared with the Gaussian distribution.
In order to price and hedge contingent claims, it is important to have

a good model for the dynamics of the underlying risky assets. This can be
achieved by considering probability distributions which are more flexible than
the Gaussian distribution, and stochastic processes that generalize the stan-
dard Brownian motion, leading to a more precise dynamic modeling of the
stock price process. The natural generalizations of Brownian motion, which
preserve the important properties of independent and stationary increments
but with more general distributions than the Gaussian distribution, are Lévy
processes (or non-homogeneous Lévy processes, if we drop the stationarity
assumption). These processes are characterized by infinite divisible distrib-
utions. In general, the Lévy processes have jumps, which is an important
property in order to model the real discontinuous evolution of prices and the
tail behavior of the returns distribution.
By replacing the standard Brownian motion in the Black Scholes model

with a Lévy process (or a non-homogeneous Lévy process), we define a Lévy
market model consisting of a risky asset or stock and a riskless asset or
bond. In this model, we consider that the risky asset has a price process
S = {St, t ∈ [0, T ]} given by the so-called geometric Lévy process, which is
the solution of the stochastic differential equation

dSt
St−

= dZt, S0 > 0, (1.1)

where Z = {Zt, t ∈ [0, T ]} is a Lévy process or a non homogeneous Lévy
process.
In recent years, the models based on Lévy processes have become increas-

ingly popular. Comprehensive presentations of the theory of Lévy processes
are given in [1], [4] and [6]. Comprehensive reviews of the financial applica-
tions are given in [4], [5] and [7].
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1.3 The Imperfections of the Black-Scholes
model

Emprirical data from financial markets shows that (see [5])

• asset price processes have jumps

• Empirical distribution of asset returns has fat tails and skewness.

• Implied volatilities are not constant across strike or maturities.

Empirical Distribution of daily log-returns (GBP/USD exchange rate) and
fitted Gaussian distribution (from [5])

Implied volatilities of vanilla options on the EUR/USD exchange rate on
November 5, 2001 (from [5])
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All this empirical evidence contradicts assumptions of the Black-Scholes
model.

1.4 Basic Definitions

Definition 1.1 A càdlág, adapted, stochastic process L = {Lt, t ∈ [0, T ]} is
a Lévy process if: (1) L0 = 0 a.s.; (2) L has independent increments; (3)
L has stationary increments; and (4) L is stochastically continuous, i.e., for
every t ∈ [0, T ] and ε > 0, we have

lim
s→t
P [|Lt − Ls| > ε] = 0.

Example 1.2 An example of a Lévy Process is the compensated jump-diffusion
process

Lt = bt+ σWt +
Nt∑
k=1

Zk − tλm, (1.2)

where N is a Poisson process with parameter λ, the process Wt is a Brownian
motion, the sequence of random variables Z = (Zk)k≥1 is a i.i.d. sequence
with probability distribution F , where E [Zk] = m.

A trajectory of a Brownian motion (from [2]).
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A trajectory of a compound Poisson process (from [2])

A jump-diffusion trajectory (from [5])

The characteristic function of the jump-diffusion process (1.2) is

E
[
eiuLt

]
= exp

[
t

(
iub− u2σ2

2
+

∫
R

(
eiux − 1− iux

)
λF (dx)

)]
. (1.3)

Indeed, we have

E
[
eiuLt

]
= exp [iubt]E [exp [iuσWt]]E

[
exp

[
iu

Nt∑
k=1

Zk − iutλm
]]

.

and

E [exp [iuσWt]] = exp

[
−1

2
σ2u2t

]
, Wt ∼ N (0, t) ,

E

[
exp

[
iu

Nt∑
k=1

Zk

]]
= exp

[
λtE

[
eiu J − 1

]]
, Nt ∼ Po (λt) .
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Therefore

E
[
eiuLt

]
= exp

[
iubt− σ2u2t

2

]
exp

[
λt

∫
R

(
eiux − 1− iux

)
λF (dx)

]
.

Definition 1.3 The law PX of a random variable X is infinitely divisible if,
for all n ∈ N, exist i.i.d. random variables X(1/n)

1 , X
(1/n)
2 , . . . , X

(1/n)
n , such

that
X

d
= X

(1/n)
1 +X

(1/n)
2 + . . .+X(1/n)

n .

The law PX is infinitely divisible if and only if, for all n ∈ N, exists a
random variable X(1/n) such that

ϕX (u) = (ϕX(1/n) (u))n ,

where ϕX (u) is the characteristic function of X and ϕX(1/n) is the character-
istic function of X(1/n).

Example 1.4 (The Poisson Distribution): Let X ∼ Po (λ), where X(1/n) ∼
Po
(
λ
n

)
. Then, the characteristic function is

ϕX (u) = exp
(
λ
(
eiu − 1

))
=

(
exp

[
λ

n

(
eiu − 1

)])n
= (ϕX(1/n) (u))n .

1.5 The Lévy-Kintchine formula

Theorem 1.5 (Lévy Khintchine formula): The law PX is infinitely divisible
if and only if exists a triplet (b, c, ν), b ∈ R, c ≥ 0, where ν is a measure,
ν ({0}) = 0,

∫
R (1 ∧ x2) ν (dx) <∞ and

E
[
eiuX

]
= exp

[
ibu− u2c

2
+

∫
R

(
eiux − 1− iux1{|x|<1}

)
ν (dx)

]
.

The triplet (b, c, ν) is called the Lévy or characteristic triplet and the
exponent

ψ (u) = ibu− u2c

2
+

∫
R

(
eiux − 1− iux1{|x|<1}

)
ν (dx)

is called the Lévy or characteristic exponent. b is the drift term, c is the
Gaussian or diffusion coeffi cient and ν is the Lévy measure.



CHAPTER 1. INTRODUCTION 8

Example 1.6 The random variable Lt of the jump diffusion process (1.2)
has infinitely divisible distribution and b = bt, c = σ2t and ν = (λF ) t.

Consider a general Lévy process L = {Lt, t ∈ [0, T ]}. Then

Lt = L t
n

+
(
L 2t

n
− L t

n

)
+ · · ·+

(
Lt − L (n−1)t

n

)
.

By the stationarity and independence of increments,
(
L kt

n
− L (k−1)t

n

)
is an

i.i.d. sequence. Therefore, Lt has an infinitely divisible distribution.
The characteristic function of a Lévy process is given by the Lévy-Khintchine

formula

φu (t) = E
[
eiuLt

]
= exp {tψ (u)}

= exp

{
t

(
ibu− u2c

2
+

∫ +∞

−∞

(
eiux − 1− iux1{|x|<1}

)
ν (dx)

)}
,

where ν is the Lévy measure, (b, c, ν) is the triplet of characteristics of the
Lévy process and ψ (u) is the characteristic exponent of L1.

• Every Lévy process can be associated with a infinitely divisible distri-
bution.

• The opposite (Lévy-Itô decomposition) is also true. Given a random
variable X with infinitely divisible distribution, we can construct a
Lévy process L = {Lt, t ∈ [0, T ]} such that the law of L1 is the law of
X.

1.6 Jumps of a Lévy process

The jump process of a Lévy process L is defined as the process ∆L =
{∆Lt, t ∈ [0, T ]}, where

∆Lt = Lt − Lt−.
By the stochastic continuity of L, for a fixed t, ∆Lt = 0 a.s. It is possible
that ∑

s≤t
|∆Ls| =∞ a.s.

However, ∑
s≤t
|∆Ls|2 <∞ a.s.
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Let A ∈ B (R\ {0}) such that 0 /∈ A. The Poisson random measure associated
to the jumps is the counting measure

µL (ω, t, A) = # {0 ≤ s ≤ t; ∆Ls ∈ A} =
∑
s≤t
1A (∆Ls (ω)) .

Then, we have that

• µL (·, A) has independent and stationary increments.

• Hence, µL (·, A) is a Poisson process and µL is the Poisson random
measure.

• The measure ν defined on B (R\ {0}) by

ν (A) = E
[
µL (1, A)

]
= E

[∑
s≤1

1A (∆Ls (ω))

]

is the Lévy measure of the Lévy process L.

Let f : R→ R be a bounded measurable function on A. The integral of
f with respect to the Poisson random measure is defined by∫

A

f (x)µL (ω, t, dx) =
∑
s≤t

f (∆Ls)1A (∆Ls (ω)) .

Each
∫
A
f (x)µL (t, dx) is a random variable and

∫ t
0

∫
A
f (x)µL (ds, dx) is

a stochastic process.

Theorem 1.7 The process
∫ t

0

∫
A
f (x)µL (ds, dx) is a compound Poisson process

with characteristic function

exp

(
t

∫
A

(
eiuf(x) − 1

)
ν (dx)

)
.

If f ∈ L1 (A) then

E
[∫ t

0

∫
A

f (x)µL (ds, dx)

]
= t

∫
A

f (x) ν (dx) .

If f ∈ L2 (A) then

Var

(∣∣∣∣∫ t

0

∫
A

f (x)µL (ds, dx)

∣∣∣∣) = t

∫
A

|f (x)|2 ν (dx) .



CHAPTER 1. INTRODUCTION 10

1.7 The Lévy-Itô decomposition

Theorem 1.8 Consider the characteristic triple (b, c, ν) of an infinitely di-
visible law. Then, exists a probability space and four Lévy processes L(1),
L(2), L(3) and L(4) (independent) such that

L = L(1) + L(2) + L(3) + L(4)

is a Lévy process with triplet (b, c, ν) and

L
(1)
t = bt; L

(2)
t =

√
cWt,

L
(3)
t =

∫ t

0

∫
|x|≥1

xµL (ds, dx) ,

L
(4)
t =

∫ t

0

∫
|x|<1

x
(
µL − νL

)
(ds, dx) .

The Lévy measure, paths and moment properties:

• ν satisfies ν ({0}) = 0,
∫
R (1 ∧ x2) ν (dx) < ∞ and gives the expected

number of jumps of a certain size per unit of time.

• If ν ({R}) = ∞ then infinitely many jumps occur (small jumps). The
Lévy process has infinite activity.

• If ν ({R}) < ∞ then a.a. paths have a finite number of jumps. The
Lévy process has finite activity.

• Let L be a Lévy process with characteristic triplet (b, c, ν). If c = 0
and

∫
|x|≤1
|x| ν (dx) <∞ then a.a. paths have finite variation. If c 6= 0

or
∫
|x|≤1
|x| ν (dx) =∞ then a.a. paths have infinite variation.

The path variation properties are related with small jumps and Brownian
motion. The activity depends of all the jumps. The moment properties
depend only of the big jumps. The moments of a Lévy processes are finite
if and only if certain integrals over the Lévy measure (considering only big
jumps) are finite.

• Lt has finite moment of order p if and only if∫
|x|≥1

|x|p ν (dx) <∞.

• Lt has finite exponential moment of order p
(
i.e. E

[
epLt

]
<∞

)
if and

only if ∫
|x|≥1

epxν (dx) <∞.
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Figure 1.1: The Lévy measure of the Poisson and of a compound Poisson
process (from [5])

Figure 1.2: The Lévy measure of a NIG and an α-stable process (from [5])

Figure 1.3: |x|2 ∧ 1 (red). |x| ∧ 1 (blue) (from [5])
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1.8 Some models

A subordinator is an a.s. increasing (in t) Lévy process. A Lévy process is
a subordinator if ν (−∞, 0) = 0, c = 0,

∫
(0,1)

xν (dx) < ∞ and b ≥ 0. The
characteristic exponent of a subordinator is

ψ (u) = ibu+

∫ ∞
0

(
eiux − 1

)
ν (dx)

The Poisson process is clearly a subordinator.
In the risk neutral-world, the asset price process can be given by an

exponential Lévy process:

St = S0 exp (Lt) , 0 ≤ t ≤ T

where Lt is a Lévy process with triplet
(
b, c, ν

)
.and canonical decomposition

Lt = bt+
√
cW t +

∫ t

0

∫
R
x
(
µL − νL

)
(ds, dx)

with

b = r − q − c

2
−
∫
R

(ex − 1− x) ν (dx)

• Black-Scholes model: L1 ∼ N (µ, σ2). The Lévy triplet is (µ, σ2, 0) and
Lt = µt+ σWt.

• Merton (jump-diffusion) model: Lt = µt + σWt +
Nt∑
k=1

Jk, with Jk ∼

N (µJ , σ
2
J) (with density fJ). The Lévy triplet is (µ, σ2, λ× fJ).

• Generalized Hyperbolic model: L1 ∼ GH (α, β, δ, µ, λ) and Lt = tE [L1]+∫ t
0

∫
R x
(
µL − νGH

)
(ds, dx). Lévy triplet:

(
E [L1] , 0, νGH

)
. The para-

meters are such that α > 0 is related to the form or shape; 0 ≤ |β| < α
is related to the skewness; µ is a location parameter; δ > 0 is a scaling
parameter and λ is related with "fat tails".

• The Variance Gamma process: It has a Variance Gamma distribution
V G(σ, ν, θ) with characteristic function

ϕu (t) =

(
1− iuθv +

1

2
σ2νu2

)− t
ν

.

It has Lévy triplet (0, 0, νV G (dx)). The Variance Gamma process can
be defined as a time-transformed Brownian motion with drift:

Lt = θGt + σWGt ,

where G is a Gamma process with two appropriate parameters.
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Lévy Processes

2.1 Infinitely divisible distributions

Consider a probability space (Ω,F , P ) . The law of the random variable X
is given by

pX (A) = P (X ∈ A) ,

for A ∈ F . If Y and Z are independent random variables then the law of
Y + Z is given by the convolution of laws:

pY+Z = pY ∗ pZ ,

which is defined by

(pY ∗ pZ) (A) =

∫
Rd
pY (A− y) pZ (dy)

Equivalently∫
Rd
g (z) (pY ∗ pZ) (dz) =

∫
Rd

∫
Rd
g (y + z) pY (dy) pZ (dz)

for all bounded measurable functions g. If Y and Z are independent, with
densities given by fY and fZ , then

fY+Z (y) = (fY ∗ fZ) (y) =

∫
Rd
fY (y − z) fZ (z) dz.

The characteristic function of a random variable X is ϕX :Rd → C, defined
by

ϕX (u) = E
[
ei(u,X)

]
=

∫
Rd
ei(u,x)p (dx) .

Consider a probability measure on Rd given by µ. Then, the characteristic
function of µ satisfies:

13
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1. ϕµ (0) = 1.

2. ϕµ is positive definite:
∑

i,j aiajϕµ (ui − uj) ≥ 0 for all ai ∈ C, ui ∈ Rd,
1 ≤ i, j ≤ n, n ∈ N.

3. |ϕµ (u)| ≤ 1.

4. ϕµ is uniformly continuous.

• Moreover, µ→ ϕµ is injective

• Bochner Theorem: If ϕ:Rd → C satisfies 1. and 2. and is continuous
at u = 0, then ϕ is a characteristic function.

Exercise 2.1 Show that |ϕµ (u)| ≤ 1.

Consider the notation: µ∗n = µ ∗ µ ∗ · · · ∗ µ

Definition 2.2 µ has a convolution n-th root if there is a probability measure
µ
1
n such that (

µ
1
n

)∗n
= µ.

Definition 2.3 µ is infinitely divisible if exists a convolution n-th root for
each n ∈ N.

Theorem 2.4 µ is infinitely divisible if and only if for each n ∈ N, exists
µn with characteristic function ϕn:

ϕµ (u) = (ϕn (u))n

for all u ∈ Rd.

Proof. (=⇒) Take ϕn = ϕµ1/n
(⇐=) For each n, by Fubini’s theorem:

ϕµ (u) =

∫
Rd
· · ·
∫
Rd
ei(u,y1+y2+···+yn)µn (dy1) · · ·µn (dyn)

=

∫
Rd
ei(u,y) (µn)∗n (dy)

and since ϕ determines µ uniquely, then µ = (µn)∗n and is infinitely divisible.

Proposition 2.5 Properties:
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1. If µ and ν are infinitely divisible distributions then µ ∗ ν is infinitely
divisible.

2. If {µn, n ∈ N} is a sequence of infinitely divisible distributions and
µn

w−→ µ, then µ is infinitely divisible.

Remark 2.6 µn
w−→ µ means that µn converges weakly to µ, i.e.,

lim
n→∞

∫
Rd
f (x)µn (dx) =

∫
Rd
f (x)µ (dx)

for all f ∈ Cb
(
Rd
)
(bounded continuous functions).

Exercise 2.7 Show that Property 1 holds

Definition 2.8 A random variable X is infinitely divisible if the law pX is
infinitely divisible. This means that

X
d
= Y

(n)
1 + Y

(n)
2 + · · ·+ Y (n)

n ,

where Y (n)
1 , . . . , Y

(n)
n are i.i.d., for each n ∈ N.

Proposition 2.9 The following statements are equivalent:

1. X is infinitely divisible.

2. µX has a convolution n-th root which is the law of a random variable,
for each n ∈ N

3. ϕX has an n-th root which is the characteristic function of some random
variable, for each n ∈ N

Exercise 2.10 Prove the previous Proposition.

Exercise 2.11 Let α > 0, β > 0. Show that the gamma-(α, β) distribution

µα,β (dx) =
βα

Γ (α)
xα−1e−βxdx, with x > 0

is an infinitely-divisible distribution.

In each of the following examples, we will find iid Y (n)
1 , . . . , Y

(n)
n such that

X
d
= Y

(n)
1 + Y

(n)
2 + · · ·+ Y

(n)
n .
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Example 2.12 (Gaussian random variable) Let X = (X1, X2, . . . , Xd) be
Gaussian random vector, with density:

f (x) =
1

(2π)
d
2

√
det (A)

exp

(
−1

2

(
x−m,A−1 (x−m)

))
, x ∈ Rd.

Then X ∼ N (m,A), where A is a d×d matrix which is positive-definite and
symmetric. It is the covariance matrix: A = E

[
(X −m) (X −m)T

]
. We

can show that

ϕX (u) = exp

(
i (m,u)− 1

2
(u,Au)

)
.

Therefore:

(ϕX (u))
1
n = exp

(
i
(m
n
, u
)
− 1

2

(
u,

1

n
Au

))
.

and X is infinitely divisible with X d
= Y

(n)
1 + Y

(n)
2 + · · ·+ Y

(n)
n and

Y
(n)
j ∼ N

(
m

n
,

1

n
A

)
.

Example 2.13 (Poisson random variable) Let d = 1 and X : Ω→ N0 with
X ∼ Po (λ), i.e.

P (X = n) =
λn

n!
e−λ.

It is well known that E [X] = V ar [X] = λ and it is easy to verify that

ϕX (u) = exp
[
λ
(
eiu − 1

)]
.

Therefore

(ϕX (u))
1
n = exp

[
λ

n

(
eiu − 1

)]
.

and X is infinitely divisible with X d
= Y

(n)
1 + Y

(n)
2 + · · ·+ Y

(n)
n and

Y
(n)
j ∼ Po

(
λ

n

)
.

Example 2.14 (Compound Poisson random variable) Let {Z (n) , n ∈ N}
be a sequence of i.i.d. random variables with law µZ. Let N ∼ Po (λ) and
independent of the Z (n)′ s. Define

X = Z (1) + Z (2) + · · ·+ Z (N) .
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Let us prove that, for each u ∈ Rd,

ϕX (u) = exp

[∫
Rd

(
ei(u,y) − 1

)
λµZ (dy)

]
. (2.1)

Indeed, by conditioning, we have

ϕX (u) = E
[
ei(u,X)

]
=
∞∑
n=0

E
[
ei(u,Z(1)+Z(2)+···+Z(N))|N = n

]
P [N = n]

=
∞∑
n=0

E
[
ei(u,Z(1)+Z(2)+···+Z(n))

] λn
n!
e−λ

= e−λ
∞∑
n=0

(λϕZ (u))n

n!
= exp [λ (ϕZ (u)− 1)] .

Therefore, with ϕZ (u) =
∫
Rd e

i(u,y)µZ (dy), we obtain (2.1). We denote the
Compound Poisson by X ∼ Po (λ, µZ). We have

(ϕX (u))
1
n = exp

[
λ

n
(ϕZ (u)− 1)

]
and X is infinitely divisible with X d

= Y
(n)

1 + Y
(n)

2 + · · ·+ Y
(n)
n and

Y
(n)
j ∼ Po

(
λ

n
, µZ

)
.

Exercise 2.15 Show that if X ∼ N (m,A), where A is a d × d strictly

positive-definite symmetric covariance matrix: A = E
[
(X −m) (X −m)T

]
then ϕX (u) = exp

(
i (m,u)− 1

2
(u,Au)

)
Exercise 2.16 Let d = 1. Show that ifX ∼ Po (λ) then ϕX (u) = exp [λ (eiu − 1)] .

2.2 The Lévy-Khintchine formula

Definition 2.17 Let ν be a Borel measure defined on Rd−{0}. We say that
ν is a Lévy measure if ∫

Rd−{0}

(
|y|2 ∧ 1

)
ν (dy) <∞ (2.2)
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Note that ε2 ≤ |y|2 ∧ 1 when 0 < ε ≤ 1 and |y| ≥ ε. Therefore, by (2.2),
we have that

ν [(−ε, ε)c] <∞, for all ε > 0.

The condition (2.2) is equivalent to∫
Rd−{0}

|y|2

1 + |y|2
ν (dy) <∞.

One can assume that ν ({0}) = 0 and then ν is defined on Rd.

Theorem 2.18 (Lévy-Khintchine): A probability measure µ on Rd is infi-
nitely divisible if exists a vector b ∈ Rd, a d × d positive definite symmetric
matrix A and a Lévy measure ν on the set Rd−{0} such that, for all u ∈ Rd:

ϕµ (u) = exp

{
i (b, u)− 1

2
(u,Au) +

+

∫
Rd−{0}

[
ei(u,y) − 1− i (u, y)χB̂ (y)

]
ν (dy)

}
, (2.3)

where B̂ = B1 (0) =
{
y ∈ Rd : |y| < 1

}
.

On the other hand, any function of the form (2.3) is a characteristic
function of an infinitely divisible measure on Rd.

(b, A, ν) are the characteristics of the infinitely divisible random variable
X, η := log (ϕµ) is the Lévy symbol or characteristic exponent or Lévy
exponent

η (u) = i (b, u)− 1

2
(u,Au) +

∫
Rd−{0}

[
ei(u,y) − 1− i (u, y)χB̂ (y)

]
ν (dy) .

We will not prove the first part of the theorem, but we prove the second part.
Proof. (Part 2) Our aim is to prove that the r.h.s of (2.3) is a characteristic
function.
i) Let {U (n) , n ∈ N} ⊂ Rd be a sequence of measurable (Borel) sets such

that U (n)↘ 0 and define

ϕn (u) = exp

{
i

(
b−

∫
U(n)c∩B̂

yν (dy) , u

)
− 1

2
(u,Au) +

+

∫
U(n)c

(
ei(u,y) − 1

)
ν (dy)

}
.



CHAPTER 2. LÉVY PROCESSES 19

ii) Clearly, ϕn is the convolution of a Gaussian distribution with a com-
pound Poisson distribution. Therefore, by Proposition 2.5, it is infinitely
divisible.
iii) Clearly,

ϕµ (u) = lim
n→∞

ϕn (u) .

iv) In order to prove that ϕµ is a characteristic function, we will aplly
Lévy’s continuity theorem (see below) and therefore we only need to prove
that ψµ (u) is continuous at zero, with

ψµ (u) =

∫
Rd−{0}

[
ei(u,y) − 1− i (u, y)χB̂ (y)

]
ν (dy)

=

∫
B̂

(
ei(u,y) − 1− i (u, y)

)
ν (dy) +

+

∫
B̂c

(
ei(u,y) − 1

)
ν (dy) .

v) By Taylor’s theorem, the Cauchy-Schwarz inequality and dominated
convergence, we have:

|ψµ (u)| ≤ 1

2

∫
B̂

|(u, y)|2 ν (dy) +

∫
B̂c

∣∣ei(u,y) − 1
∣∣ ν (dy)

≤ |u|
2

2

∫
B̂

|y|2 ν (dy) +

∫
B̂c

∣∣ei(u,y) − 1
∣∣ ν (dy)→ 0 as u→ 0.

vi) It is now easy to verify directly that µ is infinitely divisible.
Some remarks:

• The techique of taking the limits of sequences composed of sums of
gaussians with independent compound Poissons is very important.

• The cut-off function c (y) = yχB̂ in (2.3) could be replaced by other
c(y) such that ei(u,y)−1− i (u, c (y)) is an ν-integrable function for each
u ∈ Rd. For instance, we could have c(y) = y

1+|y|2 .

• The Gaussian case corresponds to b = m (mean), A =covariance ma-
trix, ν = 0.

• The Poisson case corresponds to b = 0, A = 0, ν = λδ1.

• The compound Poisson case corresponds to b = 0, A = 0, ν = λµ,
where λ > 0 and µ is a probability measure on Rd.
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• All infinitely divisible distributions can be constructed as weak limits
of convolutions of Gaussians with independent Poisson processes. In
fact, they can be obtained as weak limits of Compound Poissons only.

Theorem 2.19 Every infinitely divisible probability measure is the weak limit
of an appropriate sequence of compound Poisson distributions.

Proof. If µ is an infinitely divisible distribution then ϕ
1
n is the characteristic

function of µ
1
n and

ϕn (u) = exp
{
n
[
ϕ

1
n (u)− 1

]}
is the characteristic function of a compound Poisson distribution. Moreover,

ϕn (u) = exp
{
n
[
e
1
n

log(ϕ(u)) − 1
]}

=

= exp

{
log (ϕ (u)) + n o

(
1

n

)}
→ ϕ (u) .

Therefore, by the Glivenko Theorem (see [1]), µ is the weak limit of the
compound Poisson distributions.
The Glivenko Theorem used in the previous proof says that: if ϕn and ϕ

are the characteristic functions of µn and µ then

ϕn (u)→ ϕ (u) for all u ∈ Rd =⇒ µn
w−→ µ (weak convergence).

Corollary 2.20 The set of all infinitely divisible probability measures on Rd
coincides with the weak closure of the set of all compound Poisson distribu-
tions on Rd.

Proof. Use the theorem and the property: If {µn, n ∈ N} are infinitely
divisible and µn

w−→ µ then µ is infinitely divisible.

2.3 Stable random variables

The class of stable distributions is an important subclass of infinitely divisible
distributions. Let d = 1 and {Yn, n ∈ N} be a sequence of i.i.d. random
variables. Let us state the central limit problem. Define the partial sums of
random variables:

Sn =
Y1 + · · ·+ Yn − bn

σn
,

where {bn, n ∈ N} is a real number sequence and {σn, n ∈ N} is a sequence
of positive numbers.
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• Problem: When exists a random variable X such that

lim
n→∞

P (Sn ≤ x) = lim
n→∞

P (X ≤ x) ? (2.4)

In that case, Sn converges in distribution to X?

The classical central limit theorem gives a positive answer to these ques-
tion with bn = nm and σn =

√
nσ. Then X ∼ N (m,σ2).

A random variable is said to be stable if it can be obtained as a limit of
the type (2.4). This is equivalent to the following definition.

Definition 2.21 A random variable X is said to be stable if exist sequences
{cn, n ∈ N} , {dn, n ∈ N} with each cn > 0, such that

X1 + · · ·+Xn
d
= cnX + dn, (2.5)

where X1, . . . , Xn are independent and have the distribution of X. In partic-
ular, is said to be strictly stable if each dn = 0.

In fact, one can prove that if X is stable then σn = σn
1
α with 0 < α ≤ 2.

The parameter α is called the index of stability. The eq. (2.5) is equivalent
to

ϕX (u)n = eiudnϕX (cnu) .

All stable random variables are infinitely divisible (it is a trivial consequence
of (2.5)).

Theorem 2.22 If X is a stable random variable then:

1. when α = 2, X ∼ N (b, A)

2. when α 6= 2, A = 0 and

ν (dx) =

{ c1
x1+α

dx if x > 0
c2
|x|1+αdx if x < 0. , where c1, c2 ≥ 0 and c1 + c2 > 0.

For a proof of this theorem, see [6].

Theorem 2.23 A random variable X is stable if and only if exist σ > 0,
−1 ≤ β ≤ 1 and µ ∈ R such that

1. when α = 2,

ϕX (u) = exp

(
iµu− 1

2
σ2u2

)
;
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2. when α 6= 1, 2

ϕX (u) = exp
(
iµu− σα |u|α

[
1− iβsgn (u) tan

(πα
2

)])
3. when α = 1,

ϕX (u) = exp

(
iµu− σ |u|

[
1 + iβ

2

π
sgn (u) log (|u|)

])
For a proof, see [6], p. 86.
Some remarks about α-stable distributions:

• E [X2] <∞ if and only if α = 2 (X is Gaussian).

• E [|X|] <∞ if and only if 1 < α ≤ 2.

• All stable random variables X have densities fX . In general, can be
expressed in series form, but in 3 cases, we have a closed form.

• Normal distribution: α = 2 and X ∼ N (µ, σ2) .

• Cauchy distribution: α = 1, β = 0, fX (x) = σ

π[(x−µ)2+σ2]
.

• Lévy distribution: α = 1
2
, β = 1,

fX (x) =
( σ

2π

) 1
2 1

(x− µ)
3
2

exp

[
σ

−2 (x− µ)

]
for x > µ.

Exercise 2.24 Let X and Y be independent standard Gaussian random vari-
ables (with 0 mean). Show that Z has a Cauchy distribution, where Z = X/Y
if Y 6= 0 and Z = 0 if Y = 0.

Remark 2.25 If X is stable and symmetric then

ϕX (u) = exp (−ρα |u|α) for all 0 < α ≤ 2,

where ρ = σ for 0 < α < 2 and ρ = σ√
2
when α = 2.

An Important feature of stable laws is the following one: when α 6= 2 the
decay of the tails is polynomial. This slow decay implies the existence of "fat
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tails". If α = 2 the decay is exponential and there are no "fat tails". The
decay can be described by

P [X > x] ∼ e−
1
2
x2

√
2πx

if α = 2,

lim
x→∞

xαP [X > x] ∼ Cα
1 + β

2
σα if α 6= 2, with Cα > 1.

All the previous results can be generalized to random variables with values
in Rd. Just replace X1, . . . , Xn, X and each dn in (2.5) by vectors and adapt
the previous theorems. Note that when α 6= 2 and d > 1, then the Lévy
measure is given by

ν (dx) =
c

|x|d+α
dx, where c > 0.

2.4 Lévy Processes

Definition 2.26 Let L = (L(t); t ≥ 0) be a stochastic process. The process
L has independent increments if for each n ∈ N and each sequence 0 ≤ t1 <
t2 < . . . < tn+1 < ∞, the random variables (L(tj+1) − L(tj); 1 ≤ j ≤ n) are

independent. The process L has stationary increments if L(tj+1) − L(tj)
d
=

L(tj+1 − tj)− L(0).

Definition 2.27 We say that L is a Lévy process if
(1) L(0) = 0 (a.s),
(2) L has independent and stationary increments,
(3) L is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0,

lim
t→s

P (|L(t)− L(s)| > a) = 0.

Conditions (1) and (2) imply that (3) is equivalent to lim
t↘0

P (|L(t)| > a) =

0. The sample paths (trajectories) of L are the maps t → L (t) (ω) for each
ω ∈ Ω.

Proposition 2.28 If L is a Lévy process, then L (t) is infinitely divisible for
each t ≥ 0.

Proof. For each n ∈ N,

L (t) = Y
(n)

1 (t) + · · ·+ Y (n)
n (t),
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where

Y
(n)
j (t) = L

(
jt

n

)
− L

(
(j − 1) t

n

)
.

By condition (2), these Y (n)
j (t)′s are iid random variable and therefore, L (t)

is infinitely divisible.

Theorem 2.29 If L is a Lévy process, then

ϕL(t) (u) = etη(u),

for each u ∈ Rd, where η is the characteristic exponent (or Lévy symbol) of
L (1).

Proof. Define ϕu (t) = ϕL(t) (u). Then, by condition (2),

ϕu (t+ s) = E
[
ei(u,L(t+s)−L(s)+L(s))

]
= E

[
ei(u,L(t+s)−L(s))

]
E
[
ei(u,L(s))

]
= ϕu (t)ϕu (s) .

On the other hand, by condition (1), ϕu (0) = 1. The map t → ϕu (t) is
clearly continuous. The unique continuous function that satisfies all these
conditions is of the form ϕu (t) = etα(u). But L(1) is also infinitely divisible
and therefore ϕu (t) = etη(u) and α (u) = η (u).

Exercise 2.30 Prove that if L is stochastically continuous, then the map
t→ ϕL(t) (u) is also continuous for each u. (Hint: see [1], pages 43-44).

The Lévy-Khintchine formula for a Lévy Process L = (L(t); t ≥ 0) is
given by

ϕL(t) (u) = E
[
ei(u,L(t))

]
= exp

{
t

[
i (b, u)− 1

2
(u,Au) +

+

∫
Rd−{0}

[
ei(u,y) − 1− i (u, y)χB̂ (y)

]
ν (dy)

]}
, (2.6)

for each t ≥ 0 and u ∈ Rd. The characteristics (b, A, ν) correspond to L (1).

Exercise 2.31 Let L and Y be stochastically continuous processes. Show
that their sum L+ Y is also stochastically continuous (hint: use the elemen-
tary inequality: P (|A+B| > C) ≤ P

(
|A| > C

2

)
+ P

(
|B| > C

2

)
with A, B

random variables).
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2.5 Examples of Lévy processes

We now present several examples of Lévy processes.

Example 2.32 A Brownian motion in Rd is clearly a Lévy process B for
which

1. B (t) ∼ N (0, tI).

2. B has continuous trajectories.

From property 1, we obtain

ϕB(t) (u) = exp

{
−1

2
t |u|2

}
.

Some of the main properties of Brownian motion (with d = 1) are

• Brownian motion is locally Hölder continuous with exponent α for every
0 < α < 1

2
:

|B (t) (ω)−B (t) (ω)| ≤ K (T, ω) |t− s|α ,

for all 0 ≤ s < t ≤ T .

• The sample paths (trajectories) t → B (t) (ω) are a.s. nowhere differ-
entiable.

• Consider a sequence (tn, n ∈ N) with tn ↗∞. Then, we have

lim inf
n→∞

B (tn) = −∞ a.s.

lim sup
n→∞

B (tn) = +∞ a.s.

• Law of iterated logarithm:

lim sup
t↘0

B (t)(
2t log

(
log
(

1
t

))) 1
2

= 1 a.s.

• Simulated path of standard Brownian motion:
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A path of the Brownian motion (from [2])

• Law of the iterated logarithm:

lim sup
t→∞

B (t)

(2t log (log t))
1
2

= 1, lim inf
t→∞

B (t)

(2t log (log t))
1
2

= −1 a.s.

The iterated logarithm law

Example 2.33 (Brownian motion with drift) Given a non-negative definite
symmetric d × d matrix A, let σ be such that σσT = A. Let b ∈ Rd and
denote by B be a Brownian motion in Rm. The process C defined by

C (t) = bt+ σB (t) (2.7)
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is a Lévy process that satisfies C (t) ∼ N (tb, tA). Moreover, C is a Gaussian
process (with Gaussian finite dimensional distributions). The process C is
known as a Brownian motion with drift. The characteristic exponent of C is

ηC (u) = i (b, u)− 1

2
(u,Au) .

A Lévy process has continuous trajectories if and only if it is a Brownian
motion with drift.

Example 2.34 (Poisson process) Let N (t) ∼ Po (λt) be a process taking
values in N0 with

P [N (t) = n] =
(λt)n

n!
e−λt.

Let us define the non-negative r.v. {T (n) , n ∈ N0} (waiting times), T (0) =
0,

T (n) = inf {t ≥ 0 : N (t) = n} .
The random variable T (n) has a gamma distribution. The inter-arrival times
T (n) − T (n− 1) are iid random variables with exponential distribution of
mean 1/λ.

A path of a Poisson process (from [2])

Example 2.35 (Compensated Poisson process) Consider the process Ñ =(
Ñ (t) , t ≥ 0

)
, where Ñ (t) = N (t) − λt. Note that E

[
Ñ (t)

]
= 0 and

E

[(
Ñ (t)

)2
]

= λt.
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Example 2.36 Consider the sequence of iid random variables {Z (n) , n ∈ N} ,
with values in Rd and with law µZ. Let N be a Poisson process with intensity
parameter λ and independent of the Z (n)′ s. Then, we define the compound
Poisson process by

Y (t) =

N(t)∑
n=1

Z (n) , (2.8)

and Y (t) ∼ π (λt, µZ). The characteristic exponent is

ηY (u) =

∫
Rd

(
ei(u,y) − 1

)
λµZ (dy) .

The sample paths of Y are constant (piecewice) with jumps occurring at times
T (n), but now the jump sizes are random.

A trajectory of a compound Poisson process (from [2])

Let C be a Gaussian Lévy process and let Y be a compound Poisson
process (which is independent of C). Define

L (t) = C(t) + Y (t).

Then L is clearly a Lévy process with Lévy characteristic exponent

ηL (u) = i (m,u)− 1

2
(u,Au) +

∫
Rd

(
ei(u,y) − 1

)
λµZ (dy) .

Let Tn represent the time of jump n. We have the interlacing process:

L (t) =


C (t) for 0 ≤ t < T1,
C (T1) + Z1 for t = T1,

L (T1) + C (t)− C (T1) for T1 ≤ t < T2,
L (T2−) + Z2 for t = T2,

etc...
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2.6 Stable Lévy processes

Definition 2.37 A stable Lévy process is a Lévy process L, where each L (t)
is a stable random variable.

Theorem 2.38 If L is a α-stable Lévy process then the characteristic expo-
nent of L is (with σ > 0, −1 ≤ β ≤ 1 and µ ∈ R) given by

1. when α = 2,

ηL (u) = iµu− 1

2
σ2u2;

2. when α 6= 1, 2

ηL (u) = iµu− σα |u|α
[
1− iβsgn (u) tan

(πα
2

)]
;

3. when α = 1,

ηL (u) = iµu− σ |u|
[
1 + iβ

2

π
sgn (u) log (|u|)

]
.

An important case is the case of rotationally invariant stable Lévy processes,
where

ηL (u) = −σα |u|α , 0 < α ≤ 2.

These processes are important because they are self-similar. A process
Y = (Y (t) , t ≥ 0) is said to be self-similar, with positive Hurst index H,
if (Y (at) , t ≥ 0) and

(
aHY (t) , t ≥ 0

)
have the same finite dimensional dis-

tributions for each a ≥ 0. By examining the characteristic functions, one
can prove that a rotationally invariant stable Lévy process is self-similar
with Hurst parameter H = 1/α. Moreover, one can also prove that a Lévy
process L is self-similar if and only if each random variable L(t) is strictly
stable.

2.7 Subordinators

Definition 2.39 A subordinator is simply a one-dimensional Lévy process
wich is increasing with probability 1.

A subordinator is an appropriate random model for stochastic time evo-
lution. If T = (T (t) , t ≥ 0) is a subordinator then T (t) ≥ 0 a.s. and
T (t1) ≤ T (t2) a.s. if t1 ≤ t2.
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Theorem 2.40 Let T be a subordinator. Then its characteristic exponent
has the form

ηT (u) = i (b, u) +

∫
(0,∞)

(
eiuy − 1

)
λ (dy) , (2.9)

where b ≥ 0, and the Lévy measure λ satisfies: λ (−∞, 0) = 0 and
∫

(0,∞)
(y ∧ 1)λ (dy) <

∞.
Conversely, any mapping η : R→ C of the form (2.9) is the characteristic

exponent of a subordinator.

The characteristics of the subordinator T are (b, λ) .
For each t ≥ 0, the function u→ E

[
eiuT (t)

]
can be analytically continued

to the set {iu, u > 0} , and we get the Laplace transform of the distribution:

E
[
e−uT (t)

]
= e−tψ(u),

where

ψ (u) = −η (iu) = bu+

∫
(0,∞)

(
1− e−yu

)
λ (dy) . (2.10)

The function ψ is known as the Laplace exponent of the distribution.
We now present some important examples of subordinators.

Example 2.41 A Poisson process is clearly a subordinator

Example 2.42 The compound Poisson process (2.8) is clearly a subordina-
tor if and only if the random variables for the jump sizes are non-negative.

Example 2.43 One can prove (using the usual calculus) that (for 0 < α < 1
and u ≥ 0)

uα =
α

Γ (1− α)

∫ ∞
0

(
1− e−ux

) dx

x1+α
.

Then, by (2.10) and the properties of a stable Lévy process, exists an α-stable
subordinator with Laplace exponent ψ (u) = uα. The characteristics of T are
clearly (0, λ), where

λ (dx) =
α

Γ (1− α)

dx

x1+α
.

When we consider the analytic continuation of this, in order to obtain the
Lévy characteristic exponent, we obtain µ = 0, β = 1 and σα = cos (απ/2) .
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Example 2.44 The
(

1
2

)
-stable subordinator has a probability density func-

tion associated to the Lévy distribution (with µ = 0 and σ = t2

2
):

fT (t) (s) =

(
t

2
√
π

)
s−

3
2 exp

(
−t2
4s

)
.

With some calculus, one can show that

E
[
e−uT (t)

]
=

∫ ∞
0

e−usfT (t) (s) ds = e−tu
1
2 .

Exercise 2.45 Show that E
[
e−uT (t)

]
=
∫∞

0
e−usfT (t) (s) ds = e−tu

1
2 . (Hint:

Differentiate gt (u) =
∫∞

0
e−usfT (t) (s) ds with respect to u and use the substi-

tution x = t2

4us
in order to get the differential equation g′t (u) = − t

2
√
u
gt (u).

Via the substitution y = t
2
√
s
we see that gt(0) = 1 and one can prove the

result).

Example 2.46 The
(

1
2

)
-stable subordinator can be represented by the hitting

time of the Brownian motion

T (t) = inf

{
s > 0 : B (s) =

t√
2

}
. (2.11)

We can generalize the Lévy subordinator by replacing the Brownian motion
in the hitting time by the Gaussian process C(t) = B(t) +µt, and the inverse
Gaussian subordinator is defined by

Tδ(t) = inf {s > 0 : C (s) = δt}

where δ > 0. Note that t → Tδ(t) is the generalized inverse of a Gaussian
process. This means that the Gaussian distribution describes a Brownian mo-
tion value at a fixed time, and the inverse Gaussian describes the distribution
of the time that a Brownian Motion with drift takes to reach a fixed value δt
.
Using martingale methods, one can show that for each t, u > 0,

E
[
e−uTδ(t)

]
= exp

(
−tδ

√
2u+ µ2 − µ

)
and T (t) has a density:

fTδ(t) (s) =
δt√
2π
eδtµs−

3
2 exp

[
−1

2

(
t2δ2s−1 + µ2s

)]
,

for s, t ≥ 0. A random variable with probability density fTδ(1) is usually
called an inverse Gaussian random variable. For this distribution we use the
notation IG(δ, µ).
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Figure 2.1: A path of a Gamma subordinator (from [2])

Example 2.47 Let T (t) be a Gamma process with parameters a, b > 0, such
that T (t) has a probability density function

fT (t) (x) =
bat

Γ (at)
xat−1e−bx, x ≥ 0.

Using some calculus, we can show that∫ ∞
0

e−uxfT (t) (x) dx =
(

1 +
u

b

)−at
= exp

(
−ta log

(
1 +

u

b

))
= exp

(
−t
∫ ∞

0

(
1− e−ux

)
ax−1e−bxdx

)
.

Therefore, by (2.10), T (t) is a subordinator with characteristics b = 0 and
λ (dx) = ax−1e−bxdx. This subordinator is called the Gamma subordinator.

Subordinators are often used to model stochastic time changes. Let L be
a Lévy process and T be an independent subordinator. Define a new process

Z(t) = L(T (t)).

Theorem 2.48 Z is a Lévy process

For a proof of thsi theorem, see [1], pags. 56-58.

Proposition 2.49
ηZ = −ψT ◦ (−ηL) .



CHAPTER 2. LÉVY PROCESSES 33

Proof. Let pT (t) be the law associated to the subordinator T (t). Then

E
[
eiηZ(t)(u)

]
= E

(
ei(u,L(T (t)))

)
=

∫
E
(
ei(u,L(T (s)))

)
pT (t) (ds)

=

∫
EesηL(u)pT (t) (ds)

= E
[
e−(−ηL(u))T (t)

]
= e−tψT (−ηL(u)).

Example 2.50 (Brownian motion and (2α)-stable motion) Let T be an α-
stable subordinator (with 0 < α < 1) and let L be a Brownian motion with
covariance matrix A = 2I (independent of T ). Then

ψT (s) = sα, ηL (u) = − |u|2

and therefore, by Proposition 2.49,

ηZ (u) = − |u|2α

and Z is a 2α stable process. When d = 1 and T is a Lévy subordinator,
the process Z is a Cauchy process and each Z(t) has symmetric Cauchy
distribution (µ = 0 and σ = 1). Moreover, by (2.11), the Cauchy process can
be constructed from two indepedent Brownian motions.

Example 2.51 (the variance gamma process) Let Z(t) = B(T (t)), where
T is a gamma subordinator and B is a Brownian motion. Then the Lévy
process Z is called a variance-gamma process. It has this name, because in
this process we replace the variance of the Brownian motion by a gamma
random variable. Then, by Proposition 2.49, we have

ΦZ(t) (u) = E
[
euiZ(t)

]
=

(
1 +

u2

2b

)−at
,

where a and b are the parameters of the gamma process.
Manipulating characteristic functions, it is possible to show that:

Z(t) = G(t)− L(t)
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where G and L are gamma subordinators with parameters
√

2b and a (this
can be interpreted as the difference of independent "gains" and "losses").
From this representation, it is possible to show that Z(t) has a Lévy density:

gν (x) =
a

|x|1
(
e
√

2bxχ(−∞,0)(x) + e−
√

2bxχ(0,∞)(x)
)
,

a > 0.

Exercise 2.52 Prove that if T is a gamma subordinator and B is a Brownian
motion then Z(t) = B(T (t)) is a Lévy process with characteristic function

ΦZ(t) (u) = E
[
euiZ(t)

]
=

(
1 +

u2

2b

)−at
.

Example 2.53 The CGMY model (from the authors Carr, Geman, Madan
and Yor) is a generalization of the variance gamma process, with Lévy density

gν (x) =
a

|x|1+α

(
eb1xχ(−∞,0)(x) + e−b2xχ(0,∞)(x)

)
,

a > 0, 0 ≤ α < 2, b1, b2 ≥ 0.

When b1 = b2 = 0, this corresponds to stable Lévy processes. The exponential
dampens the effects of large jumps.

Example 2.54 Let Z(t) = C(T (t)) + µt, where C(t) = B(t) + βt and the
process T is an inverse Gaussian subordinator. Let α be such that α2 ≥ β2.
Then Z has characteristic function (δ > 0):

ΦZ(t) (α, β, δ, µ) (u) = exp

[
δt

(√
α2 − β2 −

√
α2 − (β + iu)2

)
+ iµtu

]
,

with probability density function

fZ(t) (x) = C (α, β, δ, µ; t) q

(
x− µt
δt

)−1

K1

(
δtαq

(
x− µt
δt

))
eβx,

where q (x) =
√

1 + x2, C (α, β, δ, µ; t) = π−1αeδt
√
α2−β2−βµt and K1 is a

Bessel function of the third kind.



Chapter 3

Stochastic calculus for Lévy
processes

3.1 Martingales and random measures

Let (Ω,F , P ) be a filtered probability space with filtration (Ft, t ≥ 0).

Definition 3.1 A stochastic process X = (X(t), t ≥ 0) is said to be adapted
to the filtration (Ft, t ≥ 0) if each X (t) is Ft-measurable

Any processX is clearly adapted to its natural filtrationFXt := σ {X (s) , s ≤ t} .

Definition 3.2 An adapted process X is a Markov process if for all measur-
able bounded function f , we have (for s ≤ t)

E [f (X (t)) |Fs] = E [f (X (t)) |X (s)] a.s.

For a Markov process, the past and the future of the process are inde-
pendent if we know the present. The transition probabilities associated to a
Markov process are

ps,t (x,A) = P [X (t) ∈ A|X (s) = x] .

Theorem 3.3 If L is an adapted Lévy process, where each L(t) has law qt,
then it is also a Markov process with associated transition probabilities

ps,t (x,A) = qt−s (A− x) .

35
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Proof. By the stationarity of increments,

E [f (L (t)) |Fs] = E [f (L (s) + L (t)− L (s)) |Fs]

=

∫
Rd
f (L (s) + y) qt−s (dy) .

Hence,
E [f (L (t)) |Fs] = E [f (L (t)) |Ls]

and the transition probabilities are obtained for f = χA and ps,t (x,A) =∫
Rd χA (x+ y) qt−s (dy) = qt−s (A− x) .

Definition 3.4 The process X is a martingale if X is adapted to (Ft, t ≥ 0),
E [|X (t)|] <∞ for all t ≥ 0 and

E [X (t) |Fs] = Xs a.s for all s < t.

Theorem 3.5 If a Lévy process L is adapted, has finite first moment and
zero mean, then it is a martingale.

Proof. Clearly, L is adapted, E [|L (t)|] <∞ for all t ≥ 0 and

E [L (t) |Fs] = E [L (s) + L (t)− L (s) |Fs]
= L (s) + E [L (t)− L (s)] = L (s) .

We now present several examples of Lévy processes that are also martin-
gales:

1. σB (t), B (t) d-dim. BM and σ an r × d matrix.

2. Ñ (t) - compensated Poisson process

3. exp {i (u, L (t))− tη (u)} where u ∈ Rd is fixed and L is a Lévy process
with Lévy symbol η.

4. |σB (t)|2 − trace (A) t, with A = σTσ

5.
[
Ñ (t)

]2

− λt

Exercise 3.6 If L is a Lévy process, show that exp {i (u, L (t))− tη (u)} is
a martingale.

Let us now introduce the definition of càdlàg function.
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Definition 3.7 A function f : R+ → R is a càdlàg function ("continue à
droite et limité à gauche") if it is right continuous with left limits.

Consider the notation: f(t−) := lim
s↑t
f (s) and ∆f (t) := f (t)− f(t−).

If f is càdlàg then # {0 ≤ t ≤ T : ∆f (t) 6= 0} is at most countable. If
the filtration satisfies the "usual hypothesis", then every Lévy process can
be replaced by a càdlàg modification, which is also a Lévy process (for a
proof, see Theorem 2.1.8, pag 87 in [1]).
The usual hypothesis for a filtration (Ft, t ≥ 0) are:

1. (completeness): F0 contains all sets of P -measure 0.

2. (right continuity): Ft = Ft+ where Ft+ = ∩ε>0Ft+ε.

We will assume that:

• (Ω,F , P ) will be a fixed filtered probability space with a filtration
(Ft, t ≥ 0) which satisfies the "usual hypotheses".

• Every Lévy process L will be a Ft-adapted process with càdlàg trajec-
tories.

• L(t)− L(s) is independent of the σ—algebra Fs, for each s < t.

Let us also recall that given two processes, (X (t) , t ≥ 0) and (Y (t) , t ≥ 0) ,
we say that Y is a modification of X if, for each t ≥ 0, P [X (t) 6= Y (t)] = 0.
As a consequence, X and Y share the same finite dimensional distributions.
The jump process ∆X associated to X is defined by

∆X (t) = X (t)−X (t−) .

Theorem 3.8 If N is an increasing Lévy process with values on the natural
numbers, such that ∆N (t) ∈ {0, 1} , then N is a Poisson process.

For a proof of this theorem see [1].

Lemma 3.9 If L is a Lévy process, then with fixed t > 0, we have ∆L(t) = 0
(a.s.).

Proof. Let (t(n);n ∈ N) be a sequence of positive numbers with t(n) ↑ t as
n→∞. The process L has càdlàg paths. Hence, lim

n→∞
L(t(n)) = L(t−). By

the stochastic continuity condition (in the Lévy process definition), L(t(n))
converges (in the probability sense) to L(t). Hence, it has a subsequence
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converging to L(t) a.s. Then, by the uniqueness of the limits L(t) = L(t−)
(a.s.) and ∆L(t) = 0 (a.s.).
In general, the analytic diffi culty in manipulating Lèvy processes has to

do with the fact that is possible to have∑
0≤s≤t

|∆L(s)| =∞ a.s.

To overcome this diffi culty, we will use the fact that∑
0≤s≤t

|∆L(s)|2 <∞ a.s.

In order to count jumps of a specified size, define for a borelian set A ∈
B
(
Rd − {0}

)
, the counting measure

N(t, A) = # {0 ≤ s ≤ t : ∆L (s) ∈ A}
=
∑

0≤s≤t
χA (∆L(s))

For each ω ∈ Ω, t ≥ 0, the map A → N(t, A) is a counting measure on
B
(
Rd − {0}

)
. We denote by B

(
Rd − {0}

)
the σ−algebra of Borel measur-

able sets in Rd − {0}. Then

E [N(t, A)] =

∫
N(t, A) (ω) dP (ω)

is a measure on B
(
Rd − {0}

)
. Let us consider µ (·) = E [N(1, ·)] , which is

a measure on B
(
Rd − {0}

)
called the intensity measure. This measure gives

the mean number of jumps until time 1.
We say that A ∈ B

(
Rd − {0}

)
is bounded from below if 0 /∈ A, where A

is the closure of set A.

Lemma 3.10 If A is bounded from below then N(t, A) < ∞ a.s. for all
t ≥ 0.

Sketch of the Proof : Define the stopping times (TAn , n ∈ N) by

TA1 = inf {t > 0 : ∆L (t) ∈ A}

and
TAn = inf

{
t > TAn−1 : ∆L (t) ∈ A

}
.

Since L has càdlàg paths, we have that TA1 > 0 a.s. and lim
n→∞

TAn = ∞ a.s.

Otherwise, one could prove that the set of all jumps with size in A would
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have an accumulation point and this is impossible for càdlàg processes (see
the proof of Theorem 2.8.1 in appendix 2.8 of [1]). Moreover,

N(t, A) =
∑
n∈N

1{TAn ≤t} <∞ a.s.

Note that if A is not bounded below, then the Lemma no longer holds.
Indeed, there is an accumulation of many small jumps.

Theorem 3.11 1. If A is bounded from below, then (N(t, A), t ≥ 0) is a
Poisson process with intensity parameter µ(A).
2. If A1, . . . Am ∈ B

(
Rd − {0}

)
are disjoint sets then the random vari-

ables N(t, A1), . . . , N(t, Am) are independent.

For a proof of this theorem, see pages 101-103 of [1].
A consequence of the theorem is that µ(A) < ∞ if A is bounded from

below.

• Main properties of N :

1. For each t and ω ∈ Ω, N (t, ·) (ω) is a counting measure on
B
(
Rd − {0}

)
.

2. For each A bounded from below, (N(t, A), t ≥ 0) is a Poisson
process with intensity µ(A) = E [N(1, A)] .

3. The compensated (Ñ(t, A), t ≥ 0) is a martingale-valued measure,
considering Ñ(t, A) = N(t, A)−tµ(A), for A bounded from below,
i.e. for fixed A bounded below, (Ñ(t, A), t ≥ 0) is a martingale.

3.2 Poisson integrals

Let f be a measurable function and A be bounded from below. Then we
may define the Poisson integral of the function f as the random finite sum∫

A

f (x)N (t, dx) (ω) =
∑
x∈A

f (x)N (t, {x}) (ω) ,

where {x} are the jump sizes of the process (in A), i.e.

N (t, {x}) 6= 0⇐⇒ ∆X (u) = x
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for some 0 ≤ u ≤ t. We have that∫
A

f (x)N (t, dx)

is a random variable and defines a stochastic process as t changes. We have
also that ∫

A

f (x)N (t, dx) =
∑

0≤u≤t
f (∆L (u))1A (∆L (u)) .

Theorem 3.12 Let A be bounded from below. Then:
1.
(∫

A
f (x)N (t, dx) , t ≥ 0

)
is a compound Poisson process with charac-

teristic function

exp

(
t

∫
Rd

(
ei(u,x) − 1

)
µf,A (dx)

)
,

where µf,A (B) = µ (A ∩ f−1 (B)) for B ∈ B
(
Rd
)
.

2. If f ∈ L1 (A, µA) then (µA is the measure µ restricted to A):

E
[∫

A

f (x)N (t, dx)

]
= t

∫
A

f (x)µ (dx) .

3. If f ∈ L2 (A, µA) then

Var

(∣∣∣∣∫
A

f (x)N (t, dx)

∣∣∣∣) = t

∫
A

|f (x)|2 µ (dx) .

Sketch of the proof : 1. Assume that f is the simple function

f =

n∑
j=1

cj1Aj

(with the Aj’s disjoint). Then, by part 2 of the previous theorem, we have
that

E

[
exp

{
i

(
u,

∫
A

f (x)N (t, dx)

)}]
=

n∏
j=1

E

[
exp

{
i

(
u,

∫
A

cjN (t, Aj)

)}]

=

n∏
j=1

exp
{
t
(
ei(u,cj) − 1

)
µ (Aj)

}
= exp

{
t
(
ei(u,f(x)) − 1

)
µ (dx)

}
.

For a function f ∈ L1(A, µA), there is a sequence of simple functions that
converges to f in L1. Therefore, a subsequence of this sequence converges to
f a.s. If we pass to the limit in this subsequence, we obtain the result. Parts
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2. and 3. follow from 1. by differentiation (moments can be obtained from
the characteristic function by the formula E

[
Xk
]

= (−i)k ϕ(k) (0))�
From the part (2) of the previous theorem, it follows that a Poisson

integral will not have a finite mean if f /∈ L1(A, µ). For f ∈ L1(A, µA), we
define the compensated Poisson integral by∫

A

f (x) Ñ (t, dx) =

∫
A

f (x)N (t, dx)− t
∫
A

f (x)µ (dx) .

The process
(∫

A
f (x) Ñ (t, dx) , t ≥ 0

)
is a martingale. By the previous the-

orem, we have that

E

[
exp

{
i

(
u,

∫
A

f (x) Ñ (t, dx)

)}]
= exp

(
t

∫
Rd

(
ei(u,x) − 1− i (u, x)

)
µf,A (dx)

)
and if f ∈ L2 (A, µA) , then

E

[∣∣∣∣∫
A

f (x) Ñ (t, dx)

∣∣∣∣2
]

= t

∫
A

|f (x)|2 µ (dx) .

3.3 The Lévy-Itô decomposition

Let P = {a = t1 < t2 < · · · < tn < tn+1 = b} be a partition of [a, b] ⊂ R, with
diameter δ = max

1≤i≤n
|ti+1 − ti|.

Definition 3.13 The variation V arP [g] of a function g over the partition
P is defined by

V arP [g] :=

n∑
i=1

|g (ti+1)− g (ti)| .

Definition 3.14 If V [g] := sup
P
V arP [g] <∞, we say g has finite variation

on [a, b].

If g is defined on R (or R+), we say it has finite variation if it has finite
variation for each compact interval. Every non-decreasing function g has
finite variation.
Functions of finite variation are very inimportant for integration: if we

propose g as an integrator, in order to define the Riemann-Stieltjes integral∫
I
fdg for a continuous function f , a necessary and suffi cient condition for

obtaining
∫
I
fdg as the limit of Riemann sums is the finite variation of g.
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Definition 3.15 A stochastic process (X(t), t ≥ 0) is of finite variation if
the trajectories (X(t)(ω), t ≥ 0) have finite variation for a.a. ω ∈ Ω.

Example 3.16 Let N be a Poisson random measure, with intensity µ. Con-
sider a measurable function f and a set A bounded from below. Then, the
process

Y (t) =

∫
A

f (x)N (t, dx) .

has finite variation on [0, t] for each t ≥ 0. Indeed:

V arP [Y ] ≤
∑

0≤s≤t
|f (∆X (s))|1A (∆X (s)) <∞ a.s. ,

where X (t) =
∫
A
xN (t, dx) for each t ≥ 0.

The following are necessary and suffi cient conditions for a Lévy process
to have finite variation:

1. there is no Brownian component (A = 0 in the formula of Lévy-
Khinchine), and

2. ∫
|x|<1

|x| ν (dx) <∞.

For a set A bounded from below,∫
A

xN (t, dx) =
∑

0≤s≤t
∆L (s)1A (∆L (s)) .

gives the sum of all the jumps with size in A, until time t. If L has càdlàg
paths then this sum is a finite random sum. In particular,∫

|x|≥1

xN (t, dx)

is finite (the sum of big jumps sizes). It is a compound Poisson process, has
finite variation and the moments can be finite or infinite. On the other hand,

L (t)−
∫
|x|≥1

xN (t, dx)

is a Lévy process, which has finite moments of all orders.
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If L is a Lévy process with bounded jumps then we have E(|L(t)|m) <∞
for all m ∈ N (for a proof, see pages 118-119 of [1]).
For small jumps, let us consider compensated Poisson integrals (which

are martingales) for A bounded below:

M (t, A) :=

∫
A

xÑ (t, dx) .

Consider the "ring-sets"

Bm :=

{
x ∈ Rd :

1

m+ 1
< |x| ≤ 1

m

}
,

An :=
n⋃

m=1

Bm.

We can define ∫
|x|<1

xÑ (t, dx) := (L2 limit) lim
n→∞

M (t, An) .

Therefore,
∫
|x|<1

xÑ (t, dx) is a martingale because is the L2 limit of a se-
quence of martingales. Taking the limit in

E

[
exp

{
i

(
u,

∫
An

xÑ (t, dx)

)}]
= exp

(
t

∫
Rd

(
ei(u,x) − 1− i (u, x)

)
µx,An (dx)

)
,

we obtain

E

[
exp

{
i

(
u,

∫
|x|<1

xÑ (t, dx)

)}]
= exp

(
t

∫
|x|<1

(
ei(u,x) − 1− i (u, x)

)
µ (dx)

)
Consider now the process

BA (t) = L (t)− bt−
∫
|x|<1

xÑ (t, dx)−
∫
|x|≥1

xN (t, dx) ,

where b = E
(
L (1)−

∫
|x|≥1

xN (1, dx)
)
. Then BA is a centered martingale

with continuous paths and has covariance matrix A. Therefore, by the Lévy
characterization of Brownian motion, the process BA is a Brownian motion
with covariance (matrix) A.
We have proved the famous Lévy-Itô decomposition for Lévy processes.
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Theorem 3.17 (Lévy-Itô decomposition) If L is a Lévy process, then exist a
vector b ∈ Rd, a Brownian motion with covariance matrix A, denoted by BA,
and an independent Poisson random measure N , defined on R+×

(
Rd − {0}

)
,

such that

L (t) = bt+BA (t) +

∫
|x|<1

xÑ (t, dx) +

∫
|x|≥1

xN (t, dx) . (3.1)

and all the processes in (3.1) are independent.

The Lévy-Khintchine formula can be deduced as a corollary of the Lévy-
Itô decomposition.

Corollary 3.18 (Lévy-Khintchine formula) If L is a Lévy process then

E
[
ei(u,L(t))

]
= exp

{
t

[
i (b, u)− 1

2
(u,Au) +∫

Rd−{0}

[
ei(u,x) − 1− i (u, x)1|x|<1 (x)

]
ν (dx)

]}
• The intensity measure µ is equal to the Lévy measure ν for L.

•
∫
|x|<1

xÑ (t, dx) gives the compensated sum of small jumps sizes, which
is an L2-martingale.

•
∫
|x|≥1

xN (t, dx) is the sum of large jumps (compound Poisson process
- it may fail to have finite moments).

A Lévy process has finite variation if its Lévy-Itô decomposition is

L (t) = γt+

∫
x 6=0

xN (t, dx)

= γt+
∑

0≤s≤t
∆L (s) ,

where γ = b−
∫
|x|<1

xν (dx).
The terms of the Lévy-Itô decomposition have a financial interpretation:

• if the intensity measure (µ or ν) is infinite, the stock price has "infinite
activity" and this means that flutuations and small jumpy movements
are caused by the interaction of supply and demand shocks.
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• if the intensity measure (µ or ν) is finite, we have "finite activity" and
big movements or jumps occur in the market, which can be caused by
sudden events like a major natural disaster.

• If a pure jump Lévy process (no Brownian component) has finite ac-
tivity then it has finite variation. The converse statement is false.

• In the rhs of (3.1), the first three components have finite moments of
all orders. Indeed, if a Lévy process does not have a finite moment, this
is caused by the "large jumps"/"finite activity" part

∫
|x|≥1

xN (t, dx).

One can proce that E [|L (t)|n] <∞ if and only if
∫
|x|≥1
|x|n ν (dx) <∞.

3.4 Stochastic integration

Definition 3.19 A stochastic process Y = {Y (t) , t ≥ 0} is a semimartin-
gale if it is an adapted process that can be decomposed as

Y = Y (0) +M (t) + F (t) , (3.2)

whereM is a local martingale and F is a finite variation and adapted process.

Semimartingales are "good integrators", in the sense that is the largest
class of processes with respect to which the Itô integral can be properly
defined. A Lévy process is a semimartingale. Indeed, by (3.1), it is clear that

M (t) = BA (t) +

∫
|x|<1

xÑ (t, dx) ,

F (t) = bt+

∫
|x|≥1

xN (t, dx) .

are a martingale and a finite variation process.
Let Y = M+F be a semimartingale. The stochastic integral with respect

to Y can be represented in the form:∫ t

0

u (s) dYs =

∫ t

0

u (s) dMs +

∫ t

0

u (s) dFs, (3.3)

where
∫ t

0
u (s) dFs is defined by the usual Lebesgue-Stieltjes integral. In gen-

eral,
∫ t

0
u (s) dMs requires a stochastic definition because, in general, M has

infinite variation. We define, for E ⊂ Rd,∫ t

0

∫
E

u (s, x)M (ds, dx) =

∫ t

0

b (s) dBs +

∫ t

0

∫
E−{0}

u (s, x) Ñ (ds, dx) ,

(3.4)
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where b (s) := u (s, 0) .
Let P be the smallest σ-algebra such that all the mappings u : [0, T ] ×

E × Ω→ R satisfying (1) and (2) below are measurable:

1. For each t, (x, ω)→ u (t, x, ω) is B (E)×Ft measurable.

2. For each x and ω, t→ u (t, x, ω) is left continuous.

Definition 3.20 P is called the predictable σ-algebra. A P-measurable map-
ping (or process) is said to be predictable (predictable process).

Let H2 be the linear space of mappings (or processes) u : [0, T ]×E×Ω→
R which are predictable and satisfy∫ T

0

∫
E−{0}

E
[
|u (t, x)|2

]
ν (dx) dt <∞, (3.5)∫ T

0

E
[
|u (t, 0)|2

]
dt <∞. (3.6)

A simple process u is a process of the form

u =
m∑
j=1

n∑
k=1

uk (tj)1(tj ,tj+1]1Ak . (3.7)

We denote by S the class of simple processes. A simple process is predictable
and its stochastic integral is defined by

I (u) =
m∑
j=1

n∑
k=1

uk (tj)M ((tj, tj+1] , Ak) , (3.8)

whereM ((tj, tj+1] , Ak) = M (tj+1, Ak)−M (tj, Ak) = [B (tj+1)−B (tj)] δ0 (Ak)+[
Ñ (tj+1, Ak − 0)− Ñ (tj, Ak − 0)

]
, where δ0 (·) is a Dirac measure.

Lemma 3.21 If u is simple then

E [I (u)] = 0,

E
[
(I (u))2] =

∫ T

0

∫
E−{0}

E
[
|u (t, x)|2

]
ν (dx) dt+ δ0 (E)

∫ T

0

E
[
|u (t, 0)|2

]
dt

(3.9)

Exercise 3.22 For a simple process u, show that E [I (u)] = 0.
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I is a linear isometry from the space S (set of simple processes) into L2 (Ω)
and since S is dense in H2, I can be extended to H2 and it is a isometry of
H2 into L2 (Ω). For u ∈ H2 we define the stochastic integral by

It (u) =

∫ t

0

∫
E

u (s, x)M (ds, dx)

and∫ t

0

∫
E

u (s, x)M (ds, dx) = lim
n→∞

(L2)

∫ t

0

∫
E

un (s, x)M (ds, dx) , (3.10)

where {un, n ∈ N} is a sequence (of simple processes) such that un → u in
H2.
The stochastic integral It (u) , with u ∈ H2, satisfies the properties:

1. It is a linear operator.

2. E [I (u)] = 0, E
[
(I (u))2] =

∫ T
0

∫
E−{0} E

[
|u (t, x)|2

]
ν (dx) dt+δ0 (E)

∫ T
0
E
[
|u (t, 0)|2

]
dt.

3. {It (u) , t ∈ [0, T ]} is {Ft} adapted.

4. {It (u) , t ∈ [0, T ]} is a square-integrable martingale.

Sketch of the Proof of (3): Let (un, n ∈ N) be a sequence of simple
processes in H2 that converges to u. Then (It(un), t ≥ 0) is adapted and
It(un) −→ It(u) in L2. Therefore, there is a subsequence (unk ;nk ∈ N) such
that It(unk) −→ It(u) a.s. as nk → ∞. Therefore {It (u) , t ≥ 0} is {Ft}
adapted. �
Sketch of the Proof of (4): Let u be a simple process inH2 and choose

0 < s = tl < tl+1 < t. Then It(u) = Is(u) + Is,t(u) and by property (3), we
have that

Es(It(u)) = Is(u) + Es(Is,t(u))

Moreover,

Es(Is,t(u)) = Es

(
m∑

j=l+1

n∑
k=1

uk (tj)M ((tj, tj+1] , Ak)

)

=
m∑

j=l+1

n∑
k=1

Es (uk (tj))Es [M ((tj, tj+1] , Ak)] = 0.

Therefore, Es(It(u)) = Is(u) and {It (u) , t ≥ 0} is a martingale.
Now, let (un, n ∈ N) be a sequence of simple processes converging to u in

L2. It can be proved that (see [1]) Es(It(un))→ Es(It(u)) in L2 and therefore
Es(It(u)) = Is(u) is a square-integrable martingale�
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3.5 Lévy-Type stochastic integrals

The integral of a predictable process w(t, x) with respect to the compound
Poisson process Pt =

∫
A
xN (t, dx) is defined by (with A bounded below)∫ T

0

∫
A

w (t, x)N (dt, dx) =
∑

0≤s≤T
w (s,∆Ps)1A (∆Ps) . (3.11)

We can also define∫ T

0

∫
A

h (t, x) Ñ (dt, dx) =

∫ T

0

∫
A

h (t, x)N (dt, dx)−
∫ T

0

∫
A

h (t, x) ν (dx) dt

(3.12)
if h is predictable and satisfies (3.5).
We say Y is a Lévy type stochastic integral if

Yt = Y0 +

∫ t

0

b (s) ds+

∫ t

0

u (s) dBs +

∫ t

0

∫
|x|<1

h (s, x) Ñ (ds, dx)

+

∫ t

0

∫
|x|≥1

w (s, x)N (ds, dx) , (3.13)

where we assume that the processes b, u, h and w are predictable and satisfy
the appropriate integrability conditions.
Then Y is a semimartingale and equation (3.13) can be written as

dYt = b (t) dt+ u (t) dBt +

∫
|x|<1

h (t, x) Ñ (dt, dx) +

∫
|x|≥1

w (t, x)N (dt, dx) .

Let L be a Lévy process with Lévy triplet (b, c, ν) and let X be a predictable
left-continuous process satisfying (3.5). Then, we can construct a Lévy sto-
chastic integral Yt by

dYt = XtdLt.

The stochastic integrals can be defined in an extended space P2 (T,E),
where H2 ⊂ P2 (T,E). The space P2 (T,E) is defined as the set of mappings
u : [0, T ]× E × Ω→ R, such that:
1) u is predictable
2)

P

[∫ T

0

∫
E−{0}

|u (t, x)|2 ν (dx) dt <∞
]

= 1, (3.14)

P

[∫ T

0

|u (t, 0)|2 dt <∞
]

= 1. (3.15)
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If u ∈ P2 (T,E) then {It (u) , t ≥ 0} is not necessarily a martingale (it
can be just a local martingale). If E = {0} , we use the notation P2 (T )
for P2 (T,E) . Therefore, P2 (T ) is the set of all predictable mappings b :
[0, T ]× Ω→ R such that

P

[∫ T

0

|b (t)|2 dt <∞
]

= 1

We say Y is a Lévy type stochastic integral if

Y i
t = Y0 +

∫ t

0

bi (s) ds+

∫ t

0

uij (s) dBj
s +

∫ t

0

∫
|x|<1

hi (s, x) Ñ (ds, dx)

+

∫ t

0

∫
|x|≥1

wi (s, x)N (ds, dx) , i = 1, ..., d, j = 1, ...,m (3.16)

where |bi|
1
2 , uij ∈ P2 (T ) and hi ∈ P2 (T,E) and w is predictable. With the

stochastic differentials notation, in the one-dimensional case, we can write

dY (t) = b (t) dt+ u (t) dB (t) +

∫
|x|<1

h (t, x) Ñ (dt, dx)

+

∫
|x|≥1

w (t, x)N (dt, dx) .

Let M be an adapted and left-continuous process. Then, we can define a
new process {Zt, t ≥ 0} by

dZ (t) = M (t) dY (t)

or

dZ(t) = M (t) b (t) dt+M (t)u (t) dB (t) +M (t)h (t, x) Ñ (dt, dx)

+M (t)w (t, x)N (dt, dx) .

Example 3.23 Let X be a Lévy process with characteristics (b, A, ν) and
Lévy-Itô decomposition

X (t) = bt+BA (t) +

∫
|x|<1

xÑ (t, dx) +

∫
|x|≥1

xN (t, dx) .

Let L ∈ P2 (t) for all t ≥ 0 and choose in (3.16) uij = AijL, h
i = wi = xiL.

The process Y such that

dY (t) = L (t) dX (t)

is called a Lévy stochastic integral.
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Example 3.24 (Ornstein-Uhlenbeck (OU) process) Let X be a Lévy process.
Consider the process

Y (t) = e−λty0 +

∫ t

0

e−λ(t−s)dX (s) ,

where y0 is fixed. This process can be used for volatility modelling in finance
and is known as the Ornstein-Uhlenbeck (OU) process. In differential form,
the OU process is the solution of the SDE

dY (t) = −λY (t) dt+ dX (t) ,

which is known as the Langevin equation (is a stochastic differential equa-
tion). The Langevin equation is also a model for the physical Brownian mo-
tion. In this equation there is a viscous drag term and a stochastic term.

Exercise 3.25 Prove that if X is a one-dimensional Brownian motion then
the OU process Y (t) is a Gaussian process with mean e−λty0 and variance
1

2λ

(
1− e−2λt

)
.

3.6 Itô formula

Consider the Poisson stochastic integral

W (t) = W (0) +

∫ t

0

∫
A

w (s, x)N (ds, dx) ,

with A bounded below and w predictable.

Lemma 3.26 (Itô formula 1) If f ∈ C (R) then

f (W (t))−f (W (0)) =

∫ t

0

∫
A

[f (W (s−) + w (s, x))− f (W (s−))]N (ds, dx) a.s.

Proof. Let Y (t) =
∫
A
xN (t, dx). The jump times of Y can be defined by

TA0 = 0, TAn = inf
{
t > TAn−1; ∆Y (t) ∈ A

}
.

Then

f (W (t))− f (W (0)) =
∑

0≤s≤t
[f (W (s))− f (W (s−))]

=

∞∑
n=1

[
f
(
W
(
t ∧ TAn

))
− f

(
W
(
t ∧ TAn−1

))]
=

∞∑
n=1

f
(
W
(
t ∧ TAn −

)
+ w

(
t ∧ TAn ,∆Y

(
t ∧ TAn

)))
− f

(
W
(
t ∧ TAn −

))
=

∫ t

0

∫
A

[f (W (s−) + w (s, x))− f (W (s−))]N (ds, dx) .



CHAPTER 3. STOCHASTIC CALCULUS FOR LÉVY PROCESSES 51

Let M be a Itô process of the form

M i (t) =

∫ t

0

uij (s) dBj (s) +

∫ t

0

bi (s) ds,

with uij, |bi|
1
2 ∈ P2 (t). Let us define the quadratic variation process:

[
M i,M j

]
(t) =

m∑
k=1

∫ t

0

uik (s)ujk (s) ds.

We now present the Itô formula for Brownian motion

Theorem 3.27 (Itô formula 2) If f ∈ C2
(
Rd
)
then

f (M (t))−f (M (0)) =

∫ t

0

∂if (M (s)) dM i (s)+
1

2

∫ t

0

∂i∂jf (M (s)) d
[
M i,M j

]
(s) . a.s.

For a proof of this theorem, see [1].
Consider now the Lévy-type stochastic integral

dY (t) = b (t) dt+u (t) dB (t)+

∫
|x|<1

h (t, x) Ñ (dt, dx)+

∫
|x|≥1

w (t, x)N (dt, dx) ,

where

dYc(t) := b (t) dt+ u (t) dB (t) ,

and

dYd(t) :=

∫
|x|<1

h (t, x) Ñ (dt, dx) +

∫
|x|≥1

w (t, x)N (dt, dx) .

The Itô formula for this Lévy-type stochastic integral is given in the following
theorem.

Theorem 3.28 (Itô formula 3) If f ∈ C2
(
Rd
)
then

f (Y (t))− f (Y (0)) =

∫ t

0

∂if (Y (s−)) dY i
c (s) +

1

2

∫ t

0

∂i∂jf (Y (s−)) d
[
Y i
c , Y

j
c

]
(s)

+

∫ t

0

∫
|x|≥1

[f (Y (s−) + w (s, x))− f (Y (s−))]N (ds, dx)

+

∫ t

0

∫
|x|<1

[f (Y (s−) + h (s, x))− f (Y (s−))] Ñ (ds, dx)

+

∫ t

0

∫
|x|<1

[f (Y (s−) + h (s, x))− f (Y (s−))

−hi (s, x) ∂if (Y (s−))
]
ν (dx) ds
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For a proof of this theorem, see [1]. This Itô formula can be presented in
an alternative form.

Theorem 3.29 (Itô formula 4): If f ∈ C2
(
Rd
)
then

f (Y (t))− f (Y (0)) =

∫ t

0

∂if (Y (s−)) dY i (s) +
1

2

∫ t

0

∂i∂jf (Y (s−)) d
[
Y i
c , Y

j
c

]
(s)

+
∑

0≤s≤t

[
f (Y (s))− f (Y (s−))−∆Y i (s) ∂if (Y (s−))

]
.

The quadratic variation process for the process Y is given by[
Y i, Y j

]
(t) =

[
Y i
c , Y

j
c

]
(t) +

∑
0≤s≤t

∆Y i (s) ∆Y j (s) .

or by

[
Y i, Y j

]
(t) =

m∑
k=1

∫ t

0

uik (s)ujk (s) ds+

∫ t

0

∫
|x|<1

hi (s, x)hj (s, x) Ñ (ds, dx)

(3.17)

+

∫ t

0

∫
|x|≥1

wi (s, x)wj (s, x)N (ds, dx) .

Theorem 3.30 If Y 1 and Y 2 are real valued Lévy-type stochastic integrals,
then

Y 1 (t)Y 2 (t) = Y 1 (0)Y 2 (0) +

∫ t

0

Y 1 (s−) dY 2 (s)

+

∫ t

0

Y 2 (s−) dY 1 (s) +
[
Y 1, Y 2

]
(t) .

Proof. Take f (x1, x2) = x1x2 and apply Itô’s formula 4 in order to obtain

Y 1 (t)Y 2 (t)− Y 1 (0)Y 2 (0) =

∫ t

0

Y 1 (s−) dY 2 (s)

+

∫ t

0

Y 2 (s−) dY 1 (s) +
[
Y 1
c , Y

2
c

]
(t)

+
∑

0≤s≤t

[
Y 1 (s)Y 2 (s)− Y 1 (s−)Y 2 (s−)−∆Y 1 (s)Y 2 (s−)−∆Y 2 (s)Y 1 (s−)

]
and the result follows.
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In differential form, this formula is

d
(
Y 1 (t)Y 2 (t)

)
= Y 1 (t−) dY 2 (t) + Y 2 (t−) dY 1 (t) + d

[
Y 1, Y 2

]
(t) .

The Itô correction term can be interpreted as the result of the product of
stochastic differentials, as given in the following formulas (see (3.17)):

dBi (t) dBj (t) = δijdt,

N (dt, dx)N (dt, dy) = N (dt, dx) δ (x− y) ,

the other differentials products vanish.
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Stochastic exponentials

Let d = 1 and consider the process Z = (Z(t), t ≥ 0), which is a solution of
the SDE

dZ(t) = Z (t−) dY (t) , (4.1)

where Y is a Lévy-type stochastic integral, of the form

dY (t) = b (t) dt+u (t) dB (t)+

∫
|x|<1

h (t, x) Ñ (dt, dx)+

∫
|x|≥1

w (t, x)N (dt, dx) .

The solution of (4.1) is the "stochastic exponential" or the "Doléans-Dade
exponential"

Z (t) = EY (t) = exp

{
Y (t)− 1

2
[Yc, Yc] (t)

} ∏
0≤s≤t

(1 + ∆Y (s)) e−∆Y (s).

(4.2)
For financial applications, we will require that

inf {∆Y (t) , t ≥ 0} > −1 a.s. (4.3)

Proposition 4.1 If Y is a Lévy-type stochastic integral and (4.3) is satisfied,
then each random variable EY (t) is a.s. finite.

Exercise 4.2 Prove the previous proposition (see Applebaum)

Note that (4.3) also implies that EY (t) > 0 a.s. The stochastic expo-
nential EY (t) is the unique solution of SDE (4.1) which satisfies the initial
condition Z (0) = 1 a.s. If (4.3) does not hold, then EY (t) may take negative
values.
An alternative form for (4.2) is

EY (t) = eSY (t), (4.4)

54
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where

dSY (t) = u (t) dB (t) +

(
b (t)− 1

2
u (t)2

)
dt

+

∫
|x|≥1

log (1 + w (t, x))N (dt, dx) +

∫
|x|<1

log (1 + h (t, x)) Ñ (dt, dx)

+

∫
|x|<1

(log (1 + h (t, x))− h (t, x)) ν (dx) dt (4.5)

Theorem 4.3
dEY (t) = EY (t) dY (t)

Exercise 4.4 Prove the previous theorem by applying the Itô formula to
(4.5).

Example 4.5 If Y (t) = σB (t), where σ > 0 and B is a Brownian motion,
then

EY (t) = exp

{
σB (t)− 1

2
σ2t

}
.

Example 4.6 If Y = (Y (t), t ≥ 0) is a compound Poisson process with
Y (t) = X1 + · · ·+XN(t), then

EY (t) =

N(t)∏
i=1

(1 +Xi)

Example 4.7 If Y (t) = µt + σB (t) + J(t), where σ > 0, B is a Brownian
motion, and J = (J(t), t ≥ 0) is a compound Poisson process J(t) = X1 +
· · ·+XN(t), then

EY (t) = exp

{(
µ− 1

2
σ2

)
t+ σB (t)

}N(t)∏
i=1

(1 +Xi) .

Let X be a Lévy process with characteristics (b, σ, ν) and Lévy-Itô de-
composition

X (t) = bt+ σB (t) +

∫
|x|<1

xÑ (t, dx) +

∫
|x|≥1

xN (t, dx) .
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When can EX (t) be written as exp (X1 (t)) for a certain Lévy process X1 and
vice-versa? By (4.4) and (4.5) we have EX (t) = eSX(t) with

SX (t) = σB (t) +

∫
|x|≥1

log (1 + x)N (t, dx) +

∫
|x|<1

log (1 + x) Ñ (t, dx)

+ t

[
b− 1

2
σ2 +

∫
|x|<1

(log (1 + x)− x) ν (dx)

]
. (4.6)

Comparing the Lévy-Itô decomposition with (4.6), we have the following
theorem.

Theorem 4.8 IfX is a Lévy process with characteristics (b, σ, ν), then EX (t) =
exp (X1 (t)) where X1 is a Lévy process with characteristics (b1, σ1, ν1) given
by

ν1 = ν ◦ f−1, f (x) = log (1 + x) .

b1 = b− 1

2
σ2 +

∫
R−{0}

[
log (1 + x)1]−1,1[ (log (1 + x))− x1]−1,1[ (x)

]
ν (dx) ,

σ1 = σ.

Conversely, there exists a Lévy process X2 with characteristics (b2, σ2, ν2)
such that we have exp (X (t)) = EX2 (t) , where

ν2 = ν ◦ g−1, g (x) = ex − 1

b2 = b+
1

2
σ2 +

∫
R−{0}

[
(ex − 1)1]−1,1[ (ex − 1)− x1]−1,1[ (x)

]
ν (dx) ,

σ2 = σ.

4.1 Exponential martingales

Consider the Lévy-type stochastic integral

dY (t) = b (t) dt+ u (t) dB (t) +

∫
|x|<1

h (t, x) Ñ (dt, dx)

+

∫
|x|≥1

w (t, x)N (dt, dx) .

When is Y a martingale? Consider the following assumptions

• (M1) E
[∫ t

0

∫
|x|≥1
|w (s, x)|2 ν (dx) ds

]
<∞ for each t > 0.
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• (M2)
∫ t

0
E [|b (s)|] ds <∞ for each t > 0.

As a consequence of (M1) and the Cauchy-Schwarz inequality, we have∫ t

0

∫
|x|≥1

|w (s, x)| ν (dx) ds <∞ a.s.

and∫ t

0

∫
|x|≥1

w (s, x)N (ds, dx) =

∫ t

0

∫
|x|≥1

w (s, x) Ñ (ds, dx)+

∫ t

0

∫
|x|≥1

w (s, x) ν (dx) ds.

The compensated integral is a martingale. Therefore, we have the following
theorem.

Theorem 4.9 Consider the assumptions (M1) and (M2). The process Y is
a martingale if and only if

b (t) +

∫
|x|≥1

w (t, x) ν (dx) = 0 (a.s.) for a.a. t ≥ 0.

Let us consider the process eY =
(
eY (t), t ≥ 0

)
.By Itô’s formula, we have

that

eY (t) = 1 +

∫ t

0

eY (s−)u (s) dB (s) +

∫ t

0

∫
|x|<1

eY (s−)
(
eh(s,x) − 1

)
Ñ (ds, dx)

+

∫ t

0

∫
|x|≥1

eY (s−)
(
ew(s,x) − 1

)
Ñ (ds, dx)

+

∫ t

0

eY (s−)

(
b (s) +

1

2
u (s)2 +

∫
|x|<1

(
eh(s,x) − 1− h(s, x)

)
ν (dx)

+

∫
|x|≥1

(
ew(s,x) − 1

)
ν (dx)

)
ds (4.7)

and therefore, we have the following theorem.

Theorem 4.10 The process eY is a martingale if and only if

b (s) +
1

2
u (s)2 +

∫
|x|<1

(
eh(s,x) − 1− h(s, x)

)
ν (dx)

+

∫
|x|≥1

(
ew(s,x) − 1

)
ν (dx) = 0 a.s. and for a.a. s ≥ 0. (4.8)
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If eY is a martingale, then

eY (t) = 1 +

∫ t

0

eY (s−)u (s) dB (s) +

∫ t

0

∫
|x|<1

eY (s−)
(
eh(s,x) − 1

)
Ñ (ds, dx)

(4.9)

+

∫ t

0

∫
|x|≥1

eY (s−)
(
ew(s,x) − 1

)
Ñ (ds, dx) .

If eY is a martingale then E
[
eY (t)

]
= 1 for all t ≥ 0 and the process eY is

usually called an exponential martingale.

Example 4.11 If Y is an Itô process of the form

Y (t) =

∫ t

0

b (s) ds+

∫ t

0

u (s) dB (s) ,

then (4.8) is b (t) = −1
2
u (t)2 and

eY (t) = exp

(∫ t

0

u (s) dB (s)− 1

2

∫ t

0

u (s)2 ds

)
.

4.2 Change of Measure and Girsanov Theo-
rem

Let P and Q be two different probability measures. Denote by Qt and Pt
the measures restricted to (Ω,Ft). Let eY be an exponential martingale and
define Qt by

dQt

dPt
= eY (t).

Fix an interval [0, T ] and define P = PT and Q = QT .

Lemma 4.12 M = (M(t), 0 ≤ t ≤ T ) is a Q-martingale if and only if
MeY = (M(t)eY (t), 0 ≤ t ≤ T ) is a P -martingale.

Let Y be an Itô process (or Brownian integral) and

eY (t) = exp

(∫ t

0

u (s) dB (s)− 1

2

∫ t

0

u (s)2 ds

)
.

Define a new process

BQ (t) = B (t)−
∫ t

0

u (s) ds.
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Theorem 4.13 (Girsanov): BQ is a Brownian motion under the probability
measure Q.

For a proof of the Girsanov theorem, see [1]. We now present a general-
ization of the Girsanov theorem.

Theorem 4.14 (Girsanov II) Let M be a martingale given by

M(t) =

∫ t

0

∫
A

L (x, s) Ñ (ds, dx) ,

with L predictable and L ∈ P2. Then

N(t) = M(t)−
∫ t

0

∫
A

L (s, x)
(
eh(s,x) − 1

)
ν (dx) ds

is a Q-martingale.



Chapter 5

Lévy Processes in Option
Pricing

5.1 Option pricing

Consider that we have a risky asset or stock with price process S = (S (t) , t ≥ 0) .
A contingent claim with maturity date T is a non-negative FT -measurable
random variable Z, representing the payoff of a financial derivative. Z. For
instance, for an European call option, we have

Z = max {S (T )−K, 0} .

For an American call option, we have

Z = sup
0≤τ≤T

[max {S (τ)−K, 0}] .

For an Asian option, we have

Z = max

{
1

T

∫ T

0

(S (t)−K) dt, 0

}
.

In our market model, we assume that the interest rate r is constant. Define
the discounted stock price process S̃ =

(
S̃ (t) , t ≥ 0

)
by

S̃ (t) = e−rtS(t).

Consider a portfolio (α (t) , β (t)) , where α (t) is the number of shares and
β (t) is the number of riskless assets (bonds). The portfolio value at time t
is given by the process

V (t) = α (t)S (t) + β (t)A (t) .

60
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A portfolio is said to be a replicating portfolio if V (T ) = Z and is said to be
a self-financing portfolio if

dV (t) = α (t) dS (t) + rβ (t)A (t) dt.

A market is said to be complete if every contingent claim can be replicated
by a self-financing portfolio.
An arbitrage opportunity exists if the market allows some type of risk-

free profit. More precisely, the market is arbitrage free if there exists no
self-financing strategy for which V (0) = 0, V (T ) ≥ 0 and P (V (T ) > 0) > 0.

Theorem 5.1 (Fundamental Theorem of Asset Pricing I - discrete time) If
the market is free of arbitrage opportunities, then there exists a probability
measure Q, equivalent to P , such that the discounted price process S̃ is a
Q-martingale.

One can prove a similar result in the continuous time case. However, one
need more technical assumptions - like the stronger NFLVR assumption ("no
free lunch with vanishing risk").

Theorem 5.2 (Fundamental Theorem of Asset Pricing II) An arbitrage-free
market is complete if and only if there exists a unique probability measure Q,
equivalent to P , such that the discounted price process S̃ is a Q-martingale.

Such a measure Q is usually called an equivalent martingale measure or a
risk-neutral measure. If Q exists and is not unique, the market is incomplete.
If the market is complete, we have that

V (t) = e−r(T−t)EQ [Z|Ft]

which is the arbitrage-free price, at time t, of the contingent claim or payoff
Z.

5.2 Stock price as a Lévy process

Consider the return of the risky asset in a time interval of size δt, given by

δS (t)

S (t)
= σδX (t) + µδt,

where X = (X(t), t ≥ 0) is a Lévy process, σ > 0 is the volatility parameter
and µ is the stock drift parameter.
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The stochastic differential equation for the price is

dS (t) = σS (t−) dX (t) + µS (t−) dt

= S(t−)dZ (t) ,

where Z (t) = σX (t) + µt. Then S(t) = EZ(t) is the stochastic exponential
of Z.

Example 5.3 When X is a standard Brownian motion B, the price process
is given by the geometric Brownian motion

S(t) = exp

(
σB (t) +

(
µ− 1

2
σ2

)
t

)
.

In order to ensure that the stock prices are non-negative, (4.3) yields

∆X (t) > −σ−1 a.s.

for each t > 0. Denote c := −σ−1. We impose∫
(c,−1]∪[1,+∞)

x2ν (dx) <∞.

This means that eachX(t) has first and second moments, which is reasonable
for stock returns.
By the Lévy-Itô decomposition, we have

X (t) = mt+ kB(t) +

∫ ∞
c

xÑ (t, dx) ,

where k ≥ 0 and m := b +
∫

(c,−1]∪[1,+∞)
xν (dx) (in terms of the previous

parameters). Representing S(t) as the stochastic exponential EZ(t), we obtain
from (4.5) that

d (log (S (t))) = kσdB(t) +

(
mσ + µ− 1

2
k2σ2

)
dt

+

∫ ∞
c

log (1 + σx) Ñ (dt, dx) +

∫ ∞
c

(log (1 + σx)− σx) ν (dx) dt.

In applications to finance, several Lévy processes are used in order to ob-
tain realistic dynamics: jump-diffusion processes, the variance-gamma, the
normal inverse Gaussian, the CGMY process, hyperbolic processes, etc.
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5.3 Change of measure

We now want to find measures Q, equivalent to the original measure P , such
that the discounted stock price process S̃ is a Q-martingale. Let Y be a
Lévy-type stochastic integral of the form

dY (t) = b (t) dt+ u (t) dB (t) +

∫
R−{0}

h (t, x) Ñ (dt, dx) .

Consider that eY is an exponential martingale (therefore, b is determined by
u and h). Define Q by

dQ

dP
= eY (T ).

By the Girsanov theorem and its generalization, we have taht

BQ (t) = B (t)−
∫ t

0

u (s) ds is a Q-Brownian motion,

ÑQ(t, A) = Ñ(t, A)− νQ (t, A) is a Q-martingale,

νQ (t, A) :=

∫ t

0

∫
A

(
eh(s,x) − 1

)
ν (dx) ds.

S̃ (t) = e−rtS(t) can be written in terms of these processes by

d
(

log
(
S̃ (t)

))
= kσdBQ(t) +

(
mσ + µ− r − 1

2
k2σ2 + kσu (t)

+σ

∫
R−{0}

x
(
eh(t,x) − 1

)
ν (dx)

)
dt+

∫ ∞
c

log (1 + σx) ÑQ (dt, dx)

+

∫ ∞
c

(log (1 + σx)− σx) νQ (dt, dx) .

If we put S̃ (t) = S̃1 (t) S̃2 (t), then

d
(

log
(
S̃1 (t)

))
= kσdBQ(t)− 1

2
k2σ2dt

+

∫ ∞
c

log (1 + σx) ÑQ (dt, dx) +

∫ ∞
c

(log (1 + σx)− σx) νQ (dt, dx) .

and

d
(

log
(
S̃2 (t)

))
= (mσ + µ− r + kσu (t) +

+σ

∫
R−{0}

x
(
eh(t,x) − 1

)
ν (dx)

)
dt.



CHAPTER 5. LÉVY PROCESSES IN OPTION PRICING 64

Apllying Itô’s formula to S̃1, we obtain

dS̃1 (t) = kσS̃1 (t−) dBQ(t) +

∫ ∞
c

σS̃1 (t−)xÑQ (dt, dx) ,

and S̃1 is a Q-martingale. Therefore, S̃ is a Q-martingale if and only if

mσ + µ− r + kσu (t) + σ

∫
R−{0}

x
(
eh(t,x) − 1

)
ν (dx) = 0 a.s. (5.1)

In general, the equation (5.1) may have an infinite number of possible solution
pairs (u, h). There are an infinite number of possible measures Q such that
S̃ is a Q-martingale. Therefore, in general, a Lévy process model is an
incomplete market model.

Example 5.4 (Brownian motion or Black-Scholes model) Let ν = 0 and
k 6= 0. Then, exists a unique solution for (5.1):

u(t) =
r − µ−mσ

kσ
a.s.

and the market is complete (Black-Scholes model).

Example 5.5 (Poisson process case) Take k = 0 and ν (x) = λδ1 (x). Then
X (t) = mt +

∫∞
c
xÑ (t, dx), where the jump part is the standard Poisson

process N(t).Writing h(t, 1) = h(t), we have from (5.1) that

mσ + µ− r + σλ
(
eh(t) − 1

)
= 0 a.s.

and

h(t) = log

(
r − µ+ (λ−m)σ

λσ

)
.

In this case, the market is also complete and we obtain a martingale measure
if r − µ+ (λ−m)σ > 0.

In most part of the other cases (with other Lévy processes), the market
is incomplete.

5.4 Incomplete markets and Esscher trans-
form

In Lévy market models, equivalent measures Q exist such that S̃ will be a
Q-martingale. However, these measures are not unique (in most cases). We
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must consider a selection rule or principle in order to reduce the class of all
possible measures Q to an appropriate subset. Then we must apply some
procedure in order to obtain a unique equivalent measure Q.
Consider the aditional assumption∫

|x|≥1

euxν (dx) <∞,

for all u ∈ R. We can consider the analytic continuation of the Lévy- Khint-
chine formula, in order to get

E
[
e−uX(t)

]
= e−tψ(u),

where

ψ (u) = −η (iu) = bu− 1

2
k2u2 +

∫ ∞
c

(
1− e−ux − ux1{|x|<1} (x)

)
ν (dx) .

The processes

Mu (t) = exp (iuX (t)− tη (u)) ,

Nu (t) = Miu (t) = exp (−uX (t) + tψ (u))

are martingales and Nu is strictly positive. Define a new measure by

dQu

dP
|Ft = Nu (t) .

The measure Qu is usually called the Esscher transform of P by the martin-
gale Nu. Applying the Itô formula to Nu, we get

dNu (t) = Nu (t−)
(
−kuB (t) +

(
e−ux − 1

)
Ñ (dt, dx)

)
.

Comparing this with (4.9) for an exponential martingale eY , we have that

u(t) = −ku,
h(t, x) = −ux

and for Qu to be a martingale as in (5.1), we require that

mσ + µ− r − k2uσ + σ

∫ ∞
c

x
(
e−ux − 1

)
ν (dx) = 0 a.s.

Let

z(u) =

∫ ∞
c

x
(
e−ux − 1

)
ν (dx)− k2u.
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Then, the martingale condition is

z(u) =
r − µ−mσ

σ
. (5.2)

Since z′(u) < 0, z is strictly decreasing, and therefore there is a unique u (a
unique measure Qu) that satisfies (5.2).
The Esscher transform is such that the measure Qu minimizes the relative

entropy H(Q|P ) between the measures Q and P (a measure of "distance"
between two measures), where

H(Q|P ) = EQ
[
ln

(
dQ

dP

)]
= EP

[
dQ

dP
ln

(
dQ

dP

)]
.

5.5 Absence of arbitrage

LetX be a Lévy process and consider a market model where St = S0 exp (Xt) .

Theorem 5.6 If the trajectories of X are neither increasing (a.s.) nor
decreasing (a.s.), then the exponential Lévy market model given by St =
S0 exp (Xt) is arbitrage free: there exists a measure Q equivalent to P such
that S̃t = e−rtSt is a Q-martingale.

In other words, the exponential-Lévy model is arbitrage free in the fol-
lowing cases (not mutually exclusive):

• 1) X has a nonzero Gaussian component (or diffusion coeff.): σ > 0.

• 2) X has infinite variation:
∫
|x|<1
|x| ν (dx) =∞.

• 3) X has both positive and negative jumps.

• 4) X has positive jumps and negative drift or negative jumps and pos-
itive drift.

5.6 The mean-correcting measure

A practical way to obtain an equivalent martingale measure Q in a expo-
nential Lévy model of type St = S0 exp (Xt) , is by mean correcting the
exponential of a Lévy process (see [7], pages 79-80). We can correct the ex-
ponential of the Lévy process X, by adding a new drift term mt (with new
parameter m):

X t = mt+Xt.
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When comparing the characteristics triplet of X with those of X, the only
parameter that changes is the drift: b = b+m.We can change them parame-
ter of the process X such that S̃t = e−rtSt is a martingale. This is equivalent
to choose an equivalent martingale measure Q.

Example 5.7 In the Black-Scholes model, we change the mean of the normal
distribution µ− 1

2
σ2 = mold into the new m parameter:

mnew = r − 1

2
σ2,

or
mnew = mold + r − ln [ϕ (−i)] ,

where ϕ (x) is the characteristic function of the log-returns involving the mold

parameter. In the Black-Scholes model, ln [ϕ (−i)] = µ. This choice of mnew

will imply that the discounted price S̃t = e−rtSt is a martingale.

Procedure:
1) Estimate in some way the parameters involved in the process.
2) Then change the m parameter in a way that

mnew = mold + r − ln [ϕ (−i)] ,

where ϕ (x) is the characteristic function of the log-returns involving themold

parameter.
3) Then, with this new mnew parameter in the Lévy process, the dis-

counted price S̃t = e−rtSt is a martingale and we have chosen the mean-
correcting equivalent martingale measure.
In page 78 of [7], the author lists what is the value of the m parameter

for several Lévy processes (CGMY, VG, NIG, etc...)

5.7 Hyperbolic processes in finance

Let A ∈ B (R) be measurable set and let (gθ, θ ∈ A) be a family of proba-
bility density functions, and ρ a probability distribution on A (called mixing
measure). The "probability mixture"

h (x) =

∫
A

gθ (x) ρ (dθ)

is a probability density function on R. The hyperbolic distributions are
"probability mixtures".
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Consider the Bessel functions of the 3rd kind:

Kν (x) =
1

2

∫ ∞
0

uν−1 exp

(
−1

2
x

(
u+

1

u

))
du, x, ν ∈ R.

For each a, b > 0

fa,bν (x) =

(
a
b

) ν
2

2Kν

(√
ab
)xν−1 exp

(
−1

2

(
ax+

b

x

))
is a pdf on (0,∞), which is called a Generalized Inverse Gaussian orGIG (ν, a, b).
Take ρ to be GIG (1, a, b) and A = (0,∞) and gσ2 the pdf of N (µ+ bσ2, σ2)
with µ, b ∈ R. The resulting probability mixture is

hα,βδ,u (x) =

√
α2 − β2

2αδK1

(
δ
√
α2 − β2

) exp

(
−α
√
δ2 + (x− µ)2 + β (x− µ)

)
,

for all x ∈ R, where α2 = a+ β2 and δ2 = b. The corresponding law is called
an hyperbolic distribution (log

(
hα,βδ,u

)
is a hyperbola).The parameter µ is a

location parameter, α is a "tail" parameter, β controls the asymmetry and δ
is a scale parameter. These distributions are infinitely divisible and all their
moments exist. The moment generating function is

Mα,β
δ,u (u) =

∫
R
euxhα,βδ,u (x) dx.

It can be proved that

Mα,β
δ,u (u) = eµu

√
α2 − β2

K1

(
δ
√
α2 − β2

)K1

(
δ
√
α2 − (β + u2)

)
√
α2 − (β + u2)

The characteristic function is

ϕ (u) = M (iu) .

For simplicity, we restrict to the symmetric case (µ = β = 0) and with
ζ = δα,

hζ,δ (x) =
1

2δK1 (ζ)
exp

(
−ζ
√

1 +
(x
δ

)2
)
.

The corresponding Lévy process has no Gaussian part and it is

Xζ,δ (t) =

∫ t

0

∫
R−{0}

x̃N (ds, dx) .
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5.8 Option pricing with hyperbolic processes

The stock price process can be modeled by

dS (t) = S (t−) dXζ,δ (t) .

The jumps of Xζ,δ are not bounded from below and this represents a major
drawback for this approach. In order to solve this problem, one can model

S (t) = S (0) eXζ,δ(t),

S̃ (t) = S (0) eXζ,δ(t)−rt.

The martingale measure Q is such that S̃ is a Q martingale. The market is
incomplete and therefore we can apply the Esscher transform and consider
the new measure Qu such that

dQu

dP
|Ft = Nu (t) = exp (−uXζ,δ (t)− t log (Mζ,δ (u))) .

By the Generalized Girsanov theorem, S̃ is a Q-martingale iff S̃Nu is a P -
martingale. The process S̃Nu is given by

S̃ (t)Nu (t) = exp ((1− u)Xζ,δ (t)− t (log (Mζ,δ (u)) + r))) .

One can prove that

exp ((1− u)Xζ,δ (t)− t log (Mζ,δ (1− u)))

is a martingale. Therefore, S̃ is a Q-martingale if and only if

r = log (Mζ,δ (1− u))− log (Mζ,δ (1− u)) =

= log

K1

√
ζ2 − δ2 (1− u)2

K1

(√
ζ2 − δ2u2

)
− 1

2
log

[
ζ2 − δ2 (1− u)2

ζ2 − δ2u2

]
.

The value of u can be obtained from the previous expression by using appro-
priate numerical procedures. One can now price an European call option, by
using the formula

V (0) = EQu
[
e
(
seXζ,δ(T ) −K

)+
]

If f (t)
ζ,δ is the probability density function of Xζ,δ (t) with respect to P, then

we can use the Esscher transform to show that Xζ,δ (t) has the following
probability density function with respect to Qu:

f
(t)
ζ,δ (x;u) = f

(t)
ζ,δ (x) e−ux−t log(Mζ,δ(u)).
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Therefore, the pricing formula is:

V (0) = s

∫ ∞
log( kx)

f
(T )
ζ,δ (x; 1− u) dx− e−rTK

∫ ∞
log( kx)

f
(T )
ζ,δ (x;u) dx.

• Volatility: If we had S (t) = eZ(t) with Z (t) = σB (t) (where B is a
Brownian motion) then the volatility is

σ2 = E
[
Z (1)2] .

• By an analogy argument, in the hyperbolic case the volatility can be
defined by

σ2 = E
[
Xζ,δ (1)2] ,

and one can prove that (from the moment generating function and
Bessel functions properties)

σ2 =
δ2K2 (ζ)

ζK1 (ζ)
.



Chapter 6

Risk neutral valuation and
parameter estimation

6.1 Risk neutral valuation

In an arbitrage-free market modeled by an exponential Lévy process (or
exponential Lévy model), the price process of the underlying risky asset is
given by

St = S0 exp (Xt) ,

where Xt is a Lévy process. In an exponential Lévy model, the discounted
price process

S̃t = e−rtSt

is a martingale with respect to some martingale measure (or risk neutral
measure) Q.
The value Πt (HT ) of a contingent claim (option of derivative) with payoff

HT , is given by the risk-neutral valuation formula:

Πt (HT ) = e−r(T−t)EQ [HT |Ft] (6.1)

Specifying an option pricing model is equivalent to specify the law of St
under the risk-neutral measure. In the Black-Scholes model, the dynamics
of St under Q can be defined by

dSt = rStdt+ σStdWt,

where Wt is a standard Brownian motion under Q. Alternatively, we can
define

St = S0 exp (Xt) ,

71
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where

Xt =

(
r − σ2

2

)
t+ σWt.

For most exponential Lévy models, it is impossible to find a closed form
solution, even for plain vanilla derivatives (the Black and Scholes model is an
exception). We assume that the martingale measure Q has been chosen (the
mean-correcting martingale measure, for example). Assume that we know
the density fQ of ST under the equivalent risk neutral measure Q. Then, we
have for the price of an European call with strike K and maturity T , at time
0 (see Eq. (6.1)):

C0 = exp(−rT )EQ
[
(ST −K)+]

= exp(−rT )

∫ +∞

0

fQ (x) (x−K)+ dx

= exp(−rT )

∫ +∞

K

xfQ (x) dx−K exp(−rT )Π2,

where Π2 is the probability for the call option to be in the money at expira-
tion. For most of the Lévy distributions, this integral should be calculated
numerically and this calculation can be computationally very demanding.
Moreover, we may not know explicitly fQ. Therefore, this method is of a
limited interest in practice. The risk neutral density fQ is rarely known.
Nevertheless, we know, from the Lévy-Khintchine formula, the equation for
the Fourier transform of St. In order to evaluate an option one then needs to
invert the Fourier transform. The algorithms for the inversion of the Fourier
transform are fast and optimized. The Fast Fourier transform (FFT) algo-
rithm allows the calculation of the prices of options with different strikes in
a single calculation. This method was developed by Carr and Madan in [3].
Consider an European call with underlying St and with strike K. Define

k = ln(K),

sT = ln(ST ).

Let ΦT (u) be the characteristic function of sT , i.e.,

ΦT (u) = E
[
eiusT

]
=

∫ +∞

−∞
eiusqT (s) ds, (6.2)

where qT (s) is the density of sT . The price of the call option at time 0 is:

C0 (k) = exp(−rT )E
[
(ST −K)+

]
= exp(−rT )

∫ ∞
k

(
es − ek

)
qT (s) ds. (6.3)
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The function C0 (k) as a function of k is not square-integrable because as
k → −∞ we have that K → 0, C0 (k) → S0 and therefore C0 (k) is not
integrable. But C0 (k) as a function of k should be square-integrable in order
to calculate the inverse Fourier transform. Carr and Madam suggested to
consider a "modified call price" function:

c0 (k) = exp (αk)C0 (k) ,

with α > 0 in order to ensure the integrability when k → −∞.

6.2 Valuation with the Fourier transform

The Fourier transform of c0 (k) is

ΨT (v) =

∫ +∞

−∞
eivkc0 (k) dk (6.4)

Since
c0 (k) = exp (αk)C0 (k) ≈

k→−∞
S0 exp (αk) ,

this function is square integrable in −∞. Inverting the Fourier transform,
we obtain:

c0 (k) =
1

2π

∫ +∞

−∞
e−ivkΨT (v) dv,

C0 (k) =
exp (−αk)

2π

∫ +∞

−∞
e−ivkΨT (v) dv.

But C0 (k) is real, and therefore:

Im

[∫ +∞

−∞
e−ivkΨT (v) dv

]
= 0.

Let a(v) and b(v) be the real and imaginary parts of ΨT (v):

a(v) =

∫ +∞

−∞
cos (vk) c0 (k) dk,

b(v) =

∫ +∞

−∞
sin (vk) c0 (k) dk.

Then (note that a is even and b is odd)

ΨT (−v) = a (v)− ib (v) .
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Define the functions:

A(k) =

∫ 0

−∞
e−ivkΨT (v) dv

B(k) = 2π exp (αk)C0 (k)− A(k)

=

∫ +∞

0

e−ivkΨT (v) dv.

If we change the variable v → −v, then

A(k) =

∫ 0

+∞
−eivkΨT (−v) dv

=

∫ +∞

0

[cos (vk) a(v) + sin(vk)b(v) + i (sin(vk)a(v)− b (v) cos (vk))] dv.

On the other hand,

B(k) =

∫ +∞

0

e−ivkΨT (v) dv

=

∫ +∞

0

[cos (vk) a(v) + sin(vk)b(v)− i (sin(vk)a(v)− b (v) cos (vk))] dv

Comparing both expressions,

Re [A (k)] = Re [B (k)] ,

Im [A (k)] = − Im [B (k)]

Then, it is easy to see that

2π exp (αk)C0 (k) = A(k) +B(k)

= 2 Re [B(k)]

and therefore

C0 (k) =
exp (−αk)

π
Re

[∫ +∞

0

e−ivkΨT (v) dv

]
. (6.5)

Now, let us try to express ΨT as a function of ΦT . From (6.3) and (6.4), we
have

ΨT (v) = e−rT
∫ +∞

−∞

∫ +∞

k

eαkeivk
(
es − ek

)
qT (s) dsdk.
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Using the Fubini theorem and changing the order of integration, we have:

ΨT (v) = e−rT
∫ +∞

−∞

∫ s

−∞

(
eivk+αk+s − eivk+k(α+1)

)
qT (s) dkds

= e−rT
∫ +∞

−∞
qT (s)

[
eivk+αk+s

iv + α
− eivk+k(α+1)

iv + α + 1

]s
−∞

ds

= e−rT
∫ +∞

−∞
qT (s)

(
eivs+αs+s

iv + α
− eivs+s(α+1)

iv + α + 1

)
ds

= e−rT
∫ +∞

−∞
qT (s) e(iv+α+1)s

(
1

(iv + α) (iv + α + 1)

)
ds

=
e−rT

α2 + α− v2 + iv (2α + 1)
ΦT (v − i (1 + α)) , (6.6)

where ΦT is the characteristic function of sT - see eq. (6.2). We assume that
c0 (k) is integrable when k → +∞, i.e., we assume that

ΨT (0) =

∫ +∞

−∞
c0 (k) dk <∞.

This condition in terms of ΦT is

ΦT (−i (1 + α)) <∞

or ∫ +∞

−∞
e(1+α)sqT (s) ds <∞,

which is equivalent to
E
[
S1+α
T

]
<∞.

The final formula for the price of a call option in terms of ΦT is (see (6.5)
and (6.6))

C0 (k) =
e−αke−rT

π
Re

[∫ +∞

0

e−ivkΦT (v − i (1 + α))

α2 + α− v2 + iv (2α + 1)
dv

]
.

Carr and Madan suggest to choose α ≈ 0.25. W. Schoutens proposes α ≈
0.75. The choice of α affects the convergence speed.
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6.3 The Fast Fourier Transform

In order to calculate C0 (k), we discretize the integral

C0 (k) =
e−αke−rT

π
Re

[∫ +∞

0

e−ivkΨT (v) dv

]
≈ e−αke−rT

π
Re

[∫ (N−1)η

0

e−ivkΨT (v) dv

]
,

where η is the integration step and N is a large positive integer. Using the
trapezoidal method for the integral approximation (with coeffi cients 1

2
for the

first and the last terms in the sum), we have

C0 (k) ≈ e−αke−rT

π
Re

[
N−1∑
j=0

e−ivjkΨT (vj) · η · wj

]
,

where vj = η · j and

wj =

{
1
2

if j = 0 or j = N − 1,
1 if 0 < j < N − 1.

We should center the analysis on the options around the options at-the
money: K = S0 or k = ln(S0) := θ. Therefore, define

ku = θ − b+ λu, u = 0, ..., N − 1,

λ =
2b

N − 1
.

Hence

C0 (ku) ≈
e−αke−rT

π
Re

[
N−1∑
j=0

e−iηj(θ−b+λu)ΨT (ηj) · η · wj

]

≈ e−αke−rT

π
ηRe

[
N−1∑
j=0

e−iηjλuΨT (ηj) · eiηj(θ−b) · wj

]
With the Fast Fourier Transform algorithm (FFT), we can calculate the N
values of the sum

w (u) =
N−1∑
j=0

e−i
2π
N
jux (j) , u = 0, 1, ..., N − 1,

with a number of product operations of N ln(N) instead of N2. In order to
apply the FFT algorithm, we must choose

ηλ =
2π

N
.
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6.4 Parameter estimation

Assume that the underlying asset follows the exponential of a particular Lévy
process. In order to estimate the parameters of the model, we use market
data, for example the prices of european calls on some index at some fixed
date. We use present values to estimate the parameter and not past or
historical data.
As an example, in order to calibrate the pricing model on the data, we

choose parameters of the Variance Gamma model in order to minimize the
quadratic error between the market prices of the call options and the call
options prices given by the model. After estimating the parameters, if we
want to price path-dependent options or exotic options (for example, barrier
options), we can use Monte Carlo techniques to simulate a large number
of paths of the Variance Gammma process with the optimized parameters
previously estimates and we can calculate the exotic options by Monte-Carlo
method from the formula:

V (t) = e−r(T−t)EQ [X|Ft] .

The data for model calibration can be, for example, the 77 call option
prices on S&P 500 Index at the close of the market on 18 April 2002 (see [7],
page 155).
The characteristic function of the Variance-Gamma distribution with pa-

rameters (σ, ν, θ):

ΦV G (u;σ, ν, θ) =

(
1− iuθν +

1

2
σ2νu2

)−1/ν

.

We can define the Variance-gamma process as a Lévy Process X(V G)
t such

that the distribution of the incrementXt+s−Xs follows the Variance-Gamma
law with parameters

(
σ
√
t, ν/t, tθ

)
and

E
[
eiuX

(V G)
t

]
=

(
1− iuθν +

1

2
σ2νu2

)−t/ν
.

The Variance-Gamma process has the following properties:

• (1) no diffusion component and it is a pure-jump process.

• (2) it has infinite activity (infinitely many (small) jumps in any finite
time interval)

• (3) it has paths of finite variation:
∫ 1

−1
|x| νV G (dx) <∞.
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Figure 6.1: The data (from [7])
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• (4) it has Lévy measure

νV G (dx) =

{
C exp(Gx) |x|−1 dx if x < 0,
C exp(−Mx)x−1dx if x > 0,

where C = 1/v > 0, G =
(√

1
4
θ2ν2 + 1

2
σ2ν − 1

2
θν
)−1

> 0, M =(√
1
4
θ2ν2 + 1

2
σ2ν + 1

2
θν
)−1

> 0.

Under the historical probability measure P, assume that the price of the
risky asset is

St = S0 exp
(
mHt+XV G

t (σH , νH , θH) + wHt
)
,

where by the subscripts H we mean that these parameters are the ones under
the historical probability measure P. The parameter wH is chosen such that
it cancels the drift of the process XV G

t (σH , νH , θH) and therefore

wH =
1

νH
ln

(
1− θHνH −

σ2
HνH
2

)
and mH is the expected rate of return under P.
In order to price, we choose to estimate the parameters not under P but

under Q (the risk neutral (RN) measure or equivalent martingale measure).
Under Q, the price process is

St = S0 exp
(
rt+XV G

t (σRN , νRN , θRN) + wRN t
)
.

The parameter wRN is chosen such that the discounted price process S̃t =
e−rtSt is a Q martingale (mean correcting equivalent martingale measure)
and this results in

wRN =
1

νRN
ln

(
1− θRNνRN −

σ2
RNνRN

2

)
.

In practice, we need to calculate the characteristic function at the point 1/i.
The algorithm is:

• For a set of market prices of N calls, we choose the risk neutral pa-
rameters such that the quadratic error between market prices and the
prices given by the model of the call options is minimum, and is given
by the root-mean-square error

RMSE = min
σRN ,νRN ,θRN

√√√√ 1

N

N∑
i=1

[(market price)i − (calculated price)i]
2.
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• Call prices are calculated by the Fourier Transform method with the
FFT algorithm

• The grid of the logarithm of the strike is such that allows to interpolate
with an acceptable error the prices of options for the strikes which are
really traded on the market.

We now present some results obtained by Schoutens and described in [7]
(page 81), for the calibration procedure whith the CGMY model:

Calibration from [7]

From [7] (page 83), we obtain the comparison of the calibration results
for several models.

6.5 Exotic option pricing

The payoff of an "Up and In call option" (barrier option) with strike K and
barrierH is equal to the payoffof the european call, if the underlying reached
or crossed the barrier H between time 0 and T . If the barrier has not been
reached, then the payoff is 0.
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Figure 6.2: Table from [7]

After estimating the parameters, assume that we want to price an exotic
option (for example, a barrier option of the type "Up and in"). We can use
the Monte-Carlo method from the formula:

V (0) = e−rTEQ
[
(ST −K)+ 1{max(St;0≤t≤T )≥H} (ω)

]
,

where H is the barrier level. Note that if H ≤ K, the up and in call and the
european call with strike K and maturity T have the same value, because if
ST > K then ST > H also.
The Monte Carlo algorithm:

• (1) We assume that the parameters of the risk neutral process were
previously calibrated on the market prices of european calls by the
method previously described

• (2) A large number N of trajectories of the risk neutral process is
simulated on a regular time grid.

• (3) For each trajectory i (i = 1, 2, ..., N) we calculate the payoff of the
option by formula:

Ci =
[
(ST −K)+ 1{max(St;0≤t≤T )≥H} (ωi)

]
• (4) The final price of the option can be estimated by the discounted
mean of the payoff for the N trajectories:

V̂ (0) = e−rT
1

N

N∑
i=1

Ci.
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