Lévy-Itô decomposition and stochastic integration

João Guerra

CEMAPRE and ISEG, UTL

October 19, 2014

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2014 1 / 19

Processes of finite variation

Processes of Finite Variation

- Let $\mathcal{P} = \{a = t_1 < t_2 < \cdots < t_n < t_{n+1} = b\}$ be a partition of $[a, b] \subset \mathbb{R}$, with diameter $\delta = \max_{1 \le i \le n} |t_{i+1} t_i|$.
- Variation $Var_{\mathcal{P}}[g]$ of a function g over partition \mathcal{P} :

$$Var_{\mathcal{P}}[g] := \sum_{i=1}^{n} |g(t_{i+1}) - g(t_{i})|.$$

- If $V[g] := \sup_{\mathcal{D}} Var_{\mathcal{P}}[g] < \infty$, we say g has finite variation on [a, b].
- If g is defined on \mathbb{R} (or \mathbb{R}^+), we say it has finite variation if it has finite variation on each compact interval.
- Every non-decreasing function g has finite variation.

- Functions of finite variation are important in integration:if we propose g as an integrator, in order to define the Stieltjes integral: ∫_i fdg for all continuous functions f, a necessary and sufficient condition for obtaining ∫_i fdg as a limit of Riemann sums is that g has finite variation.
- A stochastic process $(X(t), t \ge 0)$ is of finite variation if the paths $(X(t)(\omega), t \ge 0)$ are of finite variation for almost all $\omega \in \Omega$.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2014

2/19

Processes of finite variation

Example - Poisson integrals

• N: Poisson random measure with intensity measure μ , let f be a measurable function and A bounded below. Let

$$Y(t) = \int_{A} f(x) N(t, dx).$$

- The process Y has finite variation on [0, t] for each $t \ge 0$.
- Indeed:

$$Var_{\mathcal{P}}[Y] \leq \sum_{0 \leq s \leq t} |f(\Delta X(s))| \mathbf{1}_{A}(\Delta X(s)) < \infty$$
 a.s.,

where $X(t) = \int_{A} xN(t, dx)$ for each $t \ge 0$.

 Necessary and sufficient condition for a Lévy process to be of finite variation: there is no Brownian part (A = 0 in the Lévy-Khinchine formula), and

$$\int_{|x|<1}|x|\,\nu\left(dx\right)<\infty.$$

4

For A bounded below,

$$\int_{A} XN(t, dx) = \sum_{0 \le s \le t} \Delta X(s) \mathbf{1}_{A}(\Delta X(s)).$$

is the sum of all the jumps taking values in A, up to time t.

- ullet paths of X are càdlàg \Longrightarrow the sum is a finite random sum.In particular, $\int_{|x|>1} xN(t,dx)$ is finite ("big jumps"). It is a compound Poisson process, has finite variation but may have no finite moments.
- Conversely, $X(t) \int_{|x|>1} xN(t, dx)$ is a Lévy process with finite moments of all orders.
- If X is a Lévy process with bounded jumps then we have $E(|X(t)|^m) < \infty$ for all $m \in \mathbb{N}$. (proof: pages 118-119 of Applebaum).

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2014 4 / 19

Lévy-Itô decomposition

 For small jumps, let us consider compensated Poisson integrals (which are martingales): (A bounded below)

$$M(t,A) := \int_A x \widetilde{N}(t,dx).$$

Consider the "ring-sets":

$$B_m := \left\{ x \in \mathbb{R}^d : \frac{1}{m+1} < |x| \le \frac{1}{m} \right\},$$

$$A_n := \bigcup_{m=1}^n B_m.$$

We can define

$$\int_{|x|<1} x\widetilde{N}(t, dx) := (L^2 \operatorname{limit}) \lim_{n\to\infty} M(t, A_n).$$

Therefore $\int_{|x|<1}x\widetilde{N}(t,dx)$ is a martingale (the L^2 limit of a sequence of martingales).

• Taking the limit in $E\left[\exp\left\{i\left(u,\int_{A_n}x\widetilde{N}\left(t,dx\right)\right)\right\}\right]=\exp\left(t\int_{\mathbb{R}^d}\left(e^{i(u,x)}-1-i\left(u,x\right)\right)\mu_{x,A_n}\left(dx\right)\right)$ (see Poisson integration in the previous session), we obtain

$$E\left[\exp\left\{i\left(u,\int_{|x|<1}x\widetilde{N}(t,dx)\right)\right\}\right]$$

$$=\exp\left(t\int_{|x|<1}\left(e^{i(u,x)}-1-i(u,x)\right)\mu(dx)\right)$$

Consider

$$B_{A}\left(t\right)=X\left(t\right)-bt-\int_{\left|x\right|<1}x\widetilde{N}\left(t,dx\right)-\int_{\left|x\right|>1}xN\left(t,dx\right),$$

where
$$b = \mathbb{E}\left(X(1) - \int_{|x| \geq 1} xN(1, dx)\right)$$
.

- B_A is a centered martingale with continuous paths and has covariance matrix A.
- By the Lévy characterization of B.M., B_A is a Brownian motion with covariance matrix A.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2014

6/19

Lévy-Itô decomposition

Lévy-Itô decomposition

Theorem

(Lévy-Itô decomposition): If X is a Lévy process, then exists $b \in \mathbb{R}^d$, a Brownian motion B_A with covariance matrix A and an independent Poisson random measure N on $\mathbb{R}^+ \times (\mathbb{R}^d - \{0\})$ such that

$$X(t) = bt + B_{A}(t) + \int_{|x|<1} x\widetilde{N}(t, dx) + \int_{|x|\geq1} xN(t, dx). \tag{1}$$

The 3 processes in (1) are independent.

The Lévy-Khintchine formula is a corollary of the Lévy-Itô decomposition.

Corollary

(Lévy-Khintchine formula): If X is a Lévy process then

$$E\left[e^{i(u,X(t))}\right] = \exp\left\{t\left[i\left(b,u\right) - \frac{1}{2}\left(u,Au\right) + \int_{\mathbb{R}^d - \{0\}} \left[e^{i(u,x)} - 1 - i\left(u,x\right)\mathbf{1}_{|x| < 1}\left(x\right)\right]\nu\left(dx\right)\right]\right\}$$

- The intensity measure μ is equal to the Lévy measure ν for X.
- $\int_{|x|<1} x\widetilde{N}(t, dx)$ is the compensated sum of small jumps (it is an L^2 -martingale).
- $\int_{|x|\geq 1} xN(t,dx)$ is the sum of large jumps (compound Poisson process, but may have no finite moments).

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2014

8/19

Lévy-Itô decompositio

Lévy-Itô decomposition

A Lévy process has finite variation if its Lévy-Itô decomposition is

$$X(t) = \gamma t + \int_{x \neq 0} xN(t, dx)$$
$$= \gamma t + \sum_{0 \leq s \leq t} \Delta X(s),$$

where $\gamma = b - \int_{|x| < 1} x \nu (dx)$.

Financial interpretation for the jump terms in the Lévy-Itô decomposition:

- if the intensity measure (μ or ν) is infinite: the stock price has "infinite activity" \approx flutuations and jumpy movements arising from the interaction of pure supply shocks and pure demand shocks.
- if the intensity measure (μ or ν) is finite, we have "finite activity" \approx sudden shocks that can cause unexpected movements in the market, such as a major earthquake.
- If a pure jump Lévy process (no Brownian part) has finite activity

 then
 it has finite variation. The converse is false.
- The first 3 terms on the rhs of (1) have finite moments to all orders \Longrightarrow if a Lévy process fails to have a moment, this is due to the "large jumps"/"finite activity" part $\int_{|x|>1} xN(t,dx)$.
- $E\left[\left|X\left(t\right)\right|^{n}\right]<\infty$ if and only if $\int_{\left|x\right|>1}\left|x\right|^{n}\nu\left(dx\right)<\infty$.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2014

10 / 19

Stochastic integration

Semimartingales

Definition

A stochastic process $X = \{X(t), t \ge 0\}$ is a semimartingale if it an adapted process which admits a decomposition:

$$X = X(0) + M(t) + C(t),$$
 (2)

where M is a local martingale and C is an adapted process of finite variation.

- Semimartingales are "good integrators": largest class of processes with respect to which the Itô integral can be defined.
- A Lévy process is a semimartingale:by (1),

$$M(t) = B_A(t) + \int_{|x| < 1} x \widetilde{N}(t, dx),$$
 $C(t) = bt + \int_{|x| > 1} x N(t, dx).$

Stochastic integration

- Let X = M + C be a semimartingale.
- Stochastic integral w.r.t. X:

$$\int_{0}^{t} F(s) dX_{s} = \int_{0}^{t} F(s) dM_{s} + \int_{0}^{t} F(s) dC_{s}.$$
 (3)

- $\int_0^t F(s) dC_s$ defined by the usual Lebesgue-Stieltjes integral.
- In general, $\int_0^t F(s) dM_s$ requires a stochastic definition (in general, M has infinite variation).
- We define, for $E \subset \mathbb{R}^d$,

$$\int_{0}^{t} \int_{E} F(s, x) M(ds, dx) = \int_{0}^{t} G(s) dB_{s} + \int_{0}^{t} \int_{E - \{0\}} F(s, x) \widetilde{N}(ds, dx),$$
where $G(s) = F(s, 0)$.
(4)

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2014

12 / 19

Stochastic integration

- Let \mathcal{P} be the smallest σ -algebra with respect to which all the mappings $F: [0, T] \times E \times \Omega \to \mathbb{R}$ satisfying (1) and (2) below are measurable:
 - ① For each t, $(x, \omega) \to F(t, x, \omega)$ is $\mathcal{B}(E) \times \mathcal{F}_t$ measurable.
 - 2 For each x and ω , $t \to F(t, x, \omega)$ is left continuous.
- \mathcal{P} is called the predictable σ -algebra. A \mathcal{P} -measurable mapping (or process) is said predictable (predictable process)
- Let \mathcal{H}_2 be the linear space of mappings (or processes) $F: [0, T] \times E \times \Omega \to \mathbb{R}$ which are predictable and

$$\int_{0}^{T} \int_{E-\{0\}} \mathbb{E}\left[\left|F\left(t,x\right)\right|^{2}\right] \nu\left(dx\right) dt < \infty, \tag{5}$$

$$\int_0^T \mathbb{E}\left[\left|F\left(t,0\right)\right|^2\right] dt < \infty. \tag{6}$$

Let F be a simple process:

$$F = \sum_{i=1}^{m} \sum_{k=1}^{n} F_k(t_j) \mathbf{1}_{(t_j, t_{j+1}]} \mathbf{1}_{A_k}$$
 (7)

F is predictable and its stochastic integral is defined by

$$I(F) = \sum_{j=1}^{m} \sum_{k=1}^{n} F_k(t_j) M((t_j, t_{j+1}], A_k), \qquad (8)$$

where
$$M((t_{j}, t_{j+1}], A_{k}) = M(t_{j+1}, A_{k}) - M(t_{j}, A_{k}) = [B(t_{j+1}) - B(t_{j})] \delta_{0}(A_{k}) + [\widetilde{N}(t_{j+1}, A_{k} - 0) - \widetilde{N}(t_{j}, A_{k} - 0)].$$

Lemma

If F is simple then

$$\mathbb{E}\left[I(F)\right] = 0,$$

$$\mathbb{E}\left[\left(I(F)\right)^{2}\right] = \int_{0}^{T} \int_{E-\{0\}} \mathbb{E}\left[\left|F(t,x)\right|^{2}\right] \nu\left(dx\right) dt + \delta_{0}\left(E\right) \int_{0}^{T} \mathbb{E}\left[\left|F(t,0)\right|^{2}\right] dt$$
(9)

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2014

14 / 19

Stochastic integration

- Exercise: Show that $\mathbb{E}[I(F)] = 0$.
- I is a linear isometry from S (set of simple processes) into $L^2(\Omega)$ and since S is dense in \mathcal{H}_2 , I can be extended to \mathcal{H}_2 and it is a isometry of \mathcal{H}_2 into $L^2(\Omega)$.
- For $F \in \mathcal{H}_2$ we define

$$I_{t}(F) = \int_{0}^{t} \int_{E} F(s, x) M(ds, dx)$$

and

$$\int_{0}^{t} \int_{E} F(s, x) M(ds, dx) = \lim_{n \to \infty} (L^{2}) \int_{0}^{t} \int_{E} F_{n}(s, x) M(ds, dx), \quad (10)$$

where $\{F_n, n \in \mathbb{N}\}$ is a sequence of simple processes.

16

Stochastic integratio

- The stochastic integral $I_t(F)$ with $F \in \mathcal{H}_2$ satisfies:
 - $\mathbf{0}$ I_t is a linear operator
 - $\mathbb{E}\left[I(F)\right] = 0,$ $\mathbb{E}\left[\left(I(F)\right)^{2}\right] = \int_{0}^{T} \int_{E-\{0\}} \mathbb{E}\left[\left|F(t,x)\right|^{2}\right] \nu\left(dx\right) dt + \delta_{0}\left(E\right) \int_{0}^{T} \mathbb{E}\left[\left|F(t,0)\right|^{2}\right] dt.$
 - 3 { $I_t(F)$, $t \in [0, T]$ } is { \mathcal{F}_t } adapted
 - 4 $\{I_t(F), t \in [0, T]\}$ is a square-integrable martingale.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2014

16 / 19

Lévy-Type stochastic integrals

Poisson stochastic integrals

• The integral of a predictable process K(t, x) with respect to the compound Poisson process $P_t = \int_A x N(t, dx)$ is defined by (A bounded below)

$$\int_{0}^{T} \int_{A} K(t, x) N(dt, dx) = \sum_{0 \le s \le T} K(s, \Delta P_{s}) \mathbf{1}_{A}(\Delta P_{s}). \tag{11}$$

We can also define

$$\int_0^T \int_A H(t,x) \widetilde{N}(dt,dx) = \int_0^T \int_A H(t,x) N(dt,dx) - \int_0^T \int_A H(t,x) \nu(dx) dt$$
(12)

if H is predictable and satisfies (5).

4.0

Lévy type stochastic integrals

We say Y is a Lévy type stochastic integral if

$$Y_{t} = Y_{0} + \int_{0}^{t} G(s) ds + \int_{0}^{t} F(s) dB_{s} + \int_{0}^{t} \int_{|x| < 1} H(s, x) \widetilde{N}(ds, dx) + \int_{0}^{t} \int_{|x| \ge 1} K(s, x) N(ds, dx),$$
(13)

where we assume that the processes G, F, H and K are predictable and satisfy the appropriate integrability conditions.

- Y is a semimartingale.
- Eq. (13) can be written as

$$dY_{t} = G(t) dt + F(t) dB_{t} + \int_{|x| < 1} H(t, x) \widetilde{N}(dt, dx) + \int_{|x| \ge 1} K(t, x) N(dt, dx)$$

• Let L be a Lévy process with Lévy triplet (b, c, ν) and let X be a predictable left-continuous process satisfying (5). Then we can construct a Lévy stochastic integral Y_t by

$$dY_t = X_t dL_t$$
.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy-Itô decomposition and stochastic integration

October 19, 2014

18 / 19

Lévy-Type stochastic integrals

- Applebaum, D. (2004). Lévy Processes and Stochastic Caculus. Cambridge University Press. (Sections 2.3, 2.4, 4.1, 4.2 and 4.3)
- Applebaum, D. (2005). Lectures on Lévy Processes, Stochastic Calculus and Financial Applications, Ovronnaz September 2005, Lecture 2 in http://www.applebaum.staff.shef.ac.uk/ovron2.pdf
- Cont, R. and Tankov, P. (2003). Financial modelling with jump processes. Chapman and Hall/CRC Press sections 3.4., 3.5. and 2.6